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Abstract

Aspect mining aims at identifying cross-cutting concerns
in existing systems and therefore advocates the adaption to
an aspect-oriented design. This paper presents a case study
examining three existing aspect mining techniques from the
literature by applying them to four different open source
java applications. We compare and evaluate the individ-
ual technique and confirm the findings of a previous study
of combining different aspect mining techniques in order to
get better results with less manual intervention.

1. Introduction

One of the major problems in legacy systems under-
standing, maintaining and extending is the existence of
cross-cutting concerns [13]. Cross-cutting concerns are not
localized in one single module but scattered over many dif-
ferent modules (code scattering problem), and the code of
the different concerns may be tangled with the main func-
tionality of different modules (code tangling problem)[2].
The aspect-oriented paradigm [5] provides an approach to
separate such complex cross-cutting concerns in a well-
modularized way, making the evolution of such systems
easier and manageable. The task of detecting these cross-
cutting concerns from an existing system is called aspect
mining.

Aspect mining research assists program comprehension
in two ways. First, if an aspect mining tool can find a
reasonable set of concerns from a system, one can study
and understand these concerns in isolation and without con-
sidering other code by following a bottom-up, divide-and-
conquer comprehension strategy [4]. Second, the found
concerns can be refactored to different aspects (aspect refac-
toring), thus improving understandability, maintainability
and extensibility as well as reducing complexity of the sys-
tem. Therefore, aspect mining not only helps in aspect

refactoring but also plays an important role in program
comprehension as an efficient software exploration tech-
nique [17].

While the available aspect mining techniques provide
support for the process of identification of aspects in ex-
isting software, the problem is that they cannot guarantee a
comprehensive aspectization of a system. This brings the
idea of combining the techniques in a suitable way, and one
approach towards this direction is proposed by Ceccato et
al. [2, 3]. There are also other two frameworks in compar-
ing and/or combining different techniques [14, 19]. How-
ever, the existing research describes the approach primar-
ily on the benchmark application, JHotDraw5.4b1 [10]. In
this paper, we present a case study applying three aspect
mining techniques, Fan-in analysis [15], Identifier analy-
sis [23], and Dynamic analysis [22] to four systems. We
have retained the benchmark application, JhotDraw5.4b1 in
our case study and added three other applications. The pri-
mary objective of this study is to evaluate the generality of
the different combinations proposed by Ceccato et al. and
to obtain general guidelines that can be used when applying
these techniques. The major contributions of our paper can
be summarized as follows:

• We confirm the major strengths and weaknesses of the
three aspect mining techniques from Ceccato et al. [2],
and then present the findings based on the results from
the four target applications.

• We provide results of the three techniques for the tar-
get applications. This result can be used by other re-
searchers for their own techniques, or more analysis
can fine-tune our findings. In this way, it might be pos-
sible to have a common benchmark for aspect mining
techniques. The results can also contribute to form a
catalog of aspect-oriented refactorings [16].

• We provide an experimental analysis on the thresholds
chosen for different subject programs. We also look
for other existing tools and techniques in the literature.



The experience with other tools and techniques pro-
vide us some interesting lessons applicable to the three
techniques used in this case study.

The remainder of this paper is organized as follows. The
general methodology of this case study is discussed in Sec-
tion 2, while Section 3 shows the target applications used in
this study. Results obtained by the different techniques from
the subject applications are provided in Section 4 whereas in
Section 5, the obtained results are compared to confirm the
effectiveness and weakness of the techniques used, and Sec-
tion 6 summarizes our experiences learned from the study.
The threats to the validity of this study are pointed out in
Section 7. In Section 8, some of the works related/used in
this study are briefly discussed and finally, Section 9 con-
cludes this paper.

2. Methodology

We have used the individual methodology for each of the
techniques from the literature. In the first phase, JHotDraw
was used as a test bed to identify different cross-cutting con-
cerns using the knowledge gained from the literature. The
initial goal was to obtain similar results for JHotDraw to
those found from literature in order to train ourselves in the
used three techniques. We were able to find most of the
published concerns, and we also found one/two additional
potential concerns.

We have used FINT [15] for fan-in analysis and dy-
namo [22] for dynamic analysis. For identifier analysis we
have developed a prototype tool in java which we call INT.
We have also developed an extractor to isolate source code
fragments based on the potential aspect seeds.

We applied both the top-down and bottom-up approaches
of aspect mining. In the top-down approach, we focused on
typical concerns that were known to be cross-cutting in the
literature (e.g., persistence). We then applied the bottom-
up approach. We used the techniques for an initial set of
results, looked at the application’s source code and docu-
mentation for a clear picture of the application to perform
a manual analysis of the results. The process was repeated
until we were ceased to find any new concern.

The thresholds for the fan-in analysis and the identifier
analysis were determined experimentally by evaluating the
concerns found for each of the thresholds. As we do not
have a complete oracle, the categorization of seed and non-
seed for different source codes was mainly based on the
knowledge gained from existing literature.

3. Target Applications for Aspect Mining

Several open source java applications are considered in
this case study. It has been noticed that some of the appli-
cations are not compatible with all the aspect mining tools.

Table 1 lists the four target applications used in this study
along with their statistics. The common benchmark JHot-
Draw is a framework for drawing structured 2D graphics
and was initially developed to represent the good use of
object-oriented design patterns. We have taken one applica-
tion, JDraw [9] which is quite similar to JHotDraw in func-
tionality but larger in size. It is a pixel oriented graphics
editor designed especially for small to medium-sized pic-
tures used to decorate web pages. JsokoApplet [11], a game
program, is completely different from JHotDraw but simi-
lar in size. It is a java applet version of the popular sokoban
game. The fourth one, SqureRootDisk [21], is a simple file
and folder scanner and very small in size. Moreover, the
game application is documented in German which was not
easy for all of us to read through. Fortunately, one of the
authors knows the German language.

4. Results of The Aspect Mining

In this section, we provide the results of applying each
technique to the target applications. Due to space limita-
tions, only partial results are provided in some cases. We
have also omitted the results of JHotDraw as our found re-
sults are almost similar to the literature.

4.1. Fan-in analysis results

The results of fan-in analysis are provided in Table 2,
where the number of different instances of a particular con-
cern is indicated in the 3rd column. It is interesting to
observe that some concerns, such as consistent behavior,
contract enforcement, undo, and persistence are present in
JHotDraw, JDraw and JSokoApplet. Moreover, the con-
cerns have more than one instance in almost every appli-
cation. We consider a functionality as cross-cutting if it
is explicitly called by different methods in different differ-
ent classes, where a particular method exhibits the particu-
lar functionality. Examples in this category are consistent
behavior and contract enforcement in JHotDraw, JDraw,
JSokoApplet, and exception handling in JDraw. The path
finder functionality is the same in general throughout the
JSokpApplet, although it is implemented by different meth-
ods. It is identified by looking at the similarities of the
method calls and their executions. Some other concerns
similar to this category are undo, persistence (JHotDraw,
JDraw, JSokoApplet). We also find the composite and ob-
server design patterns for JHotDraw and JDraw, however,
we are unable to find any for the JSokoApplet.

The choice of threshold plays a significant role in the
case of fan-in analysis while analyzing the subject pro-
grams. The results from JHotDraw do not differ much
whether the chosen threshold is 10 or 5. However, for
SqureRootDisk, no seed is found using thresholds 10 or

2



Table 1. System statistics of the subject applications used in this study
Program Version NCLOC Packages Classes Methods Type
JHotDraw 5.4b1 11484 17 291 2699 Drawing Editor
JDraw 1.1.5 17601 10 197 1429 Drawing Editor
JSokoApplet 1.17 10818 11 54 487 Game Applet
SquareRD 1.4.2 624 1 7 47 File, Folder Scanner

Table 2. Selection of results of the fan-in analysis
Application Concern Type # Seed Description Seed Example

Consistent Be-
havior

5 Does a certain job, check or re-
fresh the view

Tool.drawInfo(), updateTitle()

Contract En-
forcement

4 Methods perform a certain
check

clipPanel.deactivate()

JDraw Undo 1 Whether something is undoable
or redoable, and does the action

DrawPixel.redo(), Undoable.-
undo()

Persistence 1 Writes bytes or long, etc. PNGWriter.writeLong()
Observer 3 Notifies a certain change or ac-

tion performed
actionPerformed(), notify-
DataListeners()

Composite 4 Adds a new child or listener or
elements

Log.addLogListener(),
gui.addElement(), add()

Exception Han-
dling

1 Shows or debugs error mes-
sages

Log.error(), Log.debug()

Consistent Be-
havior

2 Refreshes the screen, checks or
updates the moves or pushes

JSokoApplet.redraw()

Contract En-
forcement

1 Checks apriori conditions Board.pushBox()

JSokoApplet Undo 1 Whether something is undoable
or redoable, and does the action

Board.pushBoxUndo()

Persistence 1 Saves the current levels or
moves

storeBoradPosition()

Path-Finder 4 Finds minimal path, checks
path availability

calculateLowerBound()

Prepare Game 2 Creates the graphical menu or
new level

MenuBar.createMenuBar()

SquareRD Scan 1 Scans for Files or Folders processFile()

5. Therefore, we have experimentally reduced the thresh-
old and observed the results for different applications. Fi-
nally, we found good results using threshold 7 for JDraw
and 5 for JSokoApplet. Although JDraw is a similar type
application to JHotDraw and larger in size, with threshold
10, some important concerns were missing. Similar prob-
lems occur with JSokoApplet which is quite the same size
of JHotDraw. This clearly indicates that choosing a fixed
threshold for all applications is not a wise decision. This
was clearer when we did not find any methods from Square-
RootDisk even with threshold 3 and found only one method
with threshold 2.

4.2. Identifier analysis results

Using the identifier analysis technique, we found 197
concepts for JHotDraw compare to 230 concepts of Cec-
cato et al. using threshold 4. Using threshold 10, the num-

ber of concepts detected was significantly fewer (95) but
quite similar to them (100). In both cases, 2823 elements
and 419 properties were considered. A partial statistics for
the remaining three applications are summarized in Table 3.

Table 3. Partial statistics of different subject
programs for identifier analysis

Subject Program #C (T=4) #C (T=10) #E #P
JDraw 191 87 1626 521
JSokoApplet 90 32 510 294
SquareRD 11 2 54 49
C = Concepts, E = Elements, P = Properties

As noticed by Ceccato et al., the number of properties
is less than the total number of elements for all the subject
programs. This indicates that there are a large number of
overlapping identifiers in the different source-code entities.
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Table 4. Selection of results of the identifier analysis
Application Crosscutting Concern Concept(s) #E Seed Example

Undo undo(able) 13 addUndoable( Undoable u )
redo 10 redo()

Persistence file(s) 13 buildLastFilesMenu()
and save(d) 23 save(), saveImage()
Resurrection write 45 writeGIF(), writeInt(i)

read 28 readGIF( fileName ), readInt()
Observer change(d, s) 87 dataChanged( ChangeEvent e )

check 12 checkInput()
listener(s) 16 notifyDataListeners(event)

JDraw Compress Image compress 8 compress()
Fill Gradient fill 15 isGradientFillOn()
Place Text text 15 getText(),drawText(Graphics2D)
Composite add 40 addColour( Color)
Exception error 9 error(String)
Handling exception 7 exception( Throwable)
Persistence save, saving 7 saveLevelAs(),saveLevelApplet()
and store(d) 5 storeBoardPosition(boardPosition)
Resurrection load 7 loadBackgroundGraphic(graphicname)

JSokoApplet Path-Finder backward(s) 14 calculateBoxDistancesBackwards()
forward(s) 18 calculateBoxDistancesForwards()
reachable 12 isSquareReachable(int)
path 12 calculatePlayerPath(int, int)

Prepare Game Board 46 setBoardPosition(position)
Debugging debug 7 printStatisticDebug()
Scan File file 5 processFile(File, int)

SquareRD dir 2 getDirectorySize(File, int)
Persistence save 2 saveMenuItemActionPerformed

E denotes Elements

This is, of course, one of the premises of the identifier anal-
ysis technique.

After the initial level of stemming and filtering of iden-
tifiers, the next step is to manually analyze the seeds and
decide which concepts are real seeds. As we already had ex-
perience with the subject programs from fan-in analysis and
using other browsing tools, it did not take a significant time
to manually analyze the candidate seeds. We have spent a
total of 9 days for this part. We spent about 3 days for JHot-
Draw, 4 days for JDraw, 2 days for JSoko. We only needed
to spend a couple of hours for SquareRootDisk. Our devel-
oped browsing/extracting tools helped us to extract the de-
sired source code, and classify them according to the simi-
larity of the methods/class names. Table 4 provides the final
results of JDraw, JSoko and SquareRootDisk.

We used thresholds of 4, 7, 10 and 15 for all the ap-
plications, and based on the analysis of the results we
took thresholds of 10 for JHotDraw, 5 for both JDraw and
JSokoApplet, and 2 for SquareRootDisk.

Identifier analysis depends mainly on the naming con-
vention. Fortunately, all the target applications used in this
study follow the naming conventions. The categorization of
different concepts was partially based on existing literature.

However, because of the diversity of the target applications,
we mainly used the documentations to define some applica-
tion specific concerns, such as path-solver for JSokoApplet,
and compress image & paint image for JDraw.

4.3. Dynamic analysis results

Dynamic analysis requires generation of application spe-
cific use-cases that exercise the functionalities. In the case
of JHotDraw, we have used the same 27 use-cases as of
Ceccato et al. For the remaining 3 subject applications, we
studied the documentation of the corresponding application.
In the case of JSokoApplet, we had to play the game also as
the documentation was not sufficient to understand all the
functionalities.

Execution of the JHotDraw use-cases listed 1962 meth-
ods, from where the concept analysis algorithm figured out
27 elements and 1962 properties. The resulting concept lat-
tice contained 286 nodes. Even if we have used the same
use-cases as of Cecceco et al. for JHotDraw, our findings
are somewhat different from them. This difference in results
indicates the common problem of dynamic analysis tech-
nique where the collected data can differ in each execution
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as they are collected from run time executions that involves
human intervention. However, the number of use-case spe-
cific and generic concepts (22 use-case specific concepts
and 96 generic concepts) is similar to them. In order to
remove false positives, we have manually filtered out some
concern seeds and grouped similar concern concepts. The
number of use-cases (elements), properties (methods) and
the nodes of the remaining three subject programs found
from our analysis are summarized in Table 5.

Table 5. Statistics of different subject pro-
grams for dynamic analysis

Application Use-cases Properties Nodes
JDraw 33 664 594
JSokoApplet 20 239 70
SquareRD 4 18 4

Among the concepts in the lattice, some of them have
satisfied the cross-cutting conditions (scattering and tan-
gling) for the use-case specific concepts and some have sat-
isfied the conditions for the generic concepts. Then both the
use-case specific and generic concepts were revisited man-
ually in order to determine the real seeds and to avoid false
positives.

The list of the candidate concerns for JDraw, JSokoAp-
plet and SquareRootDisk are summarized in Table 6. In

Table 6. Selected results of dynamic analysis
Application Crosscutting Concern #C #M

Resize 2 21
Observer 5 15
Reset Alpha Values 1 7
Compress Image 2 16
Persistence 2 22

JDraw Insert Image in Frame 1 8
Create and Fill Gradient 2 4
Remove Color From Local
Palette

1 25

Swap Color In Local
Palette

1 7

Undo 4 19
Path-Finder 4 31

JSokoApplet Deadlock Detection 1 9
Undo 1 4
Prepare Game 1 8

SquareRD Scan 1 12
Persistence 1 5

C denotes Concepts , and M denotes Methods

the initial assessment of JDraw, 28 use-case specific and
97 generic concepts were identified and finally, 35 con-
cepts were judged to be associated with 24 cross-cutting
concerns. In the initial assessment of JSokoApplet, 3 use-

case specific and 17 generic concepts were identified and fi-
nally, 9 concepts were judged to be associated with 6 cross-
cutting concerns. In the initial assessment of SqureRoot-
Disk, 2 use-case specific and 2 generic concepts were iden-
tified and finally, 2 concepts were judged to be associated
with 2 cross-cutting concerns. For the case of JHotDraw,
36 concepts were judged to be associated with 16 cross-
cutting concerns. The methods associated with each candi-
date seed indicate the aspectizable functionality of that par-
ticular seed. As dynamic analysis is partial, the results may
not be complete and may have some false positives also.

5. Observing and Comparing the Results

In this section, we discuss some selected concerns identi-
fied by the different techniques from the target applications.

5.1. Concerns found by the techniques

The list of concerns identified by the different techniques
for JDraw (partial result), JSokoApplet and SquareRoot-
Disk are summarized in Tables 7, 8 and 9 respectively.
Here, the first column represents the name of the concern,
the other columns show by which technique(s) the concern
was identified. The + sign indicates that the specific concern
was identified by the corresponding technique.

Table 7. Detected concerns in JDraw
Crosscutting Concern Fan Iden Dyn
Consistent Behavior + - -
Contract Enforcement + - -
Undo + + +
Persistence + + +
Observer + + +
Composite + + -
Exception Handling + + -
Drawing Figure - + +
Compress Image - + +
Resize - + +
Paint Image - + +
Manage GUI - - +
Zoom Image - - +
View Animation - - +

It is observed from the tables that none of the techniques
are self-sufficient to discover all the concerns from an ap-
plication. The percentage of concern coverage found by
each of the techniques is noted in Table 10, where the sec-
ond column represents the total number of concerns found
by all the techniques. Considering this number as the total
number of concerns for an application, we have calculated
the percentage of concern coverage for a particular tech-
nique. Here it is found that the average percentage cover-
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Table 8. Detected concerns in JSokoApplet
Crosscutting Concern Fan Iden Dyn
Consistent Behavior + - -
Contract Enforcement + - -
Undo + - +
Persistence + + -
Path-Finder + + +
Composite + - -
Prepare Game + + +
Debug + + -
Transform Graph - + +
Deadlock Detection - + +
Set Editor Mode - + +
Path-Solver - + -

Table 9. Detected concerns in SquareRD
Concern Fan Iden Dyn
Scan + + +
Persistence - + +

age is the highest (73.9%) using dynamic analysis experi-
ment. Although dynamic analysis is partial, this technique
can provide more concern seeds than the others. Even if it
has missed some major concerns, it still provides promising
results. On the other hand, for fan-in analysis technique, the
result depends on the threshold chosen. The results of the
identifier analysis is also based on threshold and it might
differ depending on the threshold used. Therefore, the per-
centage of concern coverage found by different techniques
might significantly differ depending on the target applica-
tions used, as well as on the particular characteristics spe-
cific to the particular techniques such as the use-cases for
dynamic analysis and the threshold for fan-in and identi-
fier analysis techniques. Although different techniques can

Table 10. Percentage of concerns found by
different techniques

Application Total Fan Iden Dyn
JHotDraw 29 55.17% 34.48% 58.62%
JDraw 31 25.8% 27% 87%
JSokoApplet 12 66.6% 58.33% 50%
SquareRD 2 50% 100% 100%
Average - 49.39% 54.95% 73.9%

have different levels of concern coverage, it might be inter-
esting to see how efficient a technique is in providing infor-
mation for a particular concern. If we have a quick look at
the results of different techniques, we will see that identifier
analysis technique discovers more methods/classes than the
other two techniques which indicates that identifier analysis
technique might be able to provide more information for a
particular concern. As this technique gives many false pos-

itives, we obtain the percentage of false positives for some
particular concerns. We use the common concerns discov-
ered by all the techniques for each application.

Table 11 shows the percentage of false positives of the
6 concerns Undo, Persistence, Observer, Path-finder, Pre-
pare Game and File & folder scanner taken from differ-
ent applications. The data indicates that identifier analysis
technique gives more false positives than the other two tech-
nique while fan-in analysis technique gives fewer false posi-
tives or even accurate results. However, as identifer analysis
and dynamic analysis techniques discover more concern el-
ements, it is worth while to see how complete a technique
is for providing information about a particular concern. For
having such statistics, we have considered the same 6 com-
mon concerns. First of all, we have gathered all the meth-
ods/classes returned by all the techniques related to a partic-
ular concern and then filtered out the false positives keeping
the real elements for that concern. We have considered this
number of methods/classes of a concern as a complete con-
cern information and calculated how efficient the different
techniques are in covering a complete concern. In Table 12
, we have provided the statistics considering the previous 6
common concerns. In this table, we see that even through
identifier analysis returns more false positives than the oth-
ers, it has more percentage coverage for a concern. On the
other hand, fan-in analysis can only cover a small fraction
of a complete concern. Although dynamic analysis is par-
tial, it can still provide good concern coverage, and gives
less false positives than identifier analysis.

5.2. Complementarity

Fan-in analysis detects methods specific to a concern
which are scattered all over the subject program. It tends to
miss the methods which are not scattered that much in the
program, and thus it misses methods of low fan-in value.
Dynamic analysis tends to detect methods specific to par-
ticular execution trace. It tends to miss the methods which
are likely to occur in all execution traces. Identifier analy-
sis relies on specific naming conventions and tends to pro-
duce detailed results covering most of the methods detected
by both the fan-in and dynamic analysis techniques. This
detailed result might not always helpful while considering
a large application. In this case, the manual analysis part
is highly rigorous and time-consuming. This disadvantage
leads to the conclusion that identifier analysis is not helpful
for larger subject programs. Table 13 gives an interesting
observation while combining the different results from the
three techniques. From the statistics, it is clear that most
of the concerns can be identified and found by an effec-
tive combination of the results obtained from fan-in analysis
technique and dynamic analysis technique. We have found
that identifier analysis fails to identify any new concern in
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Table 11. Percentage of false positives for selected concerns by different techniques
Concern JHotDraw JDraw

Fan Iden Dyn Fan Iden Dyn
Undo 27% 50% 35% 12% 43% 9%
Persistence 20% 21% 19% 0% 35% 50%
Observer 0% 84% 16% 20% 65% 31%
Average 16% 52% 23% 11% 48% 30%
Concern JSokoApplet SquareRD

Fan Iden Dyn Fan Iden Dyn
Path-Finder 17% 50% 27% - - -
Prepare Game 0% 61% 0% - - -
File & Folder Scanner - - - 0% 43% 29%
Average 9% 56% 9% 0% 43% 29%

Table 12. Percentage of concern coverage for selected concerns by different techniques.
Concern JHotDraw JDraw

Fan Iden Dyn Fan Iden Dyn
Undo 10% 94% 34% 32% 59% 86%
Persistence 20% 100% 83% 5% 82% 24%
Observer 65% 81% 48% 8% 83% 31%
Average 32% 92% 55% 15% 75% 41%
Concern JSokoApplet SquareRD

Fan Iden Dyn Fan Iden Dyn
Path-Finder 14% 48% 41% - - -
Prepare Game 15% 67% 67% - - -
File & Folder Scanner - - - 12% 23% 65%
Average 15% 58% 54% 12% 23% 65%

Table 13. Concerns identified by either fan-in or dynamic analysis
Application Total Fan Dyn Fan ∪ Dyn Fan ∩ Dyn Total-(Fan ∪ Dyn)
JHotDraw 29 17 16 29 4 0
JDraw 31 8 26 30 4 1
JSokoApplet 12 8 6 11 2 1
SquareRD 2 1 2 2 1 0

case of JHotDraw compared to the other two techniques.
However, identifier analysis did manage to find two spe-
cific concerns in the case of JSokoApplet (Path-solver) and
JDraw (Paint-image). Path-solver gives the solution accord-
ing to a predefined search strategy. It is little bit different
compared to path-finder which checks for the existence of a
path. Path-solver was found because of the specific naming
conventions used for it in JSokoApplet. This concern could
not be differentiated in the dynamic analysis because of the
lack of a suitable use-case specific to it. Fan-in analysis also
misses this concern because of the low fan-in values of the
associated methods. For JDraw Paint-image is identified
using the keyword paint. Based on the existing result we
can say that we can even avoid identifier analysis technique
in the first phase of aspect mining. However, for a com-
plete coverage and to have more percentage coverage of a
concern, we do really need identifier analysis technique.

6. Lessons Learned

While mining aspects from the 4 different systems sev-
eral interesting observations were noticed. For JHotDraw,
it was fairly easy to find out the concerns as they have al-
ready been discovered and the methods belonging to those
concerns are well-known. It was not the same for the case
of an unfamiliar application where we were not sure what
could be the possible aspect candidates. It became clear
that the analysis of the initial results from the techniques re-
quires domain knowledge to accomplish the task with any
accuracy. Only a small portion of the results can be discov-
ered without reading the documentation. Documentation
was also essential to make the use-cases for dynamic anal-
ysis and to analyze different names for identifier analysis.

Analysis of JDraw using the documentation available on-
line was fairly easy. Also, the similar nature of JDraw com-
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pared to JHotDraw helped us to mine the aspects. Interest-
ing observations were made when we started working with
the interactive game application, JSokoApplet, where the
documentation is actually the comments and those are in-
complete. This inability to have a complete documentation
created a significant problem while analyzing the JSokoAp-
plet. We opted for two approaches to solve the problem. In
the first phase, we became familiar with the game by play-
ing it exhaustively and analyzing the moves. In the sec-
ond phase, we looked at the documentation available in the
source code comments to gather a clear idea on the par-
ticular behavior of different classes and methods. These
two approaches helped us overcoming the unavailability of
a complete documentation for JSokoApplet.

SquareRootDisk is a very small program, and because
of its simplicity and small size, it was not hard for us to
capture the behavior of the application. Therefore, making
use-cases and performing dynamic analysis were simple.

The results clearly indicate that choosing a fixed thresh-
old for all applications is not reasonable. This was evident
when we did not find any methods from SquareRootDisk
even with threshold 3. From our observations it was noticed
that the decision of choosing the threshold value depends
mainly on the number of methods of the target application.
The correlation between the found concerns and the num-
ber of methods of the target applications is better than other
system properties such as lines of code (LOC) or number
of packages. There is also a good correlation of the found
concerns with the number of classes.

Our data shows that a good initial threshold for fan-
in analysis can be given by Threshold = 0.0028 ∗
No. of Methods + 2.7 with a correlation coefficient of
0.97. Taking number of classes into consideration, we get
Threshold = 0.025 ∗ No. of Classes + 2.5 with cor-
relation coefficient of 0.97. The average of the thresholds
obtained from the above two linear equations is close to the
determined experimental thresholds. The results are prelim-
inary as we have used only 4 data points but it suggests that
the number of methods and classes can be used to provide
an initial starting point for the analysis.

We applied similar approach for the thresholds of
identifier analysis. In this case, we have found a lin-
ear relationship between the threshold and the sum of
the number of methods and classes of the target appli-
cation. The linear equation, Threshold = 0.0024 ∗
(No. of Methods + No. of Classes) + 2.4 with cor-
relation coefficient 0.94 is a good predictor for an initial
threshold.

Interesting observations were noticed in the case of dy-
namic analysis experiments also. The results of an appli-
cation using this technique heavily rely on the use-cases
that exercise the functionalities of that application. Even
the same set of use-cases can produce different set of re-

sults from the same application. It is also challenging
for some applications such as interactive game application
(e.g., JSokoApplet) to derive all the use-cases even if a rea-
sonable documentation is available.

While it was easy to identify some known design pattern
specific concerns (e.g., composite and observer), we are still
not sure whether other design patterns can be identified as
easily, especially when we cannot be sure about their imple-
mentation in the source code.

We have noticed that applying the identifier analysis
techniques on the results of Timna [19] would speed up the
process by reducing manual efforts. Timna outputs a set of
candidate methods from an application. Identifier analysis
technique is then applied to those methods and their associ-
ated class names only, instead of applying to all the meth-
ods and class names of the application. Other combinations
like the results of dynamic analysis for a particular concern
can be matched against the results obtained from Timna and
identifier analysis or the union results of fan-in analysis and
dynamic analysis can be used for identifier analysis as in
Ceccato et al., but only will be applicable to the results of
Timna instead of applying to the whole application.

As in Shepherd et al. [19], it has been observed that
exploration tools are effective and useful when used in con-
junction with a seed identifier. In this study, we have used
FEAT [18], JQuery [24], Prism [25], AMT [7], Aspect
Browser [6] and CCFinder (clone detection tool) [12]. In
our experience, these tools are not that useful by themselves
for aspect mining. We then used the tools after obtaining
the seed identifier from the techniques and obtained better
results with less manual works.

We have also investigated the possibility of using clone
detection techniques for the subject programs of our study.
Zhang et al. [26] and Bruntink et al. [1] explore this tech-
nique in novel directions. Our experience is that clone de-
tection technique may assist both the fan-in analysis and
identifier analysis techniques. For fan-in analysis technique,
clone detection technique might increase the fan-in value of
a method that is duplicated somewhere else. In the case of
identifier analysis, clone detection might increase the per-
centage of concern coverage and at the same time might
assist removing the false positives by looking for similar
code clones in the target applications while expanding the
seed for a concern. It is also felt that a semantic clone detec-
tion technique could assist aspect mining process as it could
identify code clones based on semantic similarity.

7. Threats to the Validity

One of the major threats to the results of this study is the
lack of a sound definition of cross-cutting concerns. More-
over, the heterogeneity in the search-goals of the consid-
ered techniques bounds the comparison criteria applicable

8



to only a selected common findings. An approach overcom-
ing these difficulties is proposed by Marin et al. [14].

Although we have presented a linear relationship be-
tween the number of methods (or classes or a combination
of those) of the target application to the initial threshold for
fan-in analysis and identifier analysis, it is still not clear
whether these linear relationships are applicable to very
large systems. Again, this uncertainty raises the question
of having a proper definition of cross-cutting concerns w.r.t
the maximum/minimum allowable threshold values of fan-
in analysis and identifier analysis techniques.

8. Related Works

This work is directly related to the work of Ceccato et
al. [2, 3] that provides several interesting combinations of
the fan-in analysis, identifier analysis and dynamic analysis
and applies these combined techniques to JHotDraw.

Marin et al. [14] provide a novel approach of comparing
different techniques in a search-goal oriented way based on
cross-cutting concern sorts. As our experiment was con-
ducted prior to the publication of this paper, we have not
considered their approach in our study.

Shepherd et al. [19] propose a combined framework
called Timna of several aspect mining techniques. In
Timna, a kind of meta approach has been used which al-
lows one to evaluate several mining approaches. Machine
learning techniques are used to combine the aspect mining
techniques in an automated way. However, annotation of
cross-cutting concerns on some training application is re-
quired in this framework.

Bruntink et al. [1] present a case study that evalu-
ates clone detection techniques for identifying cross-cutting
concerns. However, the domain of the study limits its appli-
cability.

Lexical search-based tools, such as the Aspect Mining
Tool (AMT) [7] and the Aspect Browser [6] are designed
to leverage the power of a lexical search. The Aspect
Browser provides text-based mining which is basically a
string pattern-matching technique to discover aspects. One
can specify a regular expression that describes the code be-
longing to the aspect of interest and a color. The tool then
identifies the code conforming to the regular expression and
highlights it using the associated color in the source code
editor.

AMT is an extension of the Aspect Browser which com-
bines the text-based and type-based mining, and considers
types in identifying cross-cutting concerns. By taking into
account the type information, it ensures fewer false posi-
tives and false negatives.

The Prism tool [25] extends the AMT by providing type
ranking feature and taking into account control flow infor-
mation. This tool assumes that types that are used widely in

the application are a good indicator of cross-cutting code,
and it ranks the types in the system according to their use.

Exploratory tools are less automatic than lexical search
tools. Starting with a seed, a user of such tools can navigate
a subject application via structural queries. These naviga-
tion tools, like JQuery [24] and FEAT [18] help the user in
navigating the application, but the user has to take her own
conclusions about the code.

Harman et al. [8] provide a slicing based aspect mining
technique. The developer points out a particular expression
or statement and a tool automatically computes the corre-
sponding slice. The code segment computed in this way
can then be refactored into an aspect.

Based on the combination of a program dependence
graph (PDG) and abstract syntax tree (AST), Shepherd et
al. [20] provide a fully automatic aspect mining and refac-
toring tool, Ophir. The identification algorithm starts only
at specific points of each method in order to speed up the
processing time.

9. Conclusions

Because of the diverse nature of different aspect mining
techniques, it is still not clear how to combine the different
techniques in order to obtain a comprehensive result. How-
ever, Ceccato et al. propose an approach to this direction
which motivated us to do this case study. We have verified
and confirmed the findings of Ceccato et al. using four dif-
ferent subject programs. The findings from this case study
may assist in obtaining a standard combination of the exist-
ing techniques instead of relying on a specific one.

While working on this case study, the necessity of a suit-
able aspect mining tool was felt that could combine the
strengths of different techniques while avoiding their lim-
itations. We also faced difficulty in analyzing the source
code as considerable manual effort was required. The re-
sults presented in this case study can be refined further to
get a better result and to have more fine-tuned statistics for
percentage false positives and percentage concern coverage.

Future work mainly focuses on building a better aspect
mining tool combining available aspect mining techniques.
As said, significant amount of manual works are required in
the aspect mining process. Thus, another further work may
focus on getting benefits from the program comprehension
techniques in the manual analysis part of aspect mining.
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