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Abstract

Over the last decade many techniques for software clone
detection have been proposed. In this paper, we provide a
comprehensive survey of the capabilities of currently avail-
able clone detection techniques. We begin with an overall
survey based on criteria that capture the main features of
detection techniques. We then propose a set of hypothetical
editing scenarios for different clone types, and evaluate the
techniques based on their estimated potential to accurately
detect clones that may be created by those scenarios.

1. Introduction
Reusing code fragments by copying and pasting with or

without minor adaptation is a common activity in software
development. As a result software systems often contain
sections of code that are similar, called code clones. Code
clones are often maintained separately and in time may di-
verge significantly. A difficulty with such duplicated frag-
ments is that if a bug is detected in a code fragment, all
fragments similar to it should be checked for the same bug
[32]. Duplicated fragments can also significantly increase
the work to be done when enhancing or adapting code [35].

Fortunately, several (semi-)automated techniques for de-
tecting code clones have been proposed, and there have
been a number of comparison and evaluation studies to re-
late them. The most recent study, by Bellon et al. [7], pro-
vides a comprehensive quantitative evaluation of six clone
detectors in detecting known observed clones in a num-
ber of open source software systems written in C and Java.
Other studies have evaluated clone detection tools in other
contexts [25, 8, 40, 41]. These studies have not only pro-
vided significant contributions to the clone detection re-
search, but have also exposed how challenging it is to com-
pare different tools, due to the diverse nature of the de-
tection techniques, the lack of standard similarity defini-
tions, the absence of benchmarks, the diversity of target lan-
guages, and the sensitivity to tuning parameters [1].

To date no comparative evaluation has considered all of
the different techniques available. Each study has chosen

a number of state-of-the art tools and compared them us-
ing precision, recall, computational complexity and mem-
ory use. There is also as yet no third party evaluation of the
most recent tools, such as CP-Miner [32], Deckard [20],
cpdetector [25], RTF [4] and Asta [17].

In this paper, we provide an overall comparison and eval-
uation of all of the currently available clone detection tech-
niques, using both general criteria and a set of edit-based
hypothetical scenarios for different clone types. In contrast
to previous studies which concentrate on empirically eval-
uating tools, we aim to identify the essential strengths and
weaknesses of both individual techniques in particular and
general approaches overall, with a view to providing a com-
plete catalogue of available technology and its potential to
recognize “real” clones, that is, those that could be created
by the editing of intentionally reused code. Because this pa-
per can fit only a basic summary, not all individual tools can
be considered in detail here and our complete study can be
found in a technical report [38].

We believe that this is the first study, other than a
Dagstuhl presentation report by Koschke [26], that provides
a complete comparison of all available clone detection tech-
niques. Our work differs from previous surveys in our use
of editing scenarios as a basis for estimating the ability of
techniques to detect intentional rather than observed clones,
in the evaluation of techniques for which no runnable tools
as yet exist, in the inclusion of a number of new methods
that have not been previously reviewed, and in the compar-
ison of techniques independent of environment and target
language. Our goal is to provide an evaluation indicative of
future potential rather than present implementation.

The rest of this paper is organized as follows. After intro-
ducing the available clone detection techniques in Section
2, we provide an overall comparison in Section 3 in terms
of several general criteria. Section 4 introduces our tax-
onomy of hypothetical editing scenarios and presents our
main result, an analysis of the methods in terms of their
estimated ability to detect clones created by each scenario.
A discussion on how these survey results can be useful for
combining different techniques (or for using a set of tools)



is presented in Section 5. Finally, Section 6 concludes the
paper and suggests directions for future work.

2. Overview of Clone Detection Techniques
Many clone detection approaches have been proposed

in the literature. Based on the level of analysis applied to
the source code, the techniques can roughly be classified
into four main categories: textual, lexical, syntactic, and se-
mantic. In this section we briefly introduce and cluster the
clone-detection tools and techniques that we later compare
by category. Category names from previous taxonomies
[25, 7] are mentioned to relate to ours in each case.

2.1 Textual Approaches
Textual approaches (or text-based techniques) use little

or no transformation/normalization on the source code be-
fore the actual comparison, and in most cases raw source
code is used directly in the clone detection process.

One of the leading text-based clone detection approaches
is that of Ducasse et al. [16], who use string-based Dynamic
Pattern Matching (DPM) to textually compare whole lines
that have been normalized to ignore whitespace and com-
ments. A similar approach is used by Wettel & Marinescu
[46] for finding near-miss clones using scatter plots. An-
other textual approach is Johnson’s [21] redundancy finder,
which uses “fingerprints” on substrings of the source code.
Manber [33] also uses fingerprints, based on subsequences
identified by leading keywords, to identify similar files.

Marcus & Maletic [34] have applied latent semantic in-
dexing (LSI) for finding similar code segments (e.g., high
level concept clones such as ADTs) in the source code.
This information retrieval approach limits its comparison
to comments and identifiers, returning code fragments as
clones when there is a high similarity between the identi-
fiers and comments in them. Another text-based approach
that claims to be very fast for larger systems is SDD [28].

Some text-based techniques provide tools for visualizing
code similarity. Dotplots [11] visualizes similar code by
tokenizing the code into lines and placing a dot in coordi-
nates (i, j) on a 2D graph if the ith input line matches jth

input line. The same approach is used in Duploc [16] and
DuDe [46] for clone visualization.

2.2 Lexical Approaches
Lexical approaches (or token-based techniques) begin by

transforming the source code into a sequence of lexical “to-
kens” using compiler-style lexical analysis. The sequence
is then scanned for duplicated subsequences of tokens and
the corresponding original code is returned as clones. Lexi-
cal approaches are generally more robust across minor code
changes such as formatting, spacing and renaming than tex-
tual techniques.

One of the leading lexical techniques is Kamiya et al.’s
CCFinder [22]. In CCFinder, lines of source files are first

divided into tokens by a lexical analyzer, and the tokens of
all source files are then concatenated into a single token se-
quence. Transformation replaces identifiers, constants and
other basic tokens with generic tokens representing their
language role, and a suffix-tree based sub-string matching
algorithm is then used to find common subsequences cor-
responding to clone pairs and classes. A distributed im-
plementation, D-CCFinder, allows the method to scale to
very large software systems [31]. Gemini [44], based on
CCFinder visualizes near-miss clones using scatter plots.

A related approach was used earlier in Dup [2] for
finding exact and parameterized duplicates using suffix-
trees. Rather than comparing sequences of individual to-
kens, Dup compares the tokens of individual lines. RTF [4]
uses a more memory-efficient suffix-array in place of suffix-
trees and allows the user to tailor tokenization for better
clone detection. Another state-of-the-art token-based tech-
nique is CP-Miner [32], which uses a frequent subsequence
data mining technique to find similar sequences of tok-
enized statements.

A token- and line-based technique has been used by
Cordy et al. [12] to detect near-miss clones in HTML web
pages. An island grammar is used to identify and extract
all structural fragments of cloning of interest, using pretty-
printing to eliminate formatting and isolate differences be-
tween clones to as few lines as possible. Extracted frag-
ments are then compared to each other line-by-line using
the Unix diff algorithm to assess similarity.

2.3 Syntactic Approaches

Syntactic approaches use a parser front-end much like
that of a compiler to convert source programs into parse
trees or abstract syntax trees (ASTs) which can then be pro-
cessed using either tree-matching or metrics to find clones.

Tree-based Approaches: Tree-based methods first con-
vert the program to a parse tree or abstract syntax tree (AST)
using a parser for the target language. Tree-matching tech-
niques are then used to find similar subtrees, and the cor-
responding code segments are returned as clone pairs or
classes. Variable names, literal values and other leaves (to-
kens) in the source may be abstracted in the tree representa-
tion, allowing for more sophisticated detection of clones.

One of the pioneering AST-based clone detection tech-
niques is Baxter et al.’s CloneDr [6]. A compiler generator
is used to generate an annotated parse tree (AST). Subtrees
are then compared using characterization metrics based on a
hash function and tree matching, and corresponding source
code fragments are returned as clones. This approach has
been adapted into Bauhaus [5] as ccdiml (unpublished) us-
ing ASTs encoded in IML with similarity metrics, sequence
handling and hashing. Yang [47] has proposed a dynamic
programming approach for handling syntactic differences
in comparing similar subtrees. Wahler et al. [45] find exact



and parameterized clones at a more abstract level by con-
verting the AST to XML and using a data mining technique
to find clones. Structural abstraction, which allows for vari-
ation in arbitrary subtrees rather than just leaves (tokens),
has been used by Evans and Fraser [17] for handling exact
and near-miss clones with gaps.

To avoid the complexity of full subtree comparison, re-
cent approaches use alternative tree representations. In the
method of Koschke et al. [25], AST subtrees are repre-
sented as serialized token sequences (suffix-trees), allowing
syntactic clones to be detected more efficiently. A function-
level clone detection method based on suffix-trees has been
proposed for Microsoft’s new Phoenix framework [43].

A novel approach for detecting similar trees has been
presented by Jiang et al. [20]. In their method, certain char-
acteristic vectors are computed to approximate the structure
of ASTs in a Euclidean space. Locality Sensitive Hashing
(LSH) is then used to cluster similar vectors using the Eu-
clidean distance metric and thus find corresponding clones.

Metrics-based Approaches: Metrics-based techniques
gather a number of metrics for code fragments and then
compare metrics vectors rather than code or ASTs directly.
One popular technique involves fingerprinting functions,
metrics calculated for syntactic units such as a class, func-
tion, method or statement that yield values that can be com-
pared to find clones of these syntactic units. In most cases,
the source code is first parsed to an AST or CFG (control
flow graph) representation to calculate the metrics.

Mayrand et al. [35] use several metrics to identify func-
tions with similar metrics values as code clones. Metrics
are calculated from names, layout, expressions and (sim-
ple) control flow of functions, and a clone is defined as a
pair of whole function bodies with similar metrics values.
Patenaude et al. [37] use very similar method-level metrics
to extend the Bell Canada Datrix tool to find Java clones.

Kontogiannis [24] uses two ways of detecting clones.
One approach uses direct comparison of metrics values as
a surrogate for similarity at the granularity of begin − end
blocks. A modified version of five well known metrics that
capture data and control flow properties is used. The sec-
ond approach uses a dynamic programming (DP) technique
to compare begin−end blocks on a statement-by-statement
basis using minimum edit distance. The hypothesis is that
pairs with a small edit distance are likely to be clones caused
by cut and paste activities. A similar approach is applied by
Balazinska et al. [3] in SMC, using a hybrid method that
combines characterization metrics with DPM.

Davey et al. [13] detect exact, parameterized and near-
miss clones by first computing certain features of code
blocks and then training neural networks to find similar
blocks based on the features. Metrics-based approaches
have also been applied to finding duplicate web pages and
clones in web documents [14, 9].

2.4 Semantic Approaches
Semantics-aware methods have also been proposed, us-

ing static program analysis to provide more precise infor-
mation than simply syntactic similarity.

PDG-based Techniques: Program Dependency Graph
(PDG)-based approaches [23, 27, 30] go a step further in
source code abstraction by considering semantic informa-
tion encoded in a dependency graph that captures control
and data flow information. Given the PDG of a subject
program, a subgraph isomorphism algorithm is used to find
similar subgraphs which are then returned as clones.

One of the leading PDG-based clone detection methods
is proposed by Komondoor and Horwitz [23], which finds
isomorphic PDG subgraphs using (backward) program slic-
ing. Krinke [27] uses an iterative approach (k-length patch
matching) for detecting maximal similar subgraphs in the
PDG. There is also a recent PDG-based tool, GPLAG [30],
for plagiarism detection.

Hybrids: In addition to the above, there are also clone
detection (and plagiarism) techniques for Lisp-like lan-
guages, and Leitao [29] provides a hybrid approach that
combines syntactic techniques (using metrics) and semantic
techniques (using call graphs) in combination with special-
ized comparison functions.

3. Comparison of Techniques and Tools
Tables 1 and 2 show an overall summary of the tech-

niques and tools with respect to several general characteris-
tics. The first two columns specify comparison criteria/sub-
criteria, and the third gives citations for the techniques/tools
that match them. In order to provide comparison of both
general techniques and individual tools, we gather citations
of the same category together using a category annotation,
T for text-based, L for lexical (token-based), S for syntactic
(tree-based), M for metrics-based and G for graph (PDG)-
based, with combinations for hybrids. An asterisk (*) indi-
cates possible limitations in satisfying the criterion.

The first criterion, Language Paradigm, indicates the
language paradigm targeted by the tool, and the second,
Language Support, refines this to four particular languages.
We can observe that there are very few tools that are aimed
at OO-languages (e.g., C++).

The third criterion, Clone Relation, addresses how
clones are reported– as clone pairs, clone classes, or both.
Clone classes can be more useful than clone pairs, for ex-
ample reducing the number of cases to be investigated by a
reengineer when refactoring. Techniques that provide clone
classes directly (e.g., RTF [4]) may therefore be better for
maintenance than those that return only clone pairs (e.g.,
Dup [2]) or require post-processing to group clones into
classes (e.g., CCFinder [22]).

The fourth criterion, Clone Granularity, indicates the
granularity of the returned clones – free (i.e., no syntac-



Table 1. Summary of the Surveyed Techniques and Tools
T=text-based, L=lexical/token-based, S=syntactic/tree-based, M=syntactic/metrics-based, G=graph/PDG-based

No. Criteria Sub-criteria Citations and Approaches

Only Procedural T [21, 33, 34], L [4], S [47, 19, 25] M [10, 13] G [23, 27, 30]
Language Only OOP S [17], M [37, 3, 36]

1 Paradigm Procedural + OOP T [16, 28], L [2, 22, 4], S [6, 20, 5]
Web Applications L [12], M [14, 9]
Lisp-like SMG [29] (hybrid)
C T [16, 46, 21, 28, 34, 33], L [22, 2, 4], S [6, 47, 19, 20, 25, 5], M [35, 24, 10] G [23, 27, 30]

Language C++ T [16]*, S [5] L [22]
2 Support Java T [16, 46, 28], L [22, 2, 4], S [6, 17, 20, 5], M [37, 3, 36]

COBOL T [16], L [22] S [5]
Clone Directly Clone Pair T [16, 46, 28], L [2, 22], S [6, 25, 5], M [35, 9, 10], G [23, 27]

3 Relation Directly Clone Class T [21]* (file) T [34]* (ADT), L [4, 12], S [20], M [3], G [30]
CC in post-processing T [16], L [22], S [6], M [3], G [23]

4 Clone Free T [16, 21, 46, 28, 34], L [22, 2, 4], S [6, 17, 19, 20, 25, 5], G [27, 23]*
Granularity Fixed T [33]* (file), L [12] S [43] [47] (file), M [35, 3, 13, 9, 10, 13]

Exact Match (almost all)
5 Clone Param/Renamed Match L [2, 22], S [25, 6, 5]

Similarity/Types Near-Miss T [16, 46, 28, 33], L [22, 4, 32, 12], S [6, 20, 17, 19, 5], M [35, 3, 24, 36, 9, 10], G [23, 27]
Others T [34] (ADT), [11] (vis), S [47] (vis)
Lightweight Parsing T [16, 46, 21, 28, 34, 33], L [12](Island Grm) S [20] (grammar only) M [9]

Language Lexer L [22, 2, 4]
6 Dependency Lexer and Parser L [32], S [6, 47, 17, 19, 25, 5], M [35, 3, 10], G [24]

PDG/CFG Maker G [23, 27, 30], SMG [29] (call graph)
Transformation Rules L [22] (lexical)

7 Text- Pre-processing L [12], S [19]
Processing Post-processing L [2, 22, 44]

No changes T [28, 34] T [46] (whitespace and single brackets) M [9]
Remove C & Ws T [16, 21, 46], L [2, 4, 12]

Basic Ignore C & Ws L [2] S [6, 20, 47, 17, 19, 5, 25], M [3, 10], G [23, 27, 30]
8 Normalization/ Remove C&Ws, Nrm. T [16]*, L [22, 32]

Transformation Remove C&Ws, Nrm.&Tr. L [22], M [36]
Keep C & Ws, Others T [34] [21]*, M [35]
Flexible Normalization L [4], S [20]
Filtered Strings T [16, 46, 28], L [12]
Filtered Substrings T [21, 33] (fingerprint)
Normalized Strings T [16], L [22, 4] (token sequence)

9 Code Parameterized Strings L [2] (p-token sequence)
Representation Word in Context T [34]

Metrics/Vectors S [20] (Char. Vec), M [35] (IRL), M [24, 3, 37, 9, 10]
Trees S [6, 47], S [5](IML), S [45, 17] (XML), S [19](string alignment) , S [25, 43](suffix-trees)
Graph G [23, 30] (PDG), G [27] (PDG+AST)
Hybrid SMG [29] (AST+Metrics+call graph)
Line T [16, 46, 11], L [12] L [2] (p-tokens of line)
Substring/fingerprint T [21, 33] (multi-line), [28] (multi-word)
Identifiers and Comments T [34]

Comparison Tokens L [22, 4, 2], S [25, 43] (tokens of suffix trees)
10 Granularity Statements L [32], S [45]

Subtree S [6, 5, 47, 17, 20, 5]
Subgraph G [23, 27, 30]
Begin-End Blocks M [24]
Methods S [43], M [35, 3, 9, 37, 10]
Files T [33], S [47]
Suffix-tree/array/dotplot T [46], L [2, 22, 4], S [25]
Data Mining/ IR T [34] (LSI), L [32] (freq. subseq.), S [45] (freq. itemset)
Fingerprinting T [21, 33]

11 Comparison DMP T [16], M [35, 3, 10]
Algorithm Hash-value Comparison S [6, 20, 5]

Graph-Matching G [27, 30], [23] (slicing)
Euclidian Distance M [14]
Sequence Matching T [28] (n-neighbor), L [12], S [47, 19] (dynamic prog.)
Hybrid SMG [29]

C=comments, Ws=whitespace, Nrm=normalization, Tr=transformation



Table 2. Summary of the Surveyed Techniques and Tools (Continued)
T=text-based, L=lexical/token-based, S=syntactic/tree-based, M=syntactic/metrics-based, G=graph/PDG-based

No. Criteria Sub-criteria Citations and Approaches

Computational Linear T [28], L [22, 2, 4], S [25]
12 Complexity Quadratic (worst case) T [16], L [12], S [6, 5, 20, 47, 19, 43], M [3, 10, 24](wrt. no. of methods)

Non-Polynomial G [27, 23, 30]
On Size of Block T [16], [28] (4 words), [46], [21] (50 lines), L [2] (15 lines), L [22, 4] (30 tokens)

13 Heuristics/ On Code Similarity T [46], L [2, 22, 32, 4, 12], S [6, 20, 5, 17] M [3, 9, 10, 24]
Thresholds On Gap Size T [16, 28, 46], L [32], S [20, 17, 19], M [3]

On Pruning T [16, 21]*, [46], L [22, 4]*
Only Textual T [33, 34, 28], S [20, 25], M [10, 24, 24]

14 Output Only Visualization T [11], L [12, 44], S [47, 17, 19] M [9]
Both Above T [16, 46, 21], L [22, 2]

15 Plug-in Support Yes T [28, 15, 42] (Eclipse), S [43] (MS Phoenix framework)
Empirical Validated Well L [22], S [25]

16 Validation Moderate Validation T [16, 46, 34], S [17, 20], M [3, 24], G [30]
Partially Validated T [28, 21] L [2, 4, 12], M [9] G [23, 27]

Availability of Yes S [25]
17 Empirical Moderate T [16], L [32, 22], S [20, 17] , M [3, 10]

Results Partial/Poor T [28, 21, 46, 34, 33, 16] L [2, 4, 12], M [9] G [23, 27]
Frequently JDK (Java, 204K LOC) T [28], L [22], S [1, 20], M [3] [7]

18 Used Linux Kernel (C) L [4] [22], S [20] M [10]
Systems SNNS 4.1 (C, 115K LOC) S [25, 1], [7]

postgsql (C, 235K LOC) S [1, 25], [7]

Note: The data in these tables is based on published materials, not necessarily the current/future status of the tools.

tic boundaries), fixed (i.e., predefined syntactic boundaries
such as method or block) or both. Both granularities have
advantages and disadvantages. For example, techniques
that return only clones of methods are good for architec-
tural refactoring, but may miss opportunities to introduce
new methods for common statement sequences. A tool that
handles multiple granularities may be more useful for gen-
eral reengineering.

The fifth criterion, Clone Similarity/Types, considers the
kinds of clones a technique can handle. While all tech-
niques can detect exact clones, only Dup [2] can directly
find parameterized clones. This issue is discussed in detail
in the context of edit-based scenarios later in the paper.

The sixth criterion, Language Dependency, indicates the
kind of language support required for a particular tech-
nique. While text-based techniques usually require only
lightweight parsing support, other methods can be very
language-dependent (e.g., requiring a full parser). We can
see that even CCFinder [22] requires language-dependent
transformation rules. On the other hand, the parse-tree
based tool Deckard [20] does not require a separate parser,
but only a context-free grammar for the target language.

The seventh criterion, Text-Processing, refers to any in-
teresting pre- or post-processing (or pretty printing) re-
quired other than the usual filtering. For example, we see
that Cordy et al. [12] use an island grammar to build a set
of all potential clone candidates before comparison.

Noise (e.g., comments) filtering, normalization and
transformation of program elements is an important step in
clone detection tools, helping both in removing uninterest-

ing clones (filtering), and in finding near-miss clones (nor-
malization and transformation). Our eighth criterion, Basic
Transformation/Normalization, deals with this issue. Most
techniques (except Marcus [34] and Covet [35]) either re-
move comments and whitespace with lightweight parsing or
ignore them while generating an AST or flow graphs. We
can also see that while text-based techniques such as Duploc
[16] apply little or no normalization and transformation,
others such as CCFinder [22] do a lot. Some techniques
even provide the user with the option of choosing different
normalizations– for example, RTF [4] allows several op-
tions for tokenizing. We can also note that although source
transformation may help in finding near-miss clones, there
are really only two methods that apply it, CCFinder [22]
and Nasehi et al. [36].

The Code Representation criterion refers to the internal
code representation after filtering, normalization and trans-
formation. The complexity of the detector implementation,
the bulk of which is the normalization, transformation and
comparison, depends a great deal on the code representa-
tion. One should note that we have already generally classi-
fied the techniques based on overall level of analysis in Sec-
tion 2. Here we attempt a finer-grained classification based
on the actual representation used in the comparison phase.
For example, although a tree-based technique, the actual
code representation of cpdetector [25] is a serialized token-
sequence of AST-nodes, improving the computational and
space complexities of the tool from quadratic to linear using
a suffix-tree based algorithm.

Different techniques work at different levels of compari-



son granularity, from single source lines to entire AST/PDG
subtrees/subgraphs. The tenth criterion, Comparison Gran-
ularity, refers to the granularity of the technique in the com-
parison phase. The choice of granularity is crucial to the
complexity of the algorithm and the returned clone types,
and also determines the kinds of transformation and com-
parison required. For example, a token-based technique
may be more expensive in terms of time and space com-
plexity than a line-based one because a source line generally
contains several tokens. On the other hand, a token rep-
resentation is well suited to normalization and transforma-
tion, so minor differences in coding style are effectively re-
moved, yielding more clones. Similarly, although subgraph
comparison can be very costly, PDG-based techniques are
good at finding more semantics-aware clones.

The choice of algorithm is also a major concern with re-
spect to the time and space complexities, comparison gran-
ularity and robustness in detecting near-miss clones. The
eleventh criterion, Comparison Algorithm, identifies the
different algorithms used in clone detection research from
other domains. For example, the suffix-tree algorithm com-
putes all of the same subsequences in a sequence composed
of a fixed alphabet (e.g., characters, tokens, hash values of
lines) in linear time and space, but can only handle exact
sequences. On the other hand, data mining algorithms are
well suited to handle arbitrary gaps in the subsequences.

The overall computational complexity of a clone detec-
tion technique is a major concern, since a practical tech-
nique should scale up to detect clones in large software sys-
tems with millions of lines of code. The complexity of an
approach depends on the kinds of transformations and the
comparison algorithm used. The criterion Computational
Complexity indicates the overall computational complexity
of a particular method.

The criterion Heuristics/Thresholds indicates whether
there are any thresholds and/or heuristics used by a par-
ticular method. We see that most of the techniques use
similarity-based heuristics with several kinds of thresholds.

The criterion Output indicates the kind of output sup-
ported by the particular tool. Some tools provide cloning
information visually (e.g., Dotplot [11]), some provide only
textual reports (e.g., [28]), and some provide both (e.g., Du-
ploc [16]). The criterion Plug-in Support indicates whether
there is documented IDE support for the method/tool. Only
a few methods provide direct IDE support.

Empirical validation of tools is important, especially in
terms of precision, recall and scalability. The criterion Em-
pirical Validation hints at the kind of validation that has
been reported for each technique, and Availability of Em-
pirical Results notes whether the results of the validations
are available. The last criterion, Frequently Used Systems,
notes which common systems have been used in validation.

The last three criteria can assist in choosing a well vali-

dated tool/technique, in comparing a new tool with one that
has existing empirical results, or in choosing a commonly
used subject system as a benchmark. They may also encour-
age empirical studies on promising tools and techniques that
are as yet inadequately validated.

4. Scenario-Based Evaluation
Clone detection techniques are often inadequately eval-

uated, and only a few studies have looked at some of the
techniques and tools [7, 40, 41, 8]. Of these, the Bellon et
al. [7] study is the most extensive to date, with a quantitative
comparison of six state-of-the-art techniques, essentially all
of those with tools targeted at the C and Java languages.
However, even in that careful study, only a small proportion
of the clones were oracled, and a number of other factors
have been identified as potentially influencing the results
[1]. The general lack of evaluation is exacerbated by the
fact that there are no agreed upon evaluation criteria or rep-
resentative benchmarks. Finding such universal criteria is
difficult, since techniques are often designed for different
purposes and each has its own tunable parameters.

In an attempt to compare all clone detection techniques
more uniformly, independent of tool availability, implemen-
tation limitations or language, we have taken a predictive,
scenario-based approach. We have designed a small set
of hypothetical program editing scenarios representative of
typical changes to copy/pasted code (Figure 1). Each sce-
nario induces a clone type in the sense of Koschke [26],
with additional distinguishing refinements. We assume that
our primary intention is to find true clones, that is, those that
actually result from copy-and-edit reuse of code.

From a program comprehension point of view, finding
such true clones is useful since understanding a represen-
tative copy from a clone group assists in understanding all
copies in that group [21]. Moreover, replacing all the de-
tected similar copies of a clone group by a function call
to the representative copy (i.e., refactoring) can potentially
improve understandability, maintainability and extensibil-
ity, and reduce the complexity of the system [18].

Based on these hypothetical scenarios, we have esti-
mated how well the various clone detection techniques may
perform based on their published properties. In order to es-
timate maximal potential, we have assumed the most lenient
settings of any tunable parameters of the techniques. Thus,
this is not an actual evaluation, rather it provides an overall
picture of the potential of each technique in handling clones
resulting from each of the scenarios. Our comparison is not
intended to be a concrete experiment, and could not be com-
prehensive or truly predictive if it were cast as one, bound
to target languages, platforms and implementations.

Table 3 provides an overall summary of the results of
our evaluations, where the symbols represent an estimate of
the ability of each method to accurately detect each (sub-)
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void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
     {sum=sum + i;    
      prod = prod * i;     
      foo(prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
 { if (i%2) sum+= i;    
    prod = prod * i;     
    foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
     {sum=sum + i;    
      //line deleted     
      foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
    {sum=sum + i;    
     prod = prod * i;     
     if (n % 2)==0 { 
     foo(sum, prod);} }} 

void  sumProd(int n){  
float  s=0.0; //C1 
float p =1.0;   
for (int j=1; j<=n; j++)  
    {s=s + j;    
     p = p * j;     
     foo(p,  s); }}   

void  sumProd(int n){  
float  s=0.0; //C1 
float p =1.0;   
for (int j=1; j<=n; j++)  
     {s=s + j;    
      p = p * j;     
      foo(s, p); }} 

void  sumProd(int n) {   
int  sum=0; //C1 
int prod =1;   
for (int i=1; i<=n; i++)  
     {sum=sum + i;    
      prod = prod * i;     
      foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
  {sum=sum + (i*i);    
   prod = prod*(i*i);     
   foo(sum, prod); }} 

void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++)  
  {sum=sum + i;    
   prod = prod * i;     
   foo(sum, prod, n); }}
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void  sumProd(int n) {   
float  sum=0.0; //C1 
float prod =1.0;   
for (int i=1; i<=n; i++) 
 {sum=sum + i;    
  foo(sum, prod)     
  prod=prod * i; }}  

void  sumProd(int n) {   
float prod =1.0;   
float  sum=0.0; //C1 
for (int i=1; i<=n; i++)  
     {sum=sum + i;    
      prod = prod * i;     
      foo(sum, prod); }} 
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Figure 1. Taxonomy of Editing Scenarios for Different Clone Types

scenario with both high precision and high recall. The sum-
mary column on the right estimates the scenario coverage
of the technique as a percentage of scenarios potentially de-
tected, counting � (low) and above as potential detection.
An asterisk (*) indicates a method with special limitations
such as whole file comparison, visualization only, or plagia-
rism detection only. In the following paragraphs, we con-
sider each scenario and outline our reasoning in estimating
the ability of the techniques to accurately detect them.

Scenario 1: A programmer copies a function that calcu-
lates the sum and product of a sequence of numbers (1...n)
three times, making changes in whitespace in the first frag-
ment (S1(a)), changes in commenting in the second (S1(b)),
and changes in formatting in the third (S1(c)) (Figure 1).

An ideal clone detection technique should recognize all
three copy/pasted/modified fragments as clone pairs with
the original or form a clone class for them. The third col-

umn of Table 3 summarizes how well each technique is
likely to work in these scenarios. We expect that only text-
based Duploc and DuDe and token-based Dup will find sce-
narios S1(a) and S2(b) with high precision as they com-
pare the filtered text (e.g., whitespace and comments are re-
moved) line-by-line. However, these line-based techniques
are sensitive to format alternations and thus, may not de-
tect scenario S1(c). On the other hand, Marcus’s text-based
LSI approach and metrics-based Covet may not work well
for scenario S1(b) as these techniques compare comments
either directly (Marcus) or in metrics (Covet ).

Tree-based techniques (e.g., cpdetector) ignore format-
ting differences and comments and should detect these sce-
narios very well if they look for exact subtrees without ig-
noring tree-leaves (in most cases they ignore leaves). How-
ever, some tree-based techniques use alternative representa-
tions of the parse-tree/AST (e.g., Deckard works on charac-



Table 3. Scenario-Based Evaluation of the Surveyed Clone Detection Techniques� very well �� well �� medium � low � probably can � probably can’t ◦ can’t

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scen. 5 Coverage
Approach Citation a b c a b c d a b c d e a b c d a b (percent)

Johnson [21]* �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 16
Duploc [16] � � � ◦ ◦ ◦ ◦ �� �� ◦ ◦ �� ◦ ◦ ◦ ◦ � �� 33

Text-based sif [33]* �� �� �� ◦ ◦ � � � � ◦ ◦ ◦ � � � ◦ ◦ ◦ 16
DuDe [46] � � � ◦ ◦ ◦ ◦ �� �� �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ 39
SDD [28] �� �� �� ◦ ◦ ◦ ◦ �� �� � � � ◦ ◦ ◦ ◦ ◦ ◦ 44
Marcus [34]* �� ◦ �� ◦ ◦ �� � �� �� ◦ ◦ ◦ �� �� �� ◦ ◦ ◦ 50

Dup [2] � � ◦ � ◦ �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ �� �� 33
Lexical/ CCFinder [22] �� �� �� �� �� �� ◦ � � ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 33
Token-based Gemini [44]* �� �� �� �� �� �� ◦ �� �� �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ 61

RTF [4] �� �� �� �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ �� �� 44
CP-Miner [32] �� �� �� �� �� �� � �� �� �� �� �� ◦ ◦ ◦ ◦ �� �� 78

CloneDr [6] �� �� �� �� �� �� � �� �� ◦ ◦ � � ◦ ◦ ◦ �� � 72
Asta [17] �� �� �� �� �� �� �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ �� �� 61

Syntactic/ Yang [47]* �� �� �� �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 33
AST/ cpdetector [25] � � � �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ �� �� 44
Tree-based Deckard [20] �� �� �� �� �� �� ◦ �� �� �� �� �� ◦ ◦ ◦ ◦ �� �� 72

Tairas [43] �� �� �� � � �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ �� ◦ 22
CloneDetection[45] �� �� �� �� �� �� ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ � ◦ 33

Syntactic/ Konto [24] �� �� �� �� �� �� � � � � � � �� �� �� � � ◦ 94
Metrics-based Covet [35] �� ◦ �� �� �� �� �� �� �� � � � �� �� � ◦ � ◦ 83

Davey [13] �� �� �� �� �� �� �� �� �� � � � �� �� � � ◦ ◦ 67

Semantical/ Duplix [27] �� �� �� �� �� �� �� �� �� �� �� �� �� �� � ◦ �� ◦ 89
Graph-based KomoRag [23] �� �� �� �� �� �� � � � � � � �� �� � ◦ �� ◦ 72

GPLAG [30]* �� �� �� �� �� �� � � � �� �� �� �� �� � �� � ◦ 94

Potential Best Rater [16] [16] [25] [2] [4] [25] [17] [46] [28] [46] [20] [20] [27] [30] [34] [30] [25] [20]
Hybrids 2nd Best Rater [2] [2] [6] [25] [25] [32] [35] [17] [17] [20] [46] [32] [30] [23] [24] [24] [20] [2]

Note: Evaluation results reflect the estimated abilities of the underlying technique of a tool, not necessarily the tool itself.

teristic vectors of the parse-tree) and may not detect them
accurately. Moreover, a recent study [39] shows that an
AST-based exact matching function clone detection tech-
nique [43] can even miss some exact function clones de-
tected by a text-line based technique [39]. Metrics-based
techniques may return the same metrics values for other
scenarios of this study and thus return false positives in our
sense. Graph-based techniques, on the other hand give lots
of variants of ideal clones and thus cannot detect these sce-
narios accurately in our view.

Scenario 2: The programmer makes four more copies of
the function, using a systematic renaming of identifiers and
literals in the first fragment (S2(a)), renaming the identifiers
(but not necessarily systematically) in the second fragment
(S2(b)), renaming data types and literal values (but not nec-
essarily systematically) in the third fragment (S2(c)), and
replacing some parameters with expressions in the fourth
fragment (S2(d)) (Figure 1).

Again, an ideal clone detection technique should detect
all four modified fragments as clone pairs with the original
function or should form a clone class for them. The fourth
column of Table 3 summarizes how well each technique
may work on these scenarios. We rate Dup to be robust
in detecting scenario S2(a) because of its novel use of pa-
rameterized suffix-trees. None of the text-based techniques

is likely to do well with these scenarios since they normally
compare program text without normalization and are there-
fore fragile to identifier renaming. Token-based techniques
can detect scenarios S2(a), S2(b) and S2(c) well, but are
likely to also have many false positives due to their identifier
normalizations and transformations. Tree-based techniques
may also detect scenarios S2(a), S2(b) and S2(c) well as
these techniques normally ignore identifiers and literals in
comparison. For scenario S2(d), tree-based Asta seems to
be well suited, as it can apply structural abstraction on arbi-
trary subtrees. Metrics-and PDG-based techniques can also
detect these scenarios, but metrics-based methods may re-
turn many false positives because our other scenarios can
yield similar metrics values.

Scenario 3: The programmer makes five more copies of
the function and this time makes small insertions within a
line in the first fragment (S3(a)), small deletions within a
line in the second fragment (S3(b)), inserts some new lines
in the third fragment (S3(c)), deletes some lines from the
fourth fragment (S3(d)), and makes changes to some whole
lines in the fifth fragment (S2(e)) (Figure 1).

We would hope that an ideal clone detection technique
would detect all five fragments as clone pairs with the orig-
inal or form a clone class of them. The fifth column of
Table 3 summarizes how well we expect that each tech-



nique would work in these scenarios. We expect that text-
based DuDe and token-based CP-Miner are likely to work
well with these scenarios. Although DuDe is text-based,
it can combine small duplication segments to form larger
ones by allowing gaps with scatter plot visualization. CP-
Miner uses a frequent subsequence data mining algorithm
which allows it to tolerate gaps in cloned segments. The
token-based visualization tool Gemini can also identify such
scenarios using scatter plot visualization.

Scenario 4: The programmer makes four more copies
of the function and this time reorders the declaration state-
ment in the first fragment (S4(a)), reorders data indepen-
dent statements in the second (S4(b)), reorders data depen-
dent statements in the third (S4(c)), and replaces a control
statement with different one in the fourth (S4(d)) (Figure 1).

Again, we expect that an ideal clone detection technique
should be robust enough to detect such modified code frag-
ments as clone pairs with the original or form a clone class
for them. The sixth column of Table 3 summarizes how
well each technique is likely to work in these scenarios. It
appears that only PDG-based techniques are likely to work
well with scenarios S4(a) and S4(b). PDG-based techniques
use data and control flow information, which remains un-
changed across reordering of declarations and data indepen-
dent statements. Reordering of data dependent statements
may change data and control flow however, so they may not
do as well with scenario S4(c). However, Marcus’s LSI ap-
proach may detect this scenario because the identifiers and
comments remain similar in both fragments. To detect sce-
nario S4(d), exhaustive source transformation may be nec-
essary. However, an alternative approach is proposed in the
plagiarism detection tool GPLAG . If this tool is adapted to
detect clones, it might handle scenario S4(d) well.

Scenario 5: This is a separate scenario where the pro-
grammer wants to see how well a technique filters spurious
clones i.e., finds syntactic clones (S5(a)), and how efficiently
a technique can filter out the code of repetitive regions (e.g.,
a repetitive sequence of ’switch-case’ statements) (S5(b)).

An ideal clone detection technique should be able to
filter out spurious clones and clones of repetitive regions.
There are few tools that we can expect to satisfy scenar-
ios S5(a) and S5(b). Almost all text-based techniques (ex-
cept Duploc) do not satisfy these scenarios. Since metrics-
based techniques work at a fixed granularity, they may not
require spurious clone pruning strategies, although pruning
for repetitive regions may still be needed. Recent tools, such
as token-based CP-Miner and RTF, and tree-based cpdetec-
tor and Deckard, apply several strategies for pruning spuri-
ous clones (satisfying scenario S5(a)) and clones of repeti-
tive regions (satisfying scenario S5(b)).

5. Towards a Combination of Techniques
Our survey and evaluations are not intended for experts

in clone detection, rather our intended audience is potential
new users and builders of clone detection-based tools and
applications. As a demonstration of how this survey can
be helpful, we provide an example combination of differ-
ent techniques/tools designed to handle all of the scenarios
used in this paper. Of course, many other combinations can
be derived based on user requirements, both in terms of dif-
ferent scenarios and the techniques used. Such a combina-
tion might help one to understand how to design a hybrid
method to be robust across all types of clones or how to em-
ploy a set of different tools to achieve a better result. The
last two rows of Table 3 list the best rated and second best
rated techniques for each of the scenarios. Tempering with
the properties in Section 3 (especially, from Table 1 and
Table 2) and the evaluations in Section 4 (especially, from
Table 3), we can select a best choice for each scenario.

For scenarios S1(a), S1(b) and S2(a), the token-and line-
based Dup [2] seems best, being very good for S2(a) and
good for S1(a) and S1(b) while ensuring linear time and
space complexity. Although Duploc [16] was rated best for
S1(a) and S1(b), its (worst-case) quadratic time and space
requirements make it a less practical choice. For scenarios
S1(c), S2(b) and S2(c), we choose cpdetector [25] because
it finds syntactic clones in linear time and space. In addi-
tion, both Dup and cpdetector use a suffix-tree algorithm,
thus a hybrid of the two might be practical.

For scenarios S2(d), S3(a) and S3(b), we choose
Asta [17] because it gets a good rating for these scenarios
and, like cpdetector, it is AST-based, making it a promising
choice for a hybrid. For scenarios S3(c), S3(d) and S3(e),
Deckard seems a good choice. Like cpdetector and Asta,
it is also tree-based and promising for hybridization. For
scenarios S4(a), S4(b) and S4(d), adapting the plagiarism
detection tool GPLAG [30] might be a good choice, as it
can detect such scenarios well and it seems to be faster than
other PDG-based techniques. cpdetector and Deckard are
also very good in terms of scenarios S5(a) and S5(b), cov-
ering several pruning strategies.

Scenario S4(c) seems most appropriate for a fault-
detection tool rather than clone detection. However, of the
reviewed methods, the LSI approach of Marcus and Maletic
[34] would be a good option for this case, although it offers
little opportunity for hybridization with our other choices.
Thus, the obtained combination is {Dup, cpdetector, Asta,
Deckard and GPLAG}. Several other combinations can eas-
ily be obtained based on the results provided in this paper.

6. Conclusion
In this paper, we have focused on detection techniques,

providing a concise but comprehensive survey and a hypo-
thetical evaluation based on editing scenarios. A more de-



tailed review of the entire range of clone detection research
can be found in our technical report [38], and the Dagstuhl
report of Koschke [26] provides an excellent brief overview.

We hope that the results of this study may assist new
potential users of clone detection techniques in understand-
ing the range of available methods and selecting those most
appropriate for their needs. We hope it may also assist in
identifying remaining open research questions, avenues for
future research, and interesting combinations of techniques.

The evaluation results of this paper are based on estimat-
ing the performance of techniques using the most lenient
values of all tunable parameters, and thus our findings dif-
fer from the results of empirical studies such as Bellon et al.
[7]. While in this study our goal was predictive rather than
empirical, in future work we plan to undertake a mutation-
based controlled experiment using our editing scenarios as
a basis for generating thousands of mutants which can be
used to empirically compare actual tools on a similar basis.
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