
An Empirical Study of Function Clones in Open Source Software

Chanchal K. Roy and James R. Cordy
School of Computing, Queen’s University

Kingston, ON, Canada K7L 3N6
{croy, cordy}@cs.queensu.ca

Abstract
The new hybrid clone detection tool NICAD combines

the strengths and overcomes the limitations of both text-
based and AST-based clone detection techniques to yield
highly accurate identification of cloned code in software
systems. In this paper, we present a first empirical study
of function clones in open source software using NICAD.
We examine more than 15 open source C and Java systems,
including the entire Linux Kernel and Apache httpd, and
analyze their use of cloned code in several different dimen-
sions, including language, clone size, clone location and
clone density by proportion of cloned functions. We manu-
ally verify all detected clones and provide a complete cata-
logue of different clones in an online repository in a variety
of formats. These validated results can be used as a cloning
reference for these systems and as a benchmark for evalu-
ating other clone detection tools.

1. Introduction
Reusing a code fragment by copying and pasting with or

without minor modifications is a technique frequently used
by programmers, and thus software systems often have du-
plicate fragments of code in them. Such duplicated frag-
ments are called code clones or simply clones.

Although cloning is beneficial in some cases [13] and
often programmers intentionally use it [17], it can be detri-
mental to software maintenance [8, 12]. For example, if a
bug is detected in a code fragment, all the fragments similar
to it should be investigated to check for the same bug [19],
and when enhancing or adapting a piece of code, duplicated
fragments can multiply the work to be done [12].

Over the past decade several techniques and tools for de-
tecting code clones have been proposed [25]. However, de-
spite a decade of active research there has been a marked
lack of in-depth comparative studies of cloning in a vari-
ety of systems. There have been many empirical studies on
cloning, for example every new technique comes with some
sort of empirical validation [25, 24], and empirical studies
are used when comparing tools [5, 6]. However, in both

cases the focus is on validating or comparing the techniques
rather than the clone properties of the subject systems them-
selves. Particular subject systems have also been analyzed
with respect to aspects such as categories [15] or evolution
of clones [4], and there has been one in-depth study [20] on
exact clones in web applications.

In this paper we provide an in-depth empirical study of
function clones in more than 15 open source C and Java
systems including Apache httpd and the entire Linux Ker-
nel, using our recently introduced hybrid approach, NICAD
[23], which combines the strengths and overcomes the lim-
itations of both text-based and AST-based techniques. Our
detailed results are in an online repository [22] as well as in
this summary paper.

NICAD has been found to be effective in detecting near-
miss function clones [23]. However, it was applied to only
two small C systems, focusing on its efficacy in detect-
ing copy/pasted near-miss clones by using flexible pretty-
printing, code normalization and code filtering. In this pa-
per, we exploit further improvements to NICAD to deal
with large systems, using a dynamic clustering technique
and distributing the comparison load across multiple pro-
cessors, and an adaptation to its use on Java systems.

Although NICAD is designed to allow for flexible pretty-
printing, code normalization and filtering, in this paper we
focus on detecting only exact and near-miss function clones,
using only the basic NICAD technique, consisting of stan-
dard pretty-printing of code fragments followed by text line
comparison at a variety of dissimilarity thresholds. Our
study shows that NICAD is capable of detecting clones in
very large systems in different languages and that there is a
significant proportion of code in these systems that has been
reused by copy/paste.

The rest of the paper is organized as follows. Follow-
ing a short introduction to NICAD in Section 2, we provide
the experimental setup of our study in Section 3. Section 4
presents and analyzes our findings, and Section 5 considers
other empirical studies and their relation to ours. Finally,
Section 6 concludes the paper with directions of future re-
search.

2. NICAD Overview

The clone detector used in this study is a significantly im-
proved and adapted version of NICAD [23], which works in
three phases : Extraction, in which all potential clones (code
fragments of the target kind) are identified and extracted,
Comparison, in which the potential clones are clustered and
compared, and Reporting, in which discovered clone pairs
and classes are related to original source and presented for
human inspection.

NICAD begins by extracting the set of all code frag-
ments of the desired granularity in the system, each to a set
of pretty-printed and source-coordinate annotated potential
clones. Pretty-printing allows us to use efficient text com-
parison while remaining structure sensitive by preserving
the parsed structure in the pretty-printed code.

In this paper we are interested in function clones, so
NICAD was asked to extract all function and method defi-
nitions with their original source-coordinates. Because we
are interested in intentional copy/pasted clones, C macros
are not expanded, but #ifdefs are resolved using the method
of Antoniol et al. [4] to comment out all #else parts.

NICAD compares the pretty-printed potential clones
line-by-line textwise using a longest common subsequence
(LCS) algorithm similar to the Unix diff utility. To deter-
mine whether two potential clones really are clones of each
other, we compare their pretty-printed (and optionally nor-
malized/filtered) text lines and use the number of unique
lines in each as a measure of similarity/dissimilarity. In par-
ticular, we compute the size-sensitive Unique Percentage of
Items (UPI) for each potential clone usng the equation (for
details see [23]):

UPI = No. of Unique Items ∗ 100
Total No. of Items

If the UPI for both line sequences is zero or below a cer-
tain threshold, the potential clones are considered to be
clones. The number of comparisons is optimized using an
exemplar-based technique that builds clone classes directly,
by choosing the largest unclassified potential clone as an
exemplar and comparing similarly-sized potential clones to
it depending on the UPI.

Results from NICAD are reported in both XML database
form and as an interactive HTML website to assist hand
validation.

3. Experimental Setup

In this experiment we have applied NICAD to find func-
tion clones in a number of open source systems. We have
then used a set of metrics to analyze the results. This sec-
tion introduces the systems we have studied and the met-
rics used, including a brief overview of our definition and
methodology for manual verification of the detected clones.

Table 1. Overview of the subject systems

Lang System LOC Method
Abyss [1] 4K 148
Bison [5] 16K 315
Cook [5] 70K 1362

C Gzip-1.2.4 [9] 8K 117
Apache-httpd-2.2.8 [2] 275K 4301
Postgresql [5] 202K 4669
snns [5] 94K 2201
Weltab [5] 11K 123
Wget [5] 17K 219
Linux-2.6.24.2 [16] 6265K 154977
Eclipse-ant [5] 35K 1754
EIRC [5] 11K 588

Java Netbeans-Javadoc [5] 14K 972
Eclipse-jdtcore [5] 148K 7383
JHotDraw 5.4b1 [11] 40K 2399
Spule [5] 13K 420
j2sdk-swing [5] 204K 10971

3.1 Subject Systems

In this study we have analyzed ten C and seven Java sys-
tems varying in size from 4K LOC to 6265K LOC and in-
cluding the entire Linux Kernel. In Table 1 we provide a
statistical overview of these subject systems (only .c and
.java files were considered in the calculations).

Because Bellon’s experiment [5] is the most extensive
to date, we have chosen all the C and Java systems of his
experiment including the systems used in their test run. In
addition, we have studied Apache httpd [2], JHotDraw [11],
the entire Linux Kernel [16] and a number of small systems.

3.2 Clone Definition

In this study we have considered all non-empty func-
tions of at least 3 LOC in pretty-printed format (function
header and opening bracket on the first line, at least one
code line, and ending bracket on the third line). Empty
functions, which are common in some systems, have inten-
tionally not been considered. We then use different UPI
(difference) thresholds (c.f. Section 2) to find exact and
near-miss (copy/paste/modify) function clones. For exam-
ple, if the UPI threshold is 0.0, we detect only exact clones;
if the UPI threshold 0.10, we detect two functions as clones
if at least 90% of the pretty-printed text lines are the same
(i.e., if they are at most 10% different – see [23]). In this pa-
per we present our results for the representative set of UPI
thresholds 0.0, 0.10, 0.20 and 0.30, although we have also
tested 0.05, 0.15, 0.25 and 0.35 in our work.

3.3 Validation of Clones

All clones detected in this study were validated by hand.
To validate detected clones we use a two-step process. First,
we use NICAD’s interactive HTML output to give an over-
all view of the original source of the clone classes. Second,
we use the XML output to pairwise compare the original
source of the functions in each clone class using Linux diff

to determine the textual similarity of the original source.
We then manually check all code clone pairs that have
lower similarity values w.r.t the UPI threshold chosen. Be-
cause of our concise interactive HTML view and tool sup-
port for comparing original source, manual validation is not
time-consuming, and the total time to manually validate all
clones in this experiment was less than one man-month.

3.4 Metrics and Visualizations
This subsection descibes the different metrics and visu-

alizations that we have used in this experiment. These met-
rics are either adapted or reused from previous studies of
cloning [20, 3, 15, 26, 21].

Total Cloned Methods (TCM): In this study we focus
on function clones, and thus our first metric is related to the
number of methods. By TCM we mean the total number of
cloned methods of a system for a given UPI threshold (af-
ter manual verification). TCMp is the percentage TCM of
the total number of methods in a system. A higher value
of TCMp corresponds to a higher percentage of cloning in
the system w.r.t the number of methods. For example, if
the TCMp of a system is greater than 50% with UPI thresh-
old 0.0, we can say that the system has more exact cloned
methods than non-cloned methods. Such systems have a
high update anomaly risk; every update to the system has a
higher chance of involving a clone than not.

Since methods can be of different sizes and there may be
many clones that are quite small, we also consider similar
metrics w.r.t the number of lines in the systems. We define
TCLOC as the total number of cloned lines of a system for
a given UPI threshold and TCLOCp as the percentage of
total number of lines of the system for a given UPI thresh-
old. Since we apply standard pretty-priting before clone de-
tection, which eliminates formatting and layout differences,
resolves #ifdefs (in C systems) and ignores comments, we
can get an accurate percentage of cloned lines. We thus de-
fine the similar metrics w.r.t standard pretty-printed lines of
code as TCSppLOC and TCSppLOCp respectively. In prac-
tice, there is not much difference between TCLOCp and TC-
SppLOCp, but at the same time TCSppLOCp gives a more
accurate measure. We thus provide our findings w.r.t TCSp-
pLOCp rather than both.

File Associated with Clones (FAWC): While the above
metrics provide the overall cloning statistics for a subject
system, they cannot provide any clue as to whether the
clones are from some specific files or scattered all over the
system among many files. With FAWC we provide these
statistics for each system at each UPI threshold. We con-
sider that a file is associated with clones if it has at least
one method that forms a clone pair with another method in
the same file or in a different file. We define FAWCp as the
percentage of files associated with clones of a system for a
given threshold. For example, “FAWCp of a systems x with
UPI threshold 0.0 (exact clones) is 50%” means that 50%

of the files of x contain at least one exact cloned method.
From a software maintenance point of view, a lower value
of FAWCp is desirable, as in this case clones are localized
to certain specific files and thus may be easier to maintain.

Cloned Ratio of File for Methods (CRFM): While
TCM related metrics provide a good indication of the over-
all cloning level and FAWCp hints at the overall localization
of the clones, still one cannot say which files contain the
majority of the clones in the system. With CRFM we at-
tempt to discover the highly cloned files. In particular, for a
file f , CRFM(f) is defined as follows:

CRFM(f) = Total number of cloned methods in file f ∗ 100
Total number of methods in file f

Where a method is considered to be a cloned method if it
forms a clone pair/clone class with another method(s) of the
same file (e.g., for near-miss clones) or another file (within
the same directory or a different directory) and total number
of methods in file f denotes the number of methods of f that
are 3 LOC or more in standard pretty-printed format. Simi-
lar metrics are defined w.r.t the lines of code (CRFLOC) and
standard pretty-printed lines of code (CRFSppLOC). These
metrics are similar to (but not same as) the FSA metric of
Rajapakse and Jarzabek [20] and the RSA metric of Ueda et
al. [26], although they ignore clones that form clone pairs
within the same file and we do not.

With CRFM we can determine the highly cloned files of
a system and possibly can also predict the maintenance dif-
ficulty based on the metric values. For example, consider
two systems x and y of similar size, both having the same
values for the TCM related metrics. In x, clones are scat-
tered across the system in such a way that no two files are
substantially similar. But in y, clones are well concentrated
into a certain set of files. From a clone treatment perspec-
tive, system y is more interesting than x because the clones
in y might be more easily treatable than those of x.

Qualifying File Count for Methods (QFCM): As in
Rajapakse and Jarzabek [20] we define QFCM(v) for CRFM
value v as the number of files for which CRFM is not
less than v. For example, QFCM(20%) gives the num-
ber of files in the system having a CRFM value not less
than 20%. QFCMp is QFCM expressed as a percentage
of the total number of files in the system. For example,
“QFCMp(30%+) = 28% for a system x with UPI threshold
0.0” means that 28% of the files of x have 30% or more
exact cloned methods. As usual we define similar metrics
for source lines of code (QFCLOC and QFCLOCp) and
for standard pretty-printed lines of code (QFCSppLOC and
QFCSppLOCp).

Profiles of Cloning Locality w.r.t Methods (PCLM):
Kapser and Godfrey [15] provide three types of function
clones based on their location – clone pairs in the same file
(category 1), in the same directory (category 2) and in a dif-
ferent directory (category 3). They also provide the reasons,
usefulness / harmfulness for each of these categories [15].

In this study we define three metrics, PCLM(1) for cate-
gory 1, PCLM(2) for category 2 and PCLM(3) for cat-
egory 3 where PCLM(i) gives the total number of clone
pairs for category i. Furthermore, PCLMp(i), the percent-
age clone pairs for category i is defined as follows:

PCLMp(i) =
PCLM(i) ∗ 100

Total number of clone pairs in the system

As usual similar metrics are defined with respect to lines
of code (PCLLOC and PCLLOCp).

4. Experimental Results
In this section we provide the experimental results of this

study starting from overall cloning level in both C and Java
systems and then for each individual system in a variety
of measures based on the metrics described in Section 3.4.
While we provide here only the overall findings and statisti-
cal measures, the detailed results and the raw data for each
systems for different UPI thresholds can be found in an on-
line repository [22] as XML databases and HTML website.

4.1 Overall Cloning Level

In this section we provide overall cloning level both in
terms of number of methods and number of pretty-printed
LOC, i.e., the values of TCM related metrics of subsection
3.4. Figure 1 summarizes our results on C and Java sys-
tems by the proportion of functions (or methods in the case
of Java) that are cloned (i.e., TCMp over languages). The
values for the TCSppLOCp metric (i.e., the proportion by
number of pretty-printed LOC) by language can be found
in the % Total rows of Table 2.

The first thing we can notice is that there is significantly
more function cloning in our open source Java systems than
in C. On average, about 15% (7.2% w.r.t LOC) of the meth-
ods in open source Java programs are exact clones - those
with no changes at all, whereas only about 2.5% (1.1%
w.r.t LOC) of C functions are exact clones. After detecting
clones by setting a size range for the function size (see [22]
for detailed results) we noticed that this is in large part due
to the large number of accessor methods in Java programs
that are not present in C.

The second thing we can notice in Figure 1 (and in the
% Total rows of Table 2 for LOC) is that the effect of in-
creasing the UPI threshold is almost identical in both lan-
guages. We can interpret this as meaning that the numbers
of small changes made to cloned functions in each of these
languages seems to be roughly the same in these systems.
This is in some ways surprising - there is no particular rea-
son why the pattern of changes to copied code should be
similar across languages.

Figures 2 and 3 (also columns 3 to 6 of Table 2) refine
Figure 1 to show a detailed view of the same information for
the individual open source C and Java systems respectively.
As expected, the overall trends for each language are much
like the summaries in Figure 1 (or the % Total rows of Table

30%

20%

10%

 0%
 0.0 0.10 0.20 0.30

% of Functions Detected as Clones - All Systems

UPI (Dissimilarity) Threshold

C

Java

%
 o

f
Fu

nc
tio

ns
 D

et
ec

te
d

as
 C

lo
ne

s

Figure 1. Proportion of functions/methods
that are cloned, by language

2), with lower levels of cloning in C than Java. However, we
can now see more. For example, we can see that several of
the C systems have very little function cloning at all - less
than 10%, and to a large extent independently of the sys-
tem size (e.g., Postgresql and Apache httpd are very large,
whereas snns, cook and Weltab are quite small). Moreover,
contrary to popular intuition, the cloning characteristics of
the Linux Kernel seem to be not significantly different from
any other kind of C system.

Figure 3 (also Table 2 for LOC) is even more interesting,
because while the C systems vary, we can see that the Java
systems are remarkably consistent in their cloning charac-
teristics. All begin with a relaitively high level of exact
method clones (betweeen 8 and 22 percent), and in all cases
allowing for changes increases the proportion only mod-
estly. What’s interesting is that this seems to be completely
independent of system size, and appears to be a characteris-
tic of the language. The only exception to this consistency
seems to be JDTcore, which has about twice as many clones
at the 0.30 dissimilarity level than exact clones. More re-
search will be needed to investigate this phenomenon and
compare to other object-oriented languages.

In Table 2 we also provide the number of clone pairs
and clone classes for each of the systems for varying UPI
thresholds. It is interestng to notice that most systems have
significantly fewer clone classes than clone pairs, indicating
the fact that there are many pairs of functions in the systems
that are similar to each other.

4.2 Clone Associated Files

The FAWC and FAWCp metrics of Section 3 address the
issue of what proportion of the files in a system is associated
with clones, that is, contains at least one cloned method. A
system with more clones but associated with only a few files
is in some sense better than a system with fewer clones scat-
tered over many files from a software maintenance point of
view. In this section, we examine the FAWCp metrics for
each of the systems with varying UPI thresholds. The third

Table 2. Percentage of LOC that are associated with clones with clone pairs and clone classes

% Cloned LOC No. of Clone Pairs No. of Clone Classes
Lang System T=0.0 T=0.1 T=0.2 T=0.3 T=0.0 T=0.1 T=0.2 T=0.3 T=0.0 T=0.1 T=0.2 T=0.3

Abyss 0 1.9 1.9 3.2 0 1 1 3 0 1 1 3
Bison 0.2 0.2 2.0 2.9 1 1 3 8 1 1 3 8
Cook 0.3 2.0 7.7 13.3 7 18 107 280 5 12 56 98
Httpd 2.1 4.1 6.2 9.6 183 224 322 711 107 133 195 276

C Postgresql 0.1 1.0 4.3 9.43 7 24 195 530 7 20 89 203
Snns 3.2 6.2 13.3 18.6 109 157 343 495 63 86 143 191
Wetlab 21.0 55.2 62.7 72.2 46 105 148 160 8 11 17 20
Wget 0.0 1.3 1.7 2.4 0 2 4 11 0 2 2 2
Linux 1.0 2.6 8.3 10.8 5953 7362 13813 25767 1505 2263 4613 7918

% Total 1.1 2.8 8.4 11.0
Ant 5.1 5.4 6.3 9.7 363 365 374 426 92 94 101 119
EIRC 7.2 7.2 7.7 10.9 117 117 121 149 35 35 36 47
Javadoc 10.8 12.6 18.6 24.0 193 197 240 304 80 82 95 110

Java Jdtcore 5.1 8.8 16.2 23.7 1427 1553 2126 4378 323 377 518 660
JHotDraw 7.6 8.28 12.0 19.1 291 295 377 598 137 141 170 208
Spule 2.0 2.7 3.1 5.9 60 64 68 113 11 13 15 19
Swing 9.4 11.0 15 19.4 8115 8203 9978 11209 516 558 687 843

% Total 7.2 9.4 14.4 20.0

60%

50%

40%

30%

20%

10%

 0%
0.0 0.10 0.20 0.30

% of Functions Detected as Clones - C Systems

Abyss
Bison

Cook

Gzip

Httpd

Postgresql

SNNS

Weltab

Wget

UPI (Dissimilarity) Threshold

%
 o

f
Fu

nc
tio

ns
 D

et
ec

te
d

as
 C

lo
ne

s

Linux

Figure 2. Proportion of function/methods that
are cloned for C systems

column (with column heading v=0+% Both) of Table 3 and
Table 4 shows the statistics for the C and Java systems re-
spectively. The first column of these tables shows the sub-
ject systems and the number of files with at least one method
of three or more lines in standard pretty-printed format.
The second column shows the different UPI thresholds used
while calculating the metric values. The last row shows the
average values for each of the language categories.

While we will look at the details in the other columns of
these tables in the next subsection, from the average values
(last row and third colmn) of the tables, we see that on av-
erage 15.1% of the files in the C systems and 45.7% of the
files in the Java systems are associated with exact clones

% of Functions Detected as Clones - Java Systems

Ant
EIRC

Javadoc
JDTcore

JHotdraw

Spule

Swing

0 .0 0.10 0.20 0.30

UPI (Dissimilarity) Threshold

60%

50%

40%

30%

20%

10%

 0%

%
 o

f
Fu

nc
tio

ns
 D

et
ec

te
d

as
 C

lo
ne

s

Figure 3. Proportion of function/methods that
are cloned for Java systems

(UPI threshold 0.0). The higher percentage of Java systems
can be explained by the fact that in Java systems there are
many small similar accessor methods. However, in the case
of the C system Weltab, 51.3% files are associated with ex-
act clones. In case of Java systems, Swing shows the highest
percentage, 65.9% for exact clones. When we increase the
UPI threshold to detect near-miss clones, we see that C sys-
tems show a faster growing ratio than the Java systems, in-
dicating the fact that there might be more near-miss clones
in the C systems than the Java systems and that the clones
are scattered across different files. For example, even for
the largest C system, the Linux Kernel, it increases from
14.0% (for UPI threshold 0.0) to 49.6% (for UPI threshold

Table 3. Percentage of files that have clones over a certain percentage for C systems

System(#File) UPIT v=0+% v = 10+% v = 20+% v = 30+% v = 40+% v = 50+% v=100%
Both Meth LOC Meth LOC Meth LOC Meth LOC Meth LOC Both

0.0 3.5 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 3.5 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bison(57) 0.2 8.8 8.8 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 3.5
0.3 19.3 19.3 19.3 15.8 15.8 15.8 15.8 15.8 15.8 14.0 14.0 10.5
0.0 3.8 3.5 1.4 2.8 1.0 1.7 0.7 1.4 0.7 1.4 1.4 0.7
0.1 8.4 7.7 5.2 6.3 4.5 4.5 3.8 2.8 2.8 2.4 2.4 1.7

Cook(287) 0.2 26.8 25.4 21.6 21.6 17.4 17.1 13.9 12.9 10.1 12.2 12.2 6.3
0.3 43.6 42.2 35.9 36.9 29.3 31.4 24.7 25.4 22.0 24.7 1.0 2.5
0.0 18.3 16.7 10.9 12.5 6.7 8.3 4.2 6.5 2.6 4.8 4.8 1.0
0.1 22.2 20.0 14.5 14.7 9.1 9.9 6.9 8.5 4.2 6.0 6.0 1.0

Httpd(496) 0.2 31.0 28.4 22.4 23.2 16.1 15.9 11.3 12.1 9.1 10.1 10.1 2.0
0.3 41.7 39.3 31.9 33.5 23.8 23.6 18.1 19.6 14.9 15.5 15.5 3.8
0.0 1.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 4.5 2.2 0.6 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Postgres(314) 0.2 16.9 9.6 8.3 4.1 4.1 2.5 2.5 1.6 1.3 1.3 1.3 0.3
0.3 30.3 21.3 18.2 12.4 10.8 8.3 8.9 5.7 6.0 3.2 4.5 0.3
0.0 13.0 8.7 5.8 8.7 5.1 4.3 3.6 3.6 2.9 2.9 2.2 0.0
0.1 20.3 13.0 8.7 10.1 7.2 6.5 5.1 5.1 3.6 4.3 3.6 0.0

Snns(138) 0.2 36.2 26.1 19.6 19.6 15.2 16.7 11.6 13.8 7.2 10.1 5.1 1.4
0.3 46.4 39.1 29.0 29.0 21.7 22.5 18.1 20.3 10.1 15.9 8.0 1.4
0.0 51.3 51.3 41.0 51.3 23.1 48.7 20.5 43.6 20.5 43.6 18.0 0.0
0.1 51.3 51.3 46.2 51.3 41.0 51.3 41.0 51.3 38.5 51.3 38.5 35.9

Weltab(39) 0.2 66.7 64.1 61.5 64.1 56.4 64.1 53.8 61.5 51.3 59.0 46.2 43.6
0.3 71.8 69.2 71.8 69.2 66.7 69.2 64.1 64.1 56.4 64.1 56.4 56.4
0.0 14.0 9.6 6.0 7.0 3.8 5.0 2.9 3.8 2.4 3.3 3.3 0.9
0.1 19.7 13.1 10.1 9.2 6.4 6.5 4.8 5.0 4.0 4.4 3.4 1.4

Linux(9491) 0.2 34.9 24.0 19.4 16.1 12.6 11.0 9.1 8.1 7.3 6.9 5.9 2.1
0.3 49.6 38.1 31.0 26.0 21.5 18.0 15.7 13.3 12.1 10.7 9.5 3.1
0.0 15.1 13.5 9.3 11.8 5.7 9.7 4.6 8.4 4.2 8.0 4.2 0.4
0.1 18.6 15.8 12.2 13.1 9.8 11.2 8.8 10.4 7.6 9.8 7.7 5.7

Avg. 0.2 31.6 26.6 22.6 22.0 18.2 18.9 15.4 16.5 13.1 15.0 12.3 8.5
0.3 43.2 38.4 33.9 31.8 27.1 27.0 23.6 23.5 19.6 21.2 15.6 11.1

0.3), whereas for the largest Java system, the Swing, it in-
creases from 65.9% (for UPI threshold 0.0) to 76.1% (for
UPI threshold 0.3).

4.3 Profiles of Cloning Density

While the subsection above provides an overall view of
cloning over the files in a system, one cannot immediately
see which files are highly cloned or which files contain the
majority of clones. In this section we provide the values for
the CRFM and QFCM related metrics. Tables 3 and 4 pro-
vide the data for the C and Java systems respectively. The
first and second columns give the subject systems and dif-
ferent UPI thresholds, while the remaining columns show
the corresponding QFCMp(v) (indicated with column Meth)
and QFCLOCp(v) (indicated with column LOC) values.
The last row of each table shows the average values of the
metrics for each of the languages of the systems. When
v=0+% or v=100% (the third and last columns) both met-
rics values are same. When v=0+% we get the percentage
of files that are associated with at least one cloned method.

From the last rows of the tables with v=10+% we can
see that on average 13.5% (9.3% LOC) of the files for C

systems have 10% or more of their content as exact (UPI
threshold 0.0) cloned methods. For Java systems this is even
higher, at 37.8% (26.2% LOC). When we increase the UPI
threshold (say to 0.3) the Java systems are still the winners,
at 54.3% (44.9% LOC) compared to 38.4% (33.9% LOC)
for the C systems both in terms of methods and LOC. How-
ever, for higher values of v, say 50+% with UPI thresh-
old 0.3, both C and Java systems tend to have about the
same percentage, at 21.2% (15.6% LOC) for C systems
and 22.2% (16.7% LOC) for Java systems. One C system,
Weltab, even has 64.1% (56.4% LOC) when v=50+% and
56.4% (still 56.4% LOC) when v=100%, once again indi-
cating its high density of cloned code across different files.
These tables show only the overall percentage for the sys-
tems. Detailed results for each file of each system can be
found in our online respository [22] as an XML database.

We have also looked at the copy/paste patterns of the
detected clones. Figure 4 shows examples of copy/paste
changes from Weltab, snns and Postgresql. Assuming that
cloned methods in high density cloned files have been in-
tentionally copy/pasted, we have also compared copy/paste
patterns between the high density files of the systems.

Table 4. Percentage of files that have clones over a certain percentage for Java systems

System(#File) UPIT v=0+% v = 10+% v = 20+% v = 30+% v = 40+% v = 50+% v=100%
Both Meth LOC Meth LOC Meth LOC Meth LOC Meth LOC Both

0.0 45.3 37.3 17.4 26.1 5.5 14.3 3.1 8.1 2.5 4.4 3.0 0.6
0.1 47.2 37.9 19.3 26.1 6.2 14.3 3.1 8.1 2.5 4.4 2.5 0.6

Ant(161) 0.2 49.7 39.1 20.5 27.2 7.5 15.3 5.0 9.9 3.7 6.2 3.1 0.6
0.3 57.8 50.9 31.1 37.9 17.4 20.5 10.6 14.3 8.1 9.9 6.8 2.5
0.0 44.4 42.6 27.8 27.8 20.4 24.1 13.0 18.5 9.3 13.0 5.6 1.9
0.1 44.4 42.6 27.8 27.8 20.4 24.1 13.0 18.5 9.3 13.0 5.6 1.9

EIRC(54) 0.2 46.3 44.4 29.6 29.6 22.2 25.9 14.8 20.4 11.1 13.0 7.4 1.9
0.3 51.9 51.9 38.9 38.9 27.8 33.3 20.4 24.1 14.8 14.8 9.3 1.9
0.0 61.9 52.6 41.2 43.3 30.9 36.1 21.7 23.7 13.4 18.6 10.3 3.1
0.1 61.9 52.6 42.3 44.3 32.0 36.1 23.7 23.7 15.5 18.6 10.3 3.1

Javadoc(97) 0.2 66.0 57.7 51.6 50.5 34.0 44.3 29.9 36.1 23.7 29.9 19.6 9.3
0.3 68.0 61.9 56.7 54.6 45.4 48.5 38.1 40.2 30.9 37.1 26.8 13.4
0.0 51.5 44.2 30.4 32.8 23.0 24.2 16.8 17.7 11.7 14.4 9.8 1.7
0.1 57.7 50.0 36.4 38.0 28.4 27.1 21.8 22.0 16.3 18.6 14.4 3.3

Jdtcore(582) 0.2 66.7 59.3 48.6 49.3 38.7 36.3 29.9 29.6 24.4 24.4 21.1 4.3
0.3 74.2 68.2 58.4 57.2 46.7 46.2 37.3 36.1 30.6 30.4 25.1 6.5
0.0 44.6 36.9 32.2 27.5 18.9 19.3 13.3 14.2 9.4 11.6 6.4 2.1
0.1 45.5 38.2 33.5 28.3 21.0 21.0 15.0 15.9 11.2 12.9 7.7 2.6

JHotDraw(233) 0.2 51.5 45.9 42.9 36.9 29.6 27.9 22.7 20.2 15.9 17.6 12.0 3.0
0.3 57.5 53.6 51.1 45.1 39.5 36.9 30.9 27.5 22.7 21.9 17.6 5.6
0.0 6.0 4.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 16.0 14.0 12.0 12.0 6.0 12.0 4.0 10.0 0.0 10.0 0.0 0.0

Spule(50) 0.2 16.0 14.0 12.0 12.0 8.0 10.0 4.0 10.0 0.0 10.0 0.0 0.0
0.3 30.0 28.0 24.0 24.0 20.0 20.0 14.0 18.0 8.0 18.0 8.0 2.2
0.0 65.9 47.3 32.6 32.1 23.4 24.9 17.4 19.1 15.9 17.1 13.8 2.2
0.1 67.6 49.8 35.5 33.3 25.1 25.6 19.3 19.3 17.6 17.4 15.9 2.2

Swing(414) 0.2 71.5 56.8 43.0 40.1 32.1 29.0 24.6 24.2 21.5 20.5 19.8 2.9
0.3 76.1 65.9 54.1 51.0 40.3 33.8 31.6 28.3 25.8 23.2 23.2 3.6
0.0 45.7 37.8 26.2 27.4 17.4 20.4 12.2 14.5 8.9 11.3 7.0 1.7
0.1 48.6 40.7 29.5 30.0 19.9 22.9 14.3 16.8 10.3 13.6 8.1 2.0

Avg. 0.2 52.5 45.3 35.5 35.1 24.6 27.0 18.7 21.5 14.3 17.4 11.9 3.1
0.3 59.4 54.3 44.9 44.1 33.9 34.2 26.1 26.9 20.1 22.2 16.7 5.1

From the above discussion it is obvious that one of the in-
teresting systems is Weltab. Using the NICAD interface we
noticed that although there is no file in Weltab that is exactly
similar to another, 14 files of its 39 are clones of each other
even with UPI threshold 0.05, that is, they are the same but
for very minor edits. As an example, in the three files vedt.c,
vfix.c and xfix.c (each of which has two functions including
one large main function) there are only minor differences
in the main function, and no differences at all in the other
(acknowledge) function. Most of the changes are in fprintf
statements and the parameters of the acknowledge function
when it is called, and there are also lines added/deleted in
the main function. For other high density files we have no-
ticed similar changes, including changes in if-statements,
the names of functions, and so on. Java systems show simi-
lar behavior but the methods are most cases smaller in size.

4.4 Profiles of Cloning Localization

In this section we provide the PCLMp related metrics.
The location of a clone pair is a factor in software main-
tainence [15, 26]. A code fragment can form a clone pair
with another fragment within the same file, or it can form a

clone pair with another fragment of a different file located in
the same directory or with a code fragment that is located in
a different file in a different directory. Kapser and Godfrey
[15, 14] provide a categorization of function clones based
on such location differences and analyze the causes, useful-
ness, harmfulness and possible solutions for each kind of
cloning. For example, clone pairs that appear in the same
file may not be harmful as they are not physically apart and
might be easily maintainable. On the other hand, clone pairs
that appear in different directories, might be harmful to soft-
ware maintenance as the similar fragments are hard to find
and thus might not easily maintainable. They also provide
cloning statistics of such clone types on the Linux Kernel
file-system subsystem version 2.4.19 and Postgresql 7.4.2.
We further extend the similar study with more than 15 C
and Java systems including entire Linux Kernel with our
new hybrid clone detection tool.

In Table 5 we provide the percentage clone pairs for each
of the different categories for the C systems. Table 6 shows
similar values for Java systems. For each of the systems the
first row represents PCLMp metric (i.e., w.r.t no. of meth-
ods) and the second row represents PCLLOCp metric (i.e.,

---------------Weltab ---------------
< fprintf (stderr, "*** Skipping VFIX. Run canceled.\n");

> fprintf (stderr, "*** Skipping XFIX. Run canceled.\n");
---------------Weltab ---------------
< askchange ("", &change, &quit, FALSE, FALSE);

> askchange ("", &change, &quit, FALSE, TRUE);
---------------Weltab --------------- ---------------Weltab ---------------
< lines = LANDSCAPE; < if (lines+2 > LANDSCAPE)
--- ---
> lines = 60; > if (lines+2 > 60)
----------------snns ---------------- -------------Postgresql -------------
< yy_is_jam = (yy_current_state == 144); < char *scanstr (char *s){
--- ---
> yy_is_jam = (yy_current_state == 26); > char *GUC_scanstr (char *s){
------------------------------------- -------------------------------------

Figure 4. Some Copy/paste Change Examples

w.r.t LOC). For each of the metrics four different values are
shown corresponding to UPI thresholds ranging from 0.0
(exact clone) to 0.30 (relaxed near-miss clone).

From the tables we see that while there are no exact
clones (UPI threshold 0.0) within the same file for C sys-
tems (except in the Linux Kernel), there are on average
18.7% (17.6% LOC) exact clone pairs within the same
files for Java systems. This is particularly surprising in
the Spule system. Out of 60 exact clone pairs, 96.7%
(97.2% LOC) of clone pairs occur within the same files,
more specifically in file spule/src/common/Messages.java.
Cloned methods occur between the static classes in the files.
For example, two write methods of 11 LOC and 7 LOC ap-
pear two times (lines 1659-1669 and 1612-1622) and seven
times (lines 1796-1802, 1687-1693, 1533-1539, 1432-
1438, 1391-1397, 1349-1355, and 1268-1274) respectively
in file Messages.java. Similarly, exact clone pairs ap-
pear within the same file in other Java systems between
original and abstract classes (e.g., ant/BuildEvent.java
lines 163-165 and 93-95), as inlined functions (e.g., jdt-
core/src/internal/compiler/Compiler.java lines 148-151 and
84-87) and so on. While most of the clone pairs are smaller
in size, exact cloning within the same file might be inter-
esting both from software maintenance and language de-
sign points of view. As an exception to the C systems, the
Linux Kernel has one file (/drivers/net/fec.c) that has six ex-
act clone pairs in it. In fact there are two exact clone classes
in this file. In the first class, function fec get mac (32
LOC) appears three times (lines 1744-1775, 1595-1626 and
1464-1495) and in the second class, function fec set mii
(16 LOC) also appears three times (lines 1727-1742, 1577-
1593 and 1446-1462) as static inline functions.

However, when we detect near-miss clones by allowing
a higher UPI threshold, we see that the metrics values in-
crease to a higher ratio for the C systems than the Java sys-
tems. For example, when UPI threshold is 0.3, on average
45.9% (49.0% LOC) of clone pairs of the C systems occur

within the same file compared to only 25.3% (29.7% LOC)
of the clone pairs in the Java systems. If we have a close
look at the individual systems we also see higher ratios for
most of the C systems than the Java systems. In the case
of Wget it actually reaches 90.9% (92.7% LOC). However,
Wget is a small system, has only 11 clone pairs in 2 classes
with UPI threshold 0.3, and only 3 of its 21 files are asso-
ciated with clones. Taking a closer look, we found that of
the 2 clone classes, one contains 5 cloned methods (lines
503-539, 463-499, 389-425, 350-385, and 428-460) and all
are from the same file wget/src/ftp-basic.c.

However, a reasonably large system, Postgresql (530
clone pairs in 203 classes with UPI threshold 0.3), also
shows a higher percentage (87.6% methods and 86.1%
LOC) of clone pairs within the same files with UPI thresh-
old 0.3. As with Wget, it has also higher frequency
of clone classes in the same file. For example, in file
postgresql/src/backend/utils/adt/float.c, there are six similar
methods (lines 952-965, 935-948, 900-913, 865-878, 848-
861, and 831-844) of 14 LOC differing only in their func-
tion names and built-in function calls (e.g., tan changes to
sin, cos to acos, and so on).

Both C and Java systems tend to have a higher percent-
age of exact clones (UPI threshold 0.0) within the same di-
rectory but in different files. Even the largest C system, the
Linux Kernel, has 55.5% (58.9% LOC) of its exact clone
pairs in the same directory (but different files). The largest
Java system, the Java 2 SDK Swing, has even more, 87.5%
(90.0% LOC). When we look for near-miss clones by in-
creasing the UPI threshold, these percentages seem to de-
crease, indicating that clone pairs either form within the
same file or between different files of different directories.
C systems, however, show a higher percentage of different
directory exact clone pairs than Java systems. When we
increase the UPI thresholds, these percentages tend to de-
crease, and at the same time the percentages for the same
file clone pairs tend to increase, indicating that near-miss

Table 5. Percentage localization of clone pairs for C Systems

Same File, Same Directory Same Directory, Different File Different Directory
System UPIT 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30

Method 0.0 16.7 40.2 29.3 42.9 61.1 42.1 57.8 57.1 22.2 17.7 12.8
Cook LOC 0.0 32.3 51.3 41.1 27.3 59.8 35.9 49.1 72.7 7.8 12.7 9.8

Method 0.0 2.7 15.2 33.5 6.6 7.1 9.3 7.3 93.4 90.2 75.4 59.2
Httpd LOC 0.0 7.3 18.6 34.6 6.0 6.9 10.7 7.9 94.0 85.8 70.7 57.4

Method 0.0 62.5 89.7 87.6 14.3 4.2 2.5 6.9 85.7 33.3 7.6 5.5
Postgresql LOC 0.0 81.3 89.5 86.1 5.3 0.4 4.7 8.7 94.7 18.3 5.7 5.2

Method 0.0 15.9 45.2 54.3 62.4 55.4 37.9 33.3 37.6 28.6 16.9 12.3
Snns LOC 0.0 33.8 50.4 59.8 48.7 38.3 32.7 27.6 51.3 27.9 16.8 12.5

Method 0.0 0.0 2.7 3.1 100.0 100.0 97.3 96.9 0.0 0.0 0.0 0.0
Weltab LOC 0.0 0.0 0.4 0.5 100.0 100.0 99.5 99.5 0.0 0.0 0.0 0.0

Method 0.0 50.0 75.0 90.9 0.0 50.0 25.0 9.1 0.0 0.0 0.0 0.0
Wget LOC 0.0 56.5 79.6 92.7 0.0 43.5 20.4 7.3 0.0 0.0 0.0 0.0

Method 0.1 2.7 12.2 22.5 55.5 53.3 41.2 33.5 44.4 44.1 46.6 44.0
Linux LOC 0.3 8.6 20.2 28.0 58.9 52.5 40.0 34.7 40.8 39.0 39.8 37.2

Method 0.0 21.5 40.0 45.9 40.2 47.3 36.5 35.0 45.5 31.2 23.5 19.1
Avg. LOC 0.0 31.4 44.3 49.0 35.2 43.1 34.8 33.5 50.5 25.5 20.8 17.4

Table 6. Percentage localization of clone pairs for Java Systems

Same File, Same Directory Same Directory, Different File Different Directory
System UPIT 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30

Method 4.4 4.7 5.1 6.6 73.0 72.6 72.5 69.3 22.6 22.7 22.5 24.2
Ant LOC 4.2 5.2 6.1 11.6 75.2 73.3 72.3 62.6 20.6 21.5 21.6 25.8

Method 0.0 0.0 0.8 5.4 65.0 65.0 65.3 63.1 35.0 35.0 33.9 31.5
EIRC LOC 0.0 0.0 2.1 9.1 68.3 68.3 68.3 60.8 31.7 31.7 29.6 30.1

Method 19.7 20.8 19.6 22.7 72.0 71.1 69.2 62.8 8.3 8.1 11.3 15.5
javadoc LOC 14.3 22.5 25.8 25.8 76.3 69.4 63.4 60.2 9.4 8.0 10.8 14.1

Method 0.9 3.1 11.8 41.9 75.8 72.9 68.9 46.4 23.3 24.0 19.3 11.7
Jdtcore LOC 0.6 13.0 34.3 59.4 73.9 56.5 42.0 28.2 22.5 30.5 21.6 12.4

Method 5.8 5.8 6.6 13.7 51.6 52.2 47.5 39.1 42.6 42.0 45.9 47.2
JHotDraw LOC 4.5 4.2 7.5 18.7 50.5 53.3 46.0 36.6 45.0 42.5 46.6 44.6

Method 96.7 90.6 91.2 77.0 3.3 4.0 8.8 23.0 0.0 0.0 0.0 0.0
Spule LOC 97.2 86.1 87.3 64.6 2.9 13.9 12.7 35.4 0.0 0.0 0.0 0.0

Method 3.5 3.7 5.3 9.6 87.5 87.2 83.8 77.8 9.0 9.1 10.9 12.6
Swing LOC 2.4 3.2 8.3 18.5 90.0 88.5 81.0 68.7 7.6 8.3 10.7 12.9

Method 18.7 18.4 20.1 25.3 61.2 60.7 59.4 54.5 20.1 20.1 20.5 20.4
Avg. LOC 17.6 19.2 24.5 29.7 62.4 60.5 55.1 50.4 19.5 20.4 20.1 20.0

clone pairs tend to occur more within the same file than in
different files of the same or different directories.

Since we consider all functions with 3 LOC or more in
pretty-printed format, one might argue that the findings are
biased on the size of the functions. However, it does not
seem so when we look the values for LOC. In almost all
cases, the metrics values are very close, showing that a sig-
nificant proportion of files in each system have a significant
proportion of similar code in the files themselves.

5. Related Work

Empirical study of clones in open source systems is not
a new topic. When a new clone detection technique is pub-
lished, it normally comes with an empirical study (at least
in part). However, these studies focus on validating the pro-
posed methods [25] rather than on the subject systems.

Several tool comparison studies have used open source

systems for comparing different tools [25]. Of them, the
Bellon et al. experiment [6, 5] is the most extensive to date,
using four C and four Java systems to compare several state-
of-the-art tools. Although we have used the subject systems
from Bellon’s experiment as a part of our study, our study
differs in using a new hybrid clone detection tool, in the
size of the subject systems analyzed (e.g., the entire Linux
Kernel) and in providing the cloning status of the subject
systems themselves in several different dimensions.

Kapser and Godfrey have conducted extensive empirical
studies with Apache httpd, the Linux file system and sev-
eral other open source systems. They provide a detailed
categorization of code clones in the form of a taxonomy
[15], propose a new analysis framework [14] and give an
in-depth study on the harmfulness / usefulness of cloning
[13]. Our study differs in that we focus on the comprehen-
sive cloning status of a wide variety of different systems in

different languages, whereas they focus on the maintenance
implications of cloning.

Empirical studies of cloning in the Linux Kernel have
also been carried out by several other researchers. Of them,
Casazza et al. [7] and Antoniol et al. [4] provide interest-
ing findings, but they focus on clone evolution, whereas we
focus on the occurrence of copy/paste clones in several di-
mensions. Kim et al. [17] also studied the evolution of code
clones in several systems and concluded that programmers
often intentionally practice code cloning. Jiang and Has-
san [10] also used the Linux Kernel as an example for their
framework for understanding cloning in large systems.

Al-Ekram et al. [3] have also conducted a promising em-
pirical study on cloning, focussing on C/C++ systems from
two different domains. They examined different clone types
(e.g., accidental clones) by analyzing clones across systems
in the same domain, whereas we have studied a wide va-
riety of systems and concentrated on copy/paste function
clones of individual system. Krinke [18] has conducted an
empirical study with five C/C++/Java systems, focussing on
consistent and inconsistent changes to exact code clones in
different versions of the subject systems. The most closely
related work to ours is the work of Rajapakse and Jarzabek
[20] which was also one of the motivations of our study.
However, they studied cloning in a different domain, web
applications, and have looked at only exact clones.

6. Conclusion

In this paper we have provided an empirical study of
function clones in several C and Java open source software
systems of varying size, including Apache httpd and the
entire Linux Kernel, using the new hybrid clone detection
method NICAD. The study has demonstrated that NICAD is
capable of accurately finding both exact and near-miss func-
tion clones even in large systems and different languages,
and that there seem to be a large number of copy/paste func-
tion clones in those systems. We have provided cloning
statistics for these systems in several different dimensions
and made the detailed results available in an online reposi-
tory. These results can potentially be used as a benchmark
for evaluating other clone detection tools.

Threats to Validity: One of the major threats to the re-
sults of this study is the lack of a sound definition of code
clones. While one can precisely define exact clones, there
is no agreed upon definition of near-miss clones. In this
study we have used a dissimilarity threshold on the stan-
dard pretty-printed code as a measure of near-miss clones.
While this gives good results, we cannot be sure that these
are definitively the right set for software maintenance activ-
ities such as refactoring.

Future Work: We plan to repeat this study on systems
in several other languages, for example C++ and C#, and
using smaller clone granularities such as begin-end blocks.

We also plan to explore the effect of more advanced NICAD
features, such as flexible pretty-printing, code normaliza-
tion and filtering, on the results.

Acknowledgements: The authors would like to thank
the four anonymous reviewers for their valuable comments,
suggestions and corrections in improving the paper. This
work is supported in part by the Natural Sciences and Engi-
neering Research Council of Canada.

References
[1] The Abyss: http://abyss.sourceforge.net/ (Dec 2007)
[2] The Apache-httpd: http://httpd.apache.org/ (April 2008)
[3] R. Al-Ekram, C. Kapser and M. Godfrey. Cloning by Accident: An

Empirical Study of Source Code Cloning Across Software Systems.
In ISESE, pp. 376-385, 2005.

[4] G. Antoniol, U. Villano, E. Merlo and M.D. Penta. Analyzing
Cloning Evolution in the Linux Kernel. Information and Software
Technology, 44 (13):755-765, 2002.

[5] S. Bellon and R. Koschke. Detection of Software Clone: Tool Com-
parison Experiment: http://www.bauhaus-stuttgart.
de/clones/ (December 2007).

[6] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo. Compar-
ison and Evaluation of Clone Detection Tools. IEEE TSE, 33(9):577-
591, 2007.

[7] G. Casazza, G. Antoniol, U. Villano, E. Merlo and M. Penta. Identi-
fying Clones in the Linux Kernel. In SCAM, pp. 90-97, 2001.

[8] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[9] The Gzip-1.2.4 http://www.gzip.org/ (Feb 2008).
[10] Z. Jiang and A. Hassan. A Framework for Studying Clones in Large

Software Systems. In SCAM, pp. 203-212, 2007.
[11] The JHotDraw: http://www.jhotdraw.org/ (June 2006)
[12] J. Johnson. Visualizing Textual Redundancy in Legacy Source. In

CASCON, pp. 171-183, 1994.
[13] C. Kapser and M. Godfrey. “Cloning Considered Harmful” Consid-

ered Harmful. In WCRE, pp. 19-28, 2006.
[14] C. Kapser and M. Godfrey. Supporting the Analysis of Clones in

Software Systems: A Case Study. JSME: Research and Practice,
18(2):61-82, 2006.

[15] C. Kapser and M. Godfrey. Toward a Taxonomy of Clones in Source
Code: A Case Study. In ELISA, pp. 67-78, 2003.

[16] The Linux-2.6.24.2: http://www.linux.org/ (March 2008)
[17] M. Kim and G. Murphy. An Empirical Study of Code Clone Ge-

nealogies. In FSE, pp. 187-196, 2005.
[18] J. Krinke. A Study of Consistent and Inconsistent Changes to Code

Clones. In WCRE, pp. 170-178, 2007.
[19] Z. Li, S. Lu, S. Myagmar and Y. Zhou. CP-Miner: Finding Copy-

Paste and Related Bugs in Large-Scale Software Code. IEEE TSE,
32(3):176-192, 2006.

[20] D. C. Rajapakse and S. Jarzabek. An Investigation of Cloning in Web
Applications. In WWW, pp. 924-925, 2005.

[21] M. Rieger, S. Ducasse and M. Lanza. Insights into System–Wide
Code Duplication. In WCRE, pp. 100-109, 2004.

[22] The Roy/Cordy WCRE’08 Clone Results: http://www.cs.
queensu.ca/home/stl/download/NICADOutput/.

[23] C.K. Roy and J.R. Cordy. NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normal-
ization. In ICPC, pp. 172-181, 2008.

[24] C.K. Roy and J.R. Cordy. Scenario-Based Comparison of Clone De-
tection Techniques. In ICPC, pp. 153-162, 2008.

[25] C.K. Roy and J.R. Cordy. A Survey on Software Clone Detection Re-
search. Queen’s School of Computing TR 2007-541, 115 pp., 2007.

[26] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Mainte-
nance Support Environment Based on Code Clone Analysis. In MET-
RICS, pp. 67-76, 2002.

