
DebCheck: Efficient Checking for Open Source Code Clones in Software Systems

James R Cordy
Queen’s University, Kingston, Canada

Email: cordy@cs.queensu.ca

Chanchal K. Roy
University of Saskatchewan, Saskatoon, Canada

Email: croy@cs.usask.ca

Abstract—The problem of finding code cloned from open
source code in software systems is of interest both to the open
source community (e.g., for GPL and other open source license
enforcement) and the industrial community (e.g., to prevent
GPL “contamination” of proprietary commercial software
systems). The largest collection of open source software in
general distribution is the collection of eight DVDs in the
Debian source distribution, and checking for cross-cloning with
the Debian source distribution goes a long way towards finding
any possible copying from the set of all open source code in the
world. The NiCad clone detector is an open source language-
sensitive robust clone detector that has been shown to yield
both high precision and high recall in detecting syntactically
meaningful near-miss clones such as functions and blocks.
Given a directory of new source code to check, DebCheck uses
NiCad in its incremental mode to efficiently check the system
for near-miss clones of C functions in the entire Debian source
base in a few minutes on a 2 Gb home computer. The same
technique can be used to check systems for cross-clones with
any large source collection.

Keywords-clone detection, open source, licensing, GPL

I. INTRODUCTION

The question of whether code has been borrowed or
copied from other systems is a key legal and ethical question
in the development of new software systems [4]. Reuse is
an efficient and practical way to rapidly get results, but can
cause both technical and legal difficulties later. In particular,
the question of whether GPL or other open source licensed
code has been copied into a system is of strong interest to
both the open source community (e.g, in order to enforce
“copy-left” requirements of the GPL license and thus add
to the open source catalogue), and to commercial software
developers and users (e.g., in order to avoid those require-
ments). In a world where so much software development is
done by third party suppliers, checking for open source code
in a source system has become an important problem.

In this demonstration we will show our DebCheck
command-line tool, which is designed to address exactly
this problem. Given the root of a system’s source code
directories, DebCheck will extract all of the C functions
embedded in C source files of the system and check every
one of them for near-miss clones in the Debian open source
distribution, the world’s largest packaged collection of open
source code. Using the incremental mode of the NiCad clone
detector [1], DebCheck can check a system of a few hundred
files in less than five minutes on a standard 2 Gb single
processor home computer.

II. THE NICAD CLONE DETECTOR

The NiCad clone detection method [2] is a hybrid method
that combines language-sensitive parsing with language-
independent similarity analysis to yield structurally mean-
ingful near-miss clones. It has been shown to yield both
high precision and high recall [3] in detecting near-miss
intentional clones at both the function and block level.

NiCad has three main stages, parsing, normalization, and
comparison. In the first stage the input sources are parsed
to extract and pretty-print all syntactic fragments of a given
granularity (“potential clones”), such as functions or blocks.
This extraction step need be done only once for any given
software system at any given granuarity. We take advantage
of this property in DebCheck to avoid reprocessing the
Debian open source collection when checking for clones,
by extracting and pretty-printing all C functions in the
collection only once.

In the second stage, extracted fragments can be nor-
malized, filtered or abstracted before comparison. Potential
clones can be consistently or uniformly renamed to remove
differences between identifiers in the same roles. In this
first version of DebCheck, we pretty-print to standardize all
formatting and remove comments, but do no renaming or
filtering of the code.

In the final stage, the extracted and normalized fragments
are linewise compared using an LCS (longest common
subsequence) algorithm to detect similar fragments (clones).
The algorithm detects near-miss clones by allowing for
linewise differences up to a given threshold. In DebCheck we
use a threshold of 0.3, corresponding to up to 30% different
lines between C functions in the system to be checked with
those in the Debian source collection.

The NiCad method is efficiently implemented by the
NiCad clone detector [1], which has two modes - whole
system and incremental. In the whole system mode, it detects
clones within a single version of a system or systems. In
the incremental version, it takes two systems, normally a
previous version and a new version of the same system, and
reports only clones that cross between the two versions. In
DebCheck we use incremental NiCad to check for near-miss
C function clones that cross between the system to check for
open source code (as the “new version”), and the entire eight
DVD Debian source distribution (as the “old version”).

III. DEBCHECK IMPLEMENTATION

DebCheck works by taking advantage of the separation
of the extraction step identifying ”potential clones” and



linux% debcheck monit-4.2
Checking Debian source base for function clones in monit-4.2
Wed Feb 9 12:18:35 EST 2011
Checking for clones in Debian/disk1main
Extracted 437 functions
Found 106 clones (125 fragments, 516 pairs) in 19 clusters
Checking for clones in Debian/disk2main
Found 160 clones (175 fragments, 1338 pairs) in 15 clusters
Checking for clones in Debian/disk3main
Found 299 clones (439 fragments, 1403 pairs) in 140 clusters
Checking for clones in Debian/disk4main
Found 135 clones (151 fragments, 939 pairs) in 16 clusters
Checking for clones in Debian/disk1contrib
Found 0 clones (0 fragments, 0 pairs) in 0 clusters
Checking for clones in Debian/disk2contrib
Found 0 clones (0 fragments, 0 pairs) in 0 clusters
Checking for clones in Debian/disk3contrib
Found 0 clones (0 fragments, 0 pairs) in 0 clusters
Checking for clones in Debian/disk4contrib
Found 0 clones (0 fragments, 0 pairs) in 0 clusters
Done. Detailed log in monit-4.2/Debiantest.log
Wed Feb 9 12:27:24 EST 2011

Figure 1. Script of DebCheck run on monit-4.2 source
Each “cluster” is a distinct function of monit-4.2, and each “clone” is a
near-miss copy of it in the Debian open source collection. The disk3main

result is no surprise, since another version of monit appears in it.

the comparison step in NiCad. It begins by using the C
function extractor of NiCad to extract and pretty-print all
of the functions in each of the eight DVDs of the Debian
source distribution. This process is itself relatively slow,
since involves parsing all of the C source files, the slowest
part of the NiCad process. It takes approximately 10 hours to
complete the parsing and extraction of 3,596,111 functions
on a desktop PC running Ubuntu Linux.

Fortunately, this mass extraction need be carried out only
once per Debian source distribution. Once it is done, we can
use NiCad’s incremental mode to extract and compare the
functions of any new C system to the C functions extracted
from the Debian source distribution very efficiently. In order
to maintain scalability without requiring large hardware,
DebCheck runs incremental NiCad once for the extracted
functions from each DVD (about 500,000 functions per
DVD) rather than on the 3 million functions extracted from
all of the Debian DVDs all at once.

DebCheck is a script run from the command line, and
is given the root directory of the source of the system to
be checked as an argument. It uses NiCad to extract and
check the functions of the system for clones of the functions
extracted from the first Debian DVD (“disk1main”), and then
re-uses the same extracted functions to run NiCad against
the functions extracted from each of the remaining seven
DVDs of the Debian source distribution. Depending on the
number of functions extracted, the entire process typically
takes a few minutes to check a new system of a few hundred
source files on a 2 Gb Linux PC.

By default DebCheck configures NiCad to its defaults,
normalizing to remove commenting and spacing differences
and pretty-print to standard form for comparison at function
granularity allowing for a 30% near-miss threshold. Like all
NiCad runs, DebCheck uses a NiCad configuration file to
specify options, and other options such as block granularity,

Figure 2. NiCad report for clones of monit-4.2 functions in Debian source

consistent or blind renaming, filtering or abstraction of
declarations or other forms, and a tighter or looser near-miss
threshold can be specified to use more (or less) aggressive
clone detection.

IV. EXAMPLE USE

Figure 1 shows a typical run, checking the source code
of monit-4.2, an open source application for monitoring
resources on UNIX-like systems, against the eight DVDs of
Debian open source code distribution for near-miss function
clones. As we can see, clones are found in all four of the
main distribution disks (the disk3main result is no surprise,
since another version of monit appears in it). The NiCad web
page reports (e.g., Figure 2) show us the original sources and
files of the copied functions, which we find are GPL source
files, indicating that monit has no choice but to be GPL open
source (which it is).

V. DEMONSTRATION

In this demonstration we will interactively run DebCheck
on real systems to demonstrate its features and performance.

REFERENCES

[1] J.R. Cordy and C.K. Roy, ”The NiCad clone detector”, Tool demo
submitted to ICPC 2011, Kingston, Canada, June 2011.

[2] C.K. Roy and J.R. Cordy, ”NICAD: Accurate Detection of Near-miss
Intentional Clones using flexible pretty-printing and code normaliza-
tion”, In ICPC 2008, pp. 172-181, Amsterdam, Netherlands, June
2008.

[3] C.K. Roy and J.R. Cordy, ”A mutation / injection-based automatic
framework for evaluating code clone detection tools”, In Mutation
2009, pp. 157-166, Denver, USA, Apr. 2009.

[4] D.M. German, M. Di Penta, Y.-G. Gueheneuc and G. Antoniol, “Code
siblings: Technical and legal implications of copying code between
applications”, In Proc. 6th Intl. Working Conf. on Mining Software
Repositories, pp. 81-90, Vancouver, Canada, May 2009.


