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Abstract—Effort for development and maintenance of complex
large software is believed to have dependency on the amount
of duplicated code fragments (code clones) present in code-
bases. For example, clones need to be carefully and consistently
maintained and/or refactored for preventing accidental error
propagation. Thus it is important to understand the proportion
and evolution of clones in evolving software systems for cost esti-
mation or the like. This paper presents a study on the evolution of
near-miss clones at release level in medium to large open source
software systems of different types (operating systems, database
systems, editors, etc.) written in three different programming
languages namely C, C#, and Java. Using a hybrid clone detector,
NiCad, we detected both exact and near-miss clones at different
levels of similarity. Applying statistical methods we investigated,
from different dimensions, the evolution of both exact and near-
miss clones, and also forecasted the amount of clones in future
releases of the software systems. Our study offers significant
insights into the existence and evolution of code clones and
their relationships with programming language or paradigm and
program size.

I. INTRODUCTION

Similar code fragments (functions, blocks, etc.) in software
systems are known as code clones, and programmers’ copy-
paste-modification practice is regarded as one of the main
reasons for majority of clones. Such clones are known as
intentional clones. However, unintentional clones also appear
due to a number of reasons. For example, the use of design
patterns, frameworks, and similar API’s result in unintentional
code clones. Previous studies showed that software systems
may have 5%-15% duplicated code [29], up to 50% [24].
Code fragments that are exact copies of each other form
groups of exact clones. Moreover, fragments that are not exact
copies of each other, but share certain level of similarity
are known as near-miss clones where statements might be
added/deleted/modified in the copied fragments. From the
programmers point of view copy-paste-modification program-
ming may increase productivity. However, copying a fragment
containing any unknown bug may result in fault propagation.
From the maintenance perspective, existence of code clones
may increase maintenance effort. For example, a change in a
cloned fragment may require careful and consistent changes to
the all copies of the fragment. Any inconsistency may intro-
duce new bugs. For small and simple software systems, such
consequences may be minimal, but for complex and large sys-
tems, the consequences of code cloning may have significant
impact in the development and maintenance process. Previous
studies [3], [7], [11], [13], [20] on the usefulness/harmfulness

of code clones converge to the point that code clones need
to be carefully managed in evolving software. Thus, evolution
and management of clones becomes an active research topic
in the last few years.

Until recently, many studies on code clones reported ob-
servations on the effect of program size and programming
language/paradigm on code cloning. However, to develop a
more confident understanding on such phenomena, a larger
scale structured study with statistical analysis on many re-
leases of diverse systems is still required. Most of the other
earlier studies [8], [14], [16], [17], [21] on clone evolution
investigated how individual cloned fragments evolve across
subsequent CVS commit transactions or CVS snapshots over
weekly intervals or so. Though such fine-grained studies offer
important insights into the maintenance implications of code
clones, a broader picture through analysis of clone densities at
release level is also necessary. This will provide an overall but
quick understanding of clones, which might help in estimating
the maintenance cost of the software. Since the amount of
cloned code is believed to have significant effect on software
development and maintenance effort, project planning and
management activities need deeper understanding on how
many clones there may be in an evolving software. The ability
to predict the amount of clones in the future releases would
be useful in taking decisions on software cost estimation and
project planning, specially for large and complex systems.

Most of the previous work studied the evolution of Type-1
(identical code fragments except for variations in whitespace
and comments) and/or Type-2 (where syntactically similar
fragments are also considered clones) clones. The studies of
Antoniol et al. [1], [2] might have included Type-3 (statements
added/deleted/modified in copied fragments) clones, but their
metric based approach for clone detection might have included
many false positives.

In this paper, we present an empirical study on the existence
and evolution of exact and near-miss clones over 1,636 re-
leases (and pre-releases) of 18 large open source software sys-
tems of diverse categories written in three different languages
namely Java, C#, and C. To the best of our knowledge, this
is the largest study so far on code clone evolution. Moreover,
this study includes not only Type-1 and Type-2 clones, but
also Type-3. Our study has two goals: first, using regression
analysis we aim to compute one step ahead forecast on clone
density in subsequent releases starting from a very early
release of the system. Second, applying statistical methods we



investigate cloning property for understanding to what extent
previous observations hold over a large number of releases
of a wide variety of systems written in diverse programming
languages. In particular, we focus on the following research
questions: (a) Using a simple statistical model how accurately
can we predict the amount of code clones in future releases?
(b) Is there any common pattern in the evolution of clone
density over releases of evolving software systems? (c) Is there
any significant difference between the existence and evolution
of exact clones and near-miss clones? (d) Do programming
languages/paradigms have any effect on the amount and evo-
lution of code clones in the evolving systems? and (e) How
do the sizes of systems and functions affect density of exact
and near-miss clones?

Through extensive quantitative analysis and manual inves-
tigation over 1,636 releases of the 18 software systems, we
draw the following conclusions.

• Using simple regression analysis technique it is possible
to make fairly accurate one step ahead forecast of clone
density in future versions of software systems.

• Programming language/paradigm is found to have signif-
icant effect on code cloning. Java systems are found to
have the highest amount of function clones, C systems
have the lowest clone density, and the C# systems fit
in the middle. Systems developed using object-oriented
(OO) language/paradigm (Java and C#) have higher pro-
portion of exact clones than near-miss clones, whereas
the opposite holds for systems written using procedural
C language. During evolution, Java and C# systems
exhibit higher variation of clone densities than C systems.
Moreover, there exists little or no effect of system’s size
on the regularity in the evolution of clone density.

• With the growth of software systems, as the number
of functions increases, the number of both exact and
near-miss cloned fragments also increases, indicating a
very strong positive correlation between them. On the
other hand, the correlation between clone density and
number of functions is positive, but fairly weak, and
larger systems tend to exhibit less clone density. As the
similarity threshold decreases from near-miss clones to
exact clones, the correlation between clone density and
number of functions gradually gets weaker.

• The rate of change in clone density of near-miss clones
is relatively irregular than that of exact clones in all the
subject systems regardless of languages/paradigms and
types of systems.

• There are some common patterns in the evolution of
clone density across subsequent versions. For instance,
relatively higher rate of changes in clone densities is
found over early versions of software evolution. In the
later releases, there exists long sequences of versions
having relatively much less variations in clone densities.

The rest of the paper is organized as follows. In Section II,
we provide the details of the experimental setup and then
Section III presents the findings of our study. In Section IV

we discuss the previous work on clone evolution and attempt
to place our work in that context by providing a qualitative
comparison between the studies. Section V shows the threats
to the validity of our results and, finally Section VI concludes
the paper with our directions of future research.

II. EXPERIMENTAL SETUP

In this experiment we applied the NiCad clone detection
tool [28] to find function level clones in release versions of a
number of open source systems. Then we used a clone density
metric, Pearson’s correlation coefficient, and regression anal-
ysis technique to examine the results. This section introduces
the studied systems and describes the methodology and metrics
used, including a brief overview of our approach for manual
verification of the detected clones.

A. Clone Density and its Correlation Coefficient

We conducted our analysis using the notion of clone density,
which is the percentage of cloned functions over all functions
in the system. Mathematically,

clone density =
fc × 100
fc + fnc

(1)

where, fc denotes the number of cloned functions, and fnc

refers to the number of non-cloned functions. Although we
studied a similar metric w.r.t. lines of code, we omitted this in
presenting the results due to both space limitation and strong
correlation between these two metrics [25].

According to the above definition, having the number of
cloned functions unchanged, if the number of total functions
increases, clone density is expected to decrease in the subse-
quent releases. Intuitively, an increase in the total number of
functions also increases the chance of more clones. Hence,
the investigation of changes in clone density necessitates
understanding the change relationship among total number of
functions, number of cloned functions, and clone density. To
examine this, we used Pearson product-moment correlation
coefficient [22], which is a well-established statistical mea-
surement to examine linear relationship between variables.
We chose to use Pearson coefficient because it is suitable
for interval data. The Pearson product-moment correlation
coefficient rxy between variables x and y is calculated by:

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

(2)

where xi and yi are values of the variables x and y, n is the
number of samples (values) available for those variables, x̄
and ȳ are respectively the mean of all n values of x and y.

The value of rxy ranges between +1.0 and −1.0 and
indicates to what extent the variables are positively or nega-
tively correlated. Two variables are positively correlated if one
increases, then the other also increases. Negative correlation
between variables implies if one gets larger, then the other
gets smaller. Positive value of rxy implies positive correlation
and negative value implies negative correlation. The closer rxy

to ±1.0 the stronger the correlation relationship is. A value



of rxy close to zero indicates very weak or no correlation
between the variables.

For exact and near-miss clones of each system, we com-
puted Pearson coefficient rfc between the number of func-
tions and the number of cloned functions across all versions.
Similarly, we computed Pearson coefficient rfd between the
number of functions and clone density. These two measure-
ments help understand the change of clone density. Positive
correlation between the number of functions and the number
of cloned functions indicates that as new functions are created,
many of them are possibly created by copy-paste operations,
or those functions are accidental clones due to incorporation of
similar product feature, or tackling similar problems. Positive
correlation between the number of functions and the density
of clones implies the amount of new clones is much higher
than the amount of newly created functions.

B. Forecasting Clone Density

We applied regression analysis [22] for forecasting clone
density in the subsequent versions of the each software system.
Using regression analysis we estimated one step ahead clone
density in the subsequent versions starting from the very
third version of the underlying software system. The model
gradually adapts the trend as more data becomes available,
and thus error of estimation is expected to be reduced in the
forecasts for the subsequent versions.

For each software system in our study, we plotted the clone
densities against subsequent versions both for determining the
suitable regression function and for identifying the compo-
nents of the time series. As expected, we did not find any
seasonality or cyclic component, but we found randomness
and linear trend. Hence, we decided on linear regression model
with single predictor variable, written as,

ŷi = α̂i + β̂ixi

where ŷi is the response (estimation), xi is the predictor
variable (sequence number of a version), α̂i and β̂i are
regression coefficients at the ith estimation step. The values
of αi and βi (at the ith step) are estimated using the following
equations:

α̂i+1 = ȳi − β̂i+1x̄i

β̂i+1 =
∑i

k=1(xk − x̄k)(yk − ȳk)∑i
k=1(xk − x̄k)2

x̄k =

∑k
j=1 xj

k

ȳk =

∑k
j=1 yj

k

where yi is the actual value (clone density) observed at step i.
The hat (̂.) symbol over a variable indicates estimated value.
At the ith step we compute the standard error of estimation
σi using the following formula:

σi =

√∑i
k=1(yk − ŷk)2

i
(3)

And for a given system s, the average standard error of
estimate ξs is given by:

ξs =

∑
i∈Vs

σi

|Vs|
(4)

where Vs is the set of all versions of the system s, for
which forecasts were made. The regression model tries to
find the best fit of the clone density evolution patterns in
the software systems. Hence, forecast errors are expected to
be relatively low for those systems having very regular clone
evolution patterns. Thus the magnitudes of the forecast errors
over subsequent versions indicate how irregular the underlying
evolution pattern is.

C. Subject Systems

Table I describes the 18 software systems, their average
sizes, and number of releases we used as subjects of our study.
The number of lines presented in the Table I excludes blank
lines and commented lines. Furthermore, we consider .c, .java
and .cs files only. Our choice of subject systems was based
on three criteria: (a) availability of many release versions over
long life span of the systems, (b) size of the systems to be
sufficiently large for clone analysis, and (c) diversity in types
(i.e., OS, editor, database, etc.) of systems to minimize domain
effect on the results.

D. Clone detection

We used the NiCad clone detector [28] for detecting near-
miss clones. For consistency with our earlier studies [25],
[27], we considered all non-empty functions of at least 3
lines in pretty-printed format. We then use size-sensitive UPI
(Unique Percentage of Items) thresholds [28] to find exact and
near-miss function clones. For example, if the UPI threshold
(UPIT) is 0%, we detect only exact clones; if the UPIT is
10%, we detect two functions as clones if at least 90% of the
pretty-printed text lines are the same (i.e., if they are at most
10% different). In this study, we used the representative set
of UPITs 0%, 10%, 20% and 30%, corresponding to editing
changes of from 0% to 30%, or 0 to 3 lines in every ten. It
was not possible to manually validate all the detected clones
in all releases of all the systems. We validated the clones
of three releases (the first and the last releases and another
randomly selected release) for each system and experienced
almost no false positives. We used NiCad’s interactive HTML
output to obtain an overall view of the original source of
the clone classes. Then, we carried out pairwise comparisons
on the original source code of the functions in each clone
class using Linux diff, followed by manual examination with
a greater difference limit than the UPIT. Manual validation of
precision using this method is both easy and efficient [25],
but measuring recall over all the functions was not possible
due to the difficulty level of the approach. However, NiCad,
as a clone detector, was reported to have high recall [26] and
precision [25], [28].



TABLE I: Subject systems for the case study
Types/domains Releases Avg. LOCs Functions (Avg.)

Lang. Systems of systems Ranges Total per release Total Sizes

Java

Apache-Ant Build tool 1.1 to 1.8.0.1 20 80544 7246 11
ArgoUML Modeling tool 0.8.1 to 0.30.1-beta 145 136737 10048 14

Commander4j ERP system 2.2 to 2.97 37 45164 2373 19
DavMail Email client 1.4.0 to 3.6.5-1000 20 8324 469 18

JasperReports Reporting tool 0.x.x to 3.7.2 70 81853 5848 14
JEdit Editor 30-pre-4 to 43-pre-18 66 74261 4131 18

Over all six Java systems 358 71147 5019 16

C

Conky System monitor for X
based on torsmo

1.1 to 1.8.0 70 19987 485 41

GCC Compiler 1.21 to 4.5.0 79 915438 16661 55
GIT Version control system 0.01 to 1.7.0.5 154 89896 2121 42

Linux kernel Operating System 0.01 to 2.6.0-test11 459 823021 19359 43
PostGreSQL Database 1.08 to 9.0.6 157 391628 9070 43

Samba File and print server 1.6.07 to 3.5.2 180 294227 9016 33
Over all six C systems 1099 422366 9452 43

C#

NANT Build tool 0.1.3 to 0.90.1 22 27850 1026 27
CruiseControl Continuous integration

server
0.7 to 1.5.6804.1 24 59905 3545 17

iTextSharp Editor 0.01 to 5.0.1.1 39 131657 5691 23
ProcessHacker Process viewer and mem-

ory editor
1.0.0.0 to 1.3.9.0 35 63385 473 134

WixEdit Editor 0.1.1 to 0.7.3 32 10999 556 20
ZedGraph Drawing library 1.1 to 5.0.4 27 37702 505 75

Over all six C# systems 179 55250 1966 49
Total number of release and pre-release versions across all systems is 1,636

III. EXPERIMENTAL RESULTS

For every release of each of the 18 systems, we computed
density of clones (using equation 1) at different UPITs. Then
for each system, at each different UPIT, we computed the
average density of clones over all releases, as presented in
Table II. Over all releases of each system, we computed the
Pearson correlation coefficient between number of functions
and clones (rfc), as well as between number of functions
and clone-density (rfd), as shown in Table IV. Applying the
regression analysis model, we made one step ahead forecast
on clone density in subsequent releases of the systems. For
each release of a system we calculated the total number of
functions, the number of cloned functions, the actual and
forecasted clone densities.

We compared each forecasted clone density with the actual
density and computed the standard error of estimate using
Equation 3. For each of four different UPITs, using Equation 4,
we calculated the average standard error of estimate over all
releases of a system. The regression analysis model enabled
us to obtain one step ahead forecast on clone densities with
reasonable level of accuracy. The standard error of estimation
averaged over all four levels of UPITs and all the systems is
2.35. Table V presents the average forecast errors at different
UPITs for all the 18 systems.

In Figure 1, we present the density of exact and near-miss
clones averaged over all systems categorized by programming
languages. We found that for all of the four UPITs Java
systems have the highest clone density, C systems have the
lowest clone density, and C# systems fall in between. This
finding is consistent with that reported by Roy and Cordy [25],
where they mentioned that the existence of accessor meth-
ods/functions in Java and C# systems might be a possible

TABLE II: Average clone density in each system
Densities for UPI threshold

Lang. Systems 30% 20% 10% 0%

Java

Apache-Ant 20.43 17.49 15.99 15.73
ArgoUML 26.79 21.59 16.85 15.83
Commander4j 43.76 38.33 33.98 32.63
DavMail 13.74 6.93 4.42 3.64
JasperReports 40.39 38.18 35.32 33.72
JEdit 13.57 9.20 5.98 5.69
Average 26.45 21.95 18.76 17.87

C

Conky 9.04 5.96 2.63 1.98
GCC 18.61 13.93 9.31 6.77
GIT 2.92 1.74 1.03 0.84
Linux Kernel 14.15 9.19 4.85 3.14
PostGreSQL 13.01 7.27 3.03 1.93
Samba 15.39 8.84 3.28 1.78
Average 12.19 7.82 4.02 2.74

C#

NANT 16.73 12.63 8.69 8.42
CruiseControl 10.87 6.80 4.46 4.38
iTextSharp 18.43 15.05 12.59 11.76
ProcessHacker 7.32 3.20 2.17 2.17
WixEdit 15.44 12.11 7.65 6.93
ZedGraph 17.19 13.89 9.67 9.33
Average 14.33 10.61 7.54 7.17

Average 17.65 13.46 10.11 9.26

TABLE III: Clone density categorized by system-size
Sizes Densities for UPI threshold
(LOC/release) 30% 20% 10% 0%
Below 50K 19.32 14.97 11.17 10.49
Between 50K and 100K 15.92 12.77 10.83 10.42
Above 100K 17.73 12.64 8.32 6.87

reason for this difference. Moreover, average function size in
Java systems in our study is much lower than those in C and
C# systems (Table I). The effect of programming paradigm
(OO versus procedural) might have caused such differences.
Intuitively, the smaller the sizes of the functions, the higher
the the statistical probability of their being clones. This may



TABLE IV: Pearson coefficients rfc and rfd

rfc rfd

Lang. Systems 30% 0% 30% 0%

Java

Apache-Ant 0.999 0.997 0.75 0.53
ArgoUML 0.81 0.63 -0.22 -0.15
Commander4j 0.998 0.99 0.67 0.50
DavMail 0.98 0.97 0.88 0.92
JasperReports 0.999 0.998 0.87 0.87
JEdit 0.95 0.89 -0.55 0.42

C

Conky 0.89 0.12 0.47 -0.24
GCC 0.99 0.99 0.94 0.91
GIT 0.80 0.48 -0.76 -0.59
Linux Kernel 0.995 0.99 0.69 0.68
PostGreSQL 0.98 0.83 0.78 0.03
Samba 0.97 0.91 0.89 0.16

C#

NANT 0.996 0.99 0.81 0.62
CruiseControl.NET 0.84 0.23 0.02 -0.39
iTextSharp 0.997 0.99 0.83 0.81
ProcessHacker 0.997 0.99 -0.45 0.84
WixEdit 0.94 0.88 0.38 0.39
ZedGraph 0.92 0.84 0.92 0.82

TABLE V: Average forecast errors ξs
ξs for UPI threshold Avg.

Lang. Systems 30% 20% 10% 0% ξ

Java

Apache-Ant 2.61 2.27 2.20 2.10 2.29
ArgoUML 5.01 5.30 5.38 5.24 5.23
Commander4j 0.44 0.46 0.60 0.56 0.52
DavMail 2.23 2.00 1.25 1.20 1.67
JasperReports 6.41 6.48 6.53 6.49 6.48
JEdit 0.43 0.44 0.38 0.37 0.41
Average 2.86 2.82 2.72 2.66 2.77

C

Conky 2.18 1.83 1.27 1.20 1.62
GCC 1.93 1.64 1.43 1.09 1.52
GIT 1.44 1.31 1.05 1.07 1.22
Linux Kernel 0.55 0.85 0.62 0.46 0.62
PostGreSQL 0.92 0.87 0.78 0.69 0.82
Samba 2.89 2.72 2.32 2.23 2.54
Average 1.65 1.54 1.25 1.12 1.39

C#

NANT 4.05 4.07 3.56 3.60 3.82
CruiseControl 2.29 2.10 1.77 1.76 1.98
iTextSharp 4.55 4.62 4.01 3.74 4.23
ProcessHacker 0.09 0.15 0.15 0.15 0.13
WixEdit 4.48 4.76 4.36 3.73 4.34
ZedGraph 3.32 3.13 2.68 2.61 2.93
Average 3.13 3.14 2.76 2.60 2.91

Overall 2.55 2.50 2.24 2.13 2.35

be another reason for comparatively higher clone density in
Java systems in our study. As the UPIT increases from 0% to
10%, 20%, and 30%, the density of clones largely increases
in C systems. On the contrary, exact clones dominate in Java
and C# systems, as with the increase of UPIT clone density
does not increase much for these systems.

Figure 2 plots the actual and forecasted density of clones
in all 459 releases of Linux kernel (the system in our study
having the highest number of releases). The Java system
JasperReports contributed the most in the standard error of es-
timate mentioned above. For this system, the average standard
error of estimate is the highest (6.48), which also indicates
high irregularities in its clone evolution, as shown in Figure 3.
To keep the figure legible, we plotted the actual and forecasted
density of clones only for exact clones and near-miss clones
with threshold 30%. The Pearson coefficients rfc and rfd

(Table IV) indicates that over subsequent releases of Jasper-
Reports as the number of functions increased or decreased,

!" #" $" %" &'" &(" &)" '&" '*" '+"

#!,"

'!,"

&!,"

!,"
-./0122"

34"5267/"8/79:;<"

3"3267/"8/79:;<"

=1.1"3267/"8/79:;<"

>
?@
";A

0/
9A
62
B"

5267/"B/79:;<"

Fig. 1: Average density of exact and near-miss clones

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

!" (!" '!!" '(!" #!!" #(!" )!!" )(!" $!!" $(!" (!!"

*+,-./"0)!12" *+,-./"0#!12" *+,-./"0'!12" *+,-./"0!12"

3456+.7,"0)!12" 3456+.7,"0#!12" 3456+.7,"0'!12" 3456+.7,"0!12"

)!1"

#!1"

'!1"

!1"

!"
#$

%&
'%

$(
)*+

&

,%-()#$(&#.&/)$01&2%-$%"&

345&*6-%(6#"'&

Fig. 2: Actual and forecasted density of exact and near-miss
clones in Linux kernel

the number of clones as well as clone-density also changed
in the same direction. This suggests that the fluctuations in
JasperReports’ clone density is due to major changes in the
number of functions in the subsequent releases. This is further
validated by the data for individual releases. For example,
we found that between JasperReports 0.2.5 and JasperReports
0.3.1 the number of functions increased from 796 to 1,147 and
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the number of exact cloned functions increased from 103 to
293 resulting increase in clone density from 12.9% to 25.5%.
Looking at the change log for JasperReports 0.3.1, we found
that besides bug fixes and architectural improvements from
earlier release, support for XML output was added in release
0.3.1, which may be a reason for such large increase in number
of functions and clones.

As we see in Table V, the forecast errors averaged over
C systems are much lower (1.39) than that of Java and C#
systems. For Java and C# systems the average forecast errors
(2.77 and 2.91 respectively), are more than twice as for C
systems. This implies that the clone evolution patterns in Java
and C# systems are more irregular than in C systems. However,
among Java systems JasperReports and ArgoUML produced
the highest average forecast errors, 6.48 and 5.23 respectively.
On the other hand, WixEdit and NANT among all C# systems
produced the most forecast errors, 4.34 and 3.82 respectively.

As the UPIT increases from 0% to 30%, for most of the
systems across all three languages the average forecast errors
(Table V) also increase indicating that the evolution of near-
miss clones is more irregular than that of exact clones. The
reason may be the fact that any two fragments have higher
chance of being similar than being exactly same, and so,
creation or deletion of a functions may have higher effect on
the amount of near-miss clones than exact clones. Possibly, due
to the same reason, for almost all systems, as UPIT increases
from 0% to 30%, the Pearson coefficient rfc (between number
of functions and number of cloned functions) gets closer to
+1.0 (Table IV). We see that for all systems, rfc is positive for
both exact and near-miss clones. For all systems rfc is +0.80
or more for near-miss clones (UPIT 30%), which suggests
a very strong positive correlation between the number of
functions and the number of near-miss cloned functions. In
case of exact clones, rfc is +0.5 or higher for 15 out of 18
systems, which also suggests fairly strong positive correlation.

On the other hand, the value of rfd (correlation coefficient
between the number of functions and clone density) is +0.5
or higher for 11 out of 18 systems at UPIT 30%, and for four
systems rfd is negative. This may be interpreted with the fact
that for the near-miss clones at UPIT 30%, there exists weak
positive correlation between the number of functions and clone
density. For exact clones half of the systems exhibit rfd values
less than +0.5, and four of the systems has negative rfd. This
shows relatively weaker positive correlation between number
of functions and density of exact clones. We also see that with
the decrease in UPIT from 30% to 0%, positive correlation
between number of functions and clone density gets weaker.
However, looking at average clone densities categorized by
systems’ size (Table III) we see that for UPIT 0%, 10%,
and 20% average clone density decreases as the systems’
size increases from below 50 KLOC to over 100 KLOC.
This further weakens the positive correlation between number
of functions and clone density. A possible explanation may
be that large systems in our study tend to have functions
of larger sizes, and larger functions have statistically less
probability of being clones than smaller functions. In our study
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Fig. 5: Exact and near-miss clone density in Apache-Ant

the four largest systems are C systems namely GCC, Linux
kernel, PostGreSQL, and Samba having average function size
of 43 LOC, much higher than average Java function size (16
LOC). For instance, the “void ffebld constantarray prepare
(...)” function in “gcc/f/bld.c” source file of GCC-3.0.1 has
361 pretty-printed LOC consisting of long sequences of switch
statements.

Looking at the clone densities over all the systems across
subsequent releases, we found interesting patterns in the evo-
lution of clone density. For each system, clone densities for the
four UPITs exhibit the same evolution pattern varying only in
their magnitudes. For example, Figure 2 plots clone densities
at UPITs 0%, 10%, 20%, and 30% with roughly parallel lines.
We also observed that for most of the systems, the density
of exact clones does not differ much from the density of
clones at UPIT 10%. In Apache-Ant, NANT, JEdit, ArgoUML,
GIT, GCC, ProcessHacker, WixEdit, CruiseControl.NET, and
ZedGraph clone densities at UPIT 10% is found to be almost
equal to the densities of exact clones. For other systems, we
found differences, which is much lower than the differences
of clone densities between UPITs 10% and 20%, or between
threshold 20% and 30%.

Having some short term fluctuations of increase and de-
crease, over long term clone density tend to increase linearly
in Linux kernel (Figure 2). Previous studies on Linux kernel
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Fig. 7: Exact and near-miss clone density in CruiseCon-
trol.NET

reported roughly linear (super linear) growth of Linux kernel
source code in terms of LOC [10]. The linear growth of
both line of source code as well as density of code clones
indicate that cloning activities continued in a similar pace
as the development and maintenance activities took place
in Linux kernel code-base. Similar geometric evolution of
clone density is found in JEdit. For this system, at all four
UPITs clone density gradually increased over the early 38
releases between JEdit-3.0-pre4 and JEdit-4.2-pre2. Then over
the later 28 releases between JEdit-4.2-pre3 and JEdit-4.3-
pre18 clone density decreased. However, we found roughly
linear growth in the number of functions over all releases
of JEdit. This suggests possibly more copy-paste-modification
activities took place during the early development of JEdit
due to active development of similar features implementation,
and as the project became stable, later development activities
were possibly dominated by maintenance, and performance
enhancement rather than new feature incorporation.

For all the other 16 systems (except Linux kernel and JEdit),
we found some interesting patterns in the evolution of clone
densities. In all these 16 systems, we noticed major change
in clone densities over early releases, and relatively smaller
variations over sequence of many later releases. A reason to
this fact may be during the early releases active development
and feature implementations dominated in software growth,
whereas maintenance activities dominated in the later releases.
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Fig. 8: Exact and near-miss clone density in GCC

As shown in Figure 5, clone density strictly increased in
Apache-Ant from release 1.1 (10.6% exact clones) to release
1.4 (16.8% exact clones) and did not vary much (amount of
exact clones remained between 15.38% 16.8%) over the later
16 releases. Such pattern was also found in Commander4j.
Similar pattern of increasing clone density was also found
in DavMail, Conky, NANT, and WixEdit. However, in these
systems, the early change in not strictly increasing, rather
overall increase with short term fluctuations is found. For
example, clone density in NANT (Figure 6) increased from
release 0.1.3 (5.1% near-miss clones at UPIT 30%) to 0.8.3
(20.9% near-miss clones at UPIT 30%), and did not exhibit
much variations over the later releases (density of near-miss
clones at UPIT 30% remained between 20.9% and 23.4%).
However, between NANT-0.1.3 and NANT-0.8.3, there exists
some fluctuations of increase and decrease in clone density.
From NANT-0.1.4 clone density increased in NANT-0.1.5,
again decreased through release 0.5 and 0.6, which followed
an increased density in NANT-0.7.7. This is possibly due
to active development and refactoring activities during those
early releases of NANT.

A second pattern for clone evolution during early devel-
opments was found in CruiseControl.NET, ArgoUML, GIT,
JasperReports, PostGreSQL, and ZedGraph. For all these
systems, during the early releases, clone densities tend to
decrease along with some short term fluctuations. Figure 7
shows this pattern plotting the evolution of clone density
for CruiseControl.NET. For this system, as we see, clone
density largely decreased from release 0.7 (9.6% exact clones)
through release 1.0 (2.8% exact clones), and over later 16
releases (release 1.0.1 through release 1.5.0) density of exact
clones remained between 2.3% and 3.6%. However, we found
that over those releases of CruiseControl.NET, the number of
functions increased from 2,473 to 2,859, which indicates the
possibility of not much copy-paste-modification activities took
place during the early developments of CruiseControl.NET.

After the early phase of software evolution, over long term
relatively less variation in clone density was found in general.
However, two interesting patterns are found. The first pattern
exhibits roughly steady clone density over long sequence



of releases with small irregular variations. Such pattern is
found in WixEdit, iTextSharp, DavMail, Commander4j, Ant
(Figure 5), NANT (Figure 6), CruiseControl.NET (Figure 7),
and JasperReports (Figure 3). In the second pattern, clone
density is found not to vary that much over long sequence of
releases, and relatively large changes found between such re-
lease sequences. Similar pattern is found in GCC, ArgoUML,
GIT, JasperReports, PostGreSQL, Samba, and ProcessHacker.
Scatter plot of such pattern yields a stair-like shape, as
shown in Figure 8, which shows exact and near-miss clone
densities in 79 releases of GCC. There are two possibilities
to cause such steady clone density: when neither the number
of functions nor the number of cloned fragments changes, or
when both changes in a ratio such that clone density remains
steady. Interestingly, both of these facts are found in systems
exhibiting such patterns. For example, density of exact clones
remained between 3.78% and 3.84% over seven releases of
GCC, GCC-2.8.0 through GCC-2.95.3. Among these releases,
between GCC-2.8.1 and GCC-2.95 the number of functions
increased from 5,893 to 11,268, and the number of cloned
functions also increased from 223 to 433 causing no significant
change in clone density. Again, from GCC-2.95.3 to GCC-
3.0 the number of functions increased from 11,300 to 15,936,
and number of cloned functions increased from 431 to 1161,
causing the clone density jump from 3.81% to 7.28%. Over
the following four releases, GCC-3.0.1 through GCC-3.0.4 the
total number of functions varied a bit between 16,016 and
16,134. The number of cloned functions remained unchanged
at 1,170 and consequently the clone density varied a little
between 7.25% and 7.31%.

Besides the above mentioned patterns in the evolution
of clone density in the later releases, some systems ex-
hibit sudden significant increase in clone densities between
subsequent releases followed by large decrease in the next
release. Such sudden variations are found in JEdit, ArgoUML,
GIT, ZedGraph, and Samba. For instance, the large spike in
Figure 4 corresponds to JEdit-4.3-pre6 between JEdit-4.3-pre5
and JEdit-4.3-pre7. In JEdit-4.3-pre6 the number of clones
increased significantly compared to its previous and later
releases.

In our earlier work [31], we tracked individual clone groups
(genealogies and lineages [14]) over releases and charac-
terized them in terms of dead, alive, consistently changed,
and syntactic similar genealogies. However, the length of the
succession of individual clone groups over releases is yet to
be investigated to understand how persistent the clone-groups
are across releases. A clone-group in a later release is said
to be a successor of a clone-group of an earlier release, if
the code snippets in the earlier release do not change more
than a threshold (30% lines in our study) in the later release.
The length of succession of a clone-group is the maximum
number of subsequent releases in which a successor of that
clone-group exists.

For the two Java systems DavMail and Apache-Ant, we
tracked individual clone groups, and found that a significant
amount of clone-groups have succession length over 60% of
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! Fig. 9: Group of near-miss function clones

the total number of releases. In DavMail 38% of the clone-
group successions have length 80% of the releases or more. In
Figure 9, we present an example of such a succession of near-
miss clones. The clone-group consisting of the two shaded
functions in the figure have succession spanned over releases
2.0.0 through 2.1.1. The other two functions joined the clone-
group in release 3.0.0, and the succession continued to release
3.6.5 resulting a total succession length of 18 releases out of
20. Due to space limitation, a detail analysis on clone-group
succession is kept aside as a separate study in the future.

IV. RELATED WORKS

Studying the characteristics and evolution of code clones is
not a new topic and there have been several studies in the past.
While they differ significantly in many aspects, they are also
related to our study.

Roy and Cordy [25] conducted an empirical study on 23
systems written in three different languages, and examined
distribution of clones in the systems as well as the effect
of programming language and system’s size. Later they con-
ducted another study [30] on eight systems written in Python,
and found that cloning properties of Python systems are not
really different from previous observations for C, Java, and
C#. However, both the studies examined code clones in single
version of each system, without investigating the evolution
clones across software releases.

Laguë et al. [18] studied the evolution of clones with six
versions of a large telecommunication software system and
concluded that although a significant number of clones were
removed during the evolution, the overall cloning density
increased over time. Antoniol et al. [1] and Li et al. [19]
studied the evolution of the Linux kernel and observed that
although clone coverage increased early in the development,
it stabilized over time. Our study differs from theirs because
we not only study clone densities but also forecast clone
densities for the future releases of the software and that we
conduct the study with 18 diverse categories of systems of
three different languages and we use a hybrid clone detection
tool, NiCad [28], which has high precision [25] and recall
[26].

Göde [8] examined the evolution of individual exact cloned
fragments in several open source systems written in C, C++,
and Java using iClones [9]. The ratio of exact clones over
system size decreased in majority of the systems he studied.



Krinke [16] on the other hand, conducted an empirical study
to investigate the type of changes taking place on cloned
versus non-cloned code to determine whether cloned code
is more stable than non-cloned code. For clone detection, he
used Simian, a text-based clone detector capable of identifying
almost identical clones. He observed that changes to the
evolving software is dominated by massive deletion of cloned
code, and if deletions are ignored, in terms of line addition
and modification, cloned code is more stable than non-cloned
code. Krinke [17] also analyzed many revisions of five open
source software systems and found that half of the changes to
code clone groups are inconsistent and that corrective changes
following inconsistent changes are rare.

A number of tools and frameworks [6], [23] have been
developed for aiding clone tracking, analysis, evolution and
management. Kim et al. [14], [15] coined the terms “clone lin-
eage” and “clone genealogy” to describe relationship between
clone groups in subsequent versions of evolving software.
To investigate the clone evolution, they developed a clone
genealogy extractor using CCFinder [12], a token based Type-
1 and Type-2 clone detector. To evaluate their approach, they
extracted clone genealogy from two open-source Java projects,
Carol and DnsJava. They found that many genealogies dis-
appear in a relatively short time after their birth. Saha et
al. [31] conducted a follow-up study at release level. Lozano
and Wermelinger [21] analyzed commit-by-commit evolution
of five open source Java projects over at least thirty months.
They also used CCFinder [12] for detecting clones in methods.
They found that cloned methods change more than non-cloned
method, which contradicts Krinke’s findings [16]. They further
reported that cloned methods tend to remain cloned most of
their lifetime, which also contradicts the findings of Kim and
Notkin [15].

Bakota et al. [3] proposed a machine learning approach
for detecting inconsistent clone evolution situations and found
different bad smells using twelve versions of Mozilla Firefox.
Thummalapenta et al. [33] proposed an automatic approach for
classifying the evolution of cloned fragments and reported an
analysis using four different Java and C software systems for
investigating to what extent clones are consistently propagated
or evolved independently. Bettenburg et al. [4] studied the
inconsistent changes of clones at the release level. They noted
that the number of defects due to inconsistent changes in
clones is substantially lower at the release level than at the
revision level.

While these studies provide important insights on the fine-
grained evolution of clones and their maintenance implica-
tions, our study significantly differs from them in several
aspects. First, instead of providing in-depth analysis on the
evolution of clones, we provide an overall analysis on the
evolution of clone densities and attempt to forecast such
densities in the future releases for 18 diverse varieties of
systems of three different programming languages. None of
the studies above attempted to forecast clone densities as
ours. Second, a common issue with most of these studies is
that they are based on CVS snapshots over certain intervals.

The interval of commit-by-commit transactions or snapshots
of CVS/SVN repository over certain periods may be too
frequent for analyzing clone evolution [4]. Moreover, commit
transactions are sensitive to developer’s commit style. So, we
studied at the release (and pre-release) level. Finally, most of
the earlier studies focused on the evolution of Type-1 and/or
Type-2 clones, whereas we studied both exact (Type-1) and
near-miss (Type-2 and Type-3) clones at different similarity
levels using a hybrid clone detection tool.

Our work is closely related to that of Antoniol et al. [2].
They applied the ARIMA(p,d,q) [5] time series analysis to
model code clone evolution for predicting amount of code
clones in 27 subsequent versions of MiniSQL (written in
C) using a metrics-based clone detection tool. Again, our
study significantly differs from them in examining 18 systems
of diverse varieties written in three different programming
languages, and using a parser-based but text-line comparison
clone detection tool with different similarity levels. Moreover,
the ARIMA process is elegant but complicated, and applicable
only when there is enough historical data available to generate
a reliable model. The very first step in the ARIMA process is
to identify a tentative model through the analysis of historical
data, and it is recommended that 50, preferably more historical
observations be considered at this step [22]. Shawky et.
al. [32] modelled clone evolution in two software systems
(i.e., 50 versions of FileZilla and 100 versions of VLC) using
chaos theory for prediction in new versions. Chaos theory
also requires historical data to build the initial model. This
implies that neither ARIMA nor the chaos theory is suitable
for estimation during the early stage in the evolution, whereas
the regression analysis technique is applicable from the very
early releases of the software evolution.

V. THREATS TO VALIDITY

In our study, we examined multiple releases of six systems
for each of three programming languages (C, C#, and Java)
which leads to a total of 18 subject systems. This number
of systems for each language may not be enough to derive a
decisive conclusion on the effect of programming languages/-
paradigms on code clone evolution. However, this is the largest
study in clone evolution that considers a total of 1,636 releases
over 18 subject systems of diverse varieties.

There exists the open question of what should be the ap-
propriate level of similarity to consider two code fragments as
near-miss clone-pair. To address this concern, we examined the
evolution of code clones at four different levels of similarities:
exact clones, and near-miss clones with 70%, 80%, and 90%
similarities on the pretty-printed source lines of code (see [25],
[28] for details.)

Since we considered all functions having at least three LOC
in pretty-printed format, one might argue that the findings are
biased on the size of the functions. However, earlier work [25]
showed that the proportions of clones in terms of LOC and
the number of functions are very close.

Though we carried out some manual verifications, exhaus-
tive manual validation over all the found clones for all the



releases of all the systems was not possible. However, we
used NiCad clone detection tool which was reported to have
high precision [25], [28] and recall [26] in finding clones.

VI. CONCLUSION

In this paper, we presented an empirical study on the
evolution of exact (Type-1) and near-miss (Type-2 and Type-
3) code clones in 18 large open-source software systems of
diverse categories written in three different languages namely
Java, C#, and C. For each software system our study included
many releases (and pre-release) ranging between 20 and 459,
summing up to 1,636 in total. For each system we investigated
how the density of code clones changes between subsequent
releases at four different similarity levels. Using the Pearson
product moment correlation coefficient we examined the re-
lationship between software growth (in terms of number of
functions) and changes in the amount of clones. We found
that with the increase in the number of functions, the number
of cloned fragments also increases in all systems. However,
between clone density and the number of functions, very
weak positive correlation has been identified. Moreover, the
average clone density for larger (in terms of LOC) systems
are found to be less than that for smaller systems. Using a
simple regression analysis we were able to make one step
ahead forecast on the densities of both exact and near-miss
clones in subsequent releases. The average standard error of
estimate over all releases of all systems was 2.35. We tracked
the forecast errors over subsequent releases of each system
and examined the regularity of changes in clone density from
release to release.

We also identified some interesting patterns in the evolution
of clone density over subsequent releases. For instance, we
found major changes in clone density over few early releases
of software life time, and over the later releases there exists
long sequences of releases among which clone density does
not vary that much. We plan to perform a separate in depth
investigation on the relationship between clone density and
function size. In addition to continuing our empirical study
with very large systems and with systems of other program-
ming/scripting languages (e.g., Python), we plan to develop
a framework on top of NiCad clone detection tool that will
track the evolution of clones, which might provide important
insights into the maintenance implications of clones during the
evolution of software systems.
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[9] N. Göde and R. Koschke, “Incremental clone detection”, Proc. CSMR,

pp. 219–228, 2009.
[10] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case

study”, Proc. ICSM, pp. 131–142, 2000.
[11] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner, “Do code

clones matter?”, Proc. ICSE, pp. 485–495, 2009.
[12] T. Kamiya, S. Kusumoto and K. Inoue, “CCFinder: a multilinguistic

token-based code clone detection system for large scale source code”,
IEEE Trans. Softw. Eng., 28(7): 654–670, 2002.

[13] C. J. Kapser and M. W. Godfrey, ““Cloning Considered Harmful”
Considered Harmful: Patterns of Cloning in Software”, Empirical Softw.
Engg., 13(6): 645–692, 2008.

[14] M. Kim, and D. Notkin, “Using a clone genealogy extractor for
understanding and supporting evolution of code clones”, Proc. MSR,
pp. 17–23, 2005.

[15] M. Kim, V. Sazawal, D. Notkin and G. Murphy, “An empirical study of
code clone genealogies”, Proc. FSE, pp. 187–196, 2005.

[16] J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc.
SCAM, pp. 57–66, 2008.

[17] J. Krinke, “A Study of Consistent and Inconsistent Changes to Code
Clones”, Proc. WCRE, pp. 170–178, 2007.
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