
Towards Flexible Code Clone Detection, Management,
and Refactoring in IDE

Minhaz F. Zibran Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C9

{minhaz.zibran, chanchal.roy}@usask.ca

ABSTRACT

In this paper, we propose an IDE-based clone management
system to flexibly detect, manage, and refactor both exact
and near-miss code clones. Using a k-difference hybrid suf-
fix tree algorithm we can efficiently detect both exact and
near-miss clones. We have implemented the algorithm as
a plugin to the Eclipse IDE, and have been extending this
for real-time code clone management with semi-automated
refactoring support during the actual development process.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, and reverse engineering

General Terms
Algorithm, Design, Management

Keywords
Clone analysis, detection, refactoring, maintenance

1. INTRODUCTION
Over the past decade several techniques and tools for de-

tecting code clones have been proposed having their own
strengths and weaknesses [5]. While most of them are ca-
pable of detecting Type-1 (exactly similar code fragments
except for white-spaces and formatting) and Type-2 (syn-
tactically similar code snippets, where identifiers/variables
can be renamed) clones, only a few of them are reported
to detect Type-3 (where one or more lines of code can be
added/modified/removed) clones. However, it is not enough
to only detect code clones. Code clones are required to be
tracked, managed, and possibly should be removed through
refactoring wherever feasible. And support for such activi-
ties should be integrated with the IDEs for blending clone
management with actual development effort. However, most
clone detectors are developed as separate tools. Those few
tools that are integrated with IDEs are mostly focussed in
detecting Type-1 and Type-2 clones, and are yet to offer
sufficient support for flexible clone management and refac-
toring. To address these issues, we propose an IDE-based
clone management system for accurate and flexible detec-
tion, management, and refactoring of both exact (Type-1 )
and near-miss (Type-2 and Type-3 ) code clones.

2. OUR APPROACH
Accurate detection of code clones is the fundamental and

vital step towards clone management and refactoring. We

Copyright is held by the author/owner(s).
IWSC 2011 May 23, 2011, Waikiki, Hawaii, USA
ACM 978-1-4503-0588-4/11/05.

have developed a language independent matching engine
(LIME), a tool for fast localization of all k-difference (edit
distance) occurrences of one code fragment inside another.
On top of LIME, we have developed a near-miss clone detec-
tion tool as a plugin to the Eclipse IDE. Figure 1 presents
a schematic diagram of the major algorithmic modules and
the process of clone detection used in our approach.

LIME

Source 

Code

Fingerprinting

Suffix Tree 

Creation

Suffix Tree 

Preprocessing

k-difference 

Matching

Report 

Generation

AST

Snippet 

Extraction

Comment

Filtering

Code 

Normalization

Code 

Formatting

Pre-processed 

Code Snippets

Fingerprinted 

Snippets

CODE PREPROCESSOR

Preprocessed 

Suffix Tree

Clone 

Clustering

Figure 1: Clone detection procedure

2.1 Clone Detection
We detect code clones applying a multiphase approach.

At the very first (code preprocessing) phase, we generate
AST (Abstract Syntax Tree) for the source code, filter out
the comments, and extract code snippets of desired granu-
larity such as functions and/or blocks. Then we normalize
the snippets by uniformly formatting them and consistently
renaming the identifiers.

In the next (matching) phase, the normalized code snip-
pets are passed to LIME, which first fingerprints the snippets
by applying Rabin’s linear time fingerprinting algorithm [4]
on each match unit. A match unit may be a token/word or a
line of code. Thus, a ‘fingerprinted’ code snippet consists of
a sequence fingerprints, which are essentially numeric values.
LIME then concatenates all fingerprint sequences and gen-

erates a generalized suffix tree (GST) using Ukkonen’s lin-
ear algorithm [7]. Concatenation of the edge-labels on the
paths from the root to the non-leaf nodes of the GST yields
the sets of all sequences common in the fragments. Tracing
back to the original source code of the fingerprint sequences
identifies the Type-1 and Type-2 clones. To the best of our
knowledge, CCFinder, CloneDigger, Dup, and the rest of the
suffix-tree-based clone detectors exploit suffix trees up to
this level with or without fingerprinting the source code [5].
However, LIME goes beyond this, and further processes the
GST in linear time, to enable finding LCE (Longest Com-
mon Extension) in constant time. Given a pair of sequences



S1 and S2, and an index pair 〈i, j〉 where i and j refer to
positions in S1 and S2 respectively, the LCE between the
sequences is the longest subsequence of S1 starting at posi-
tion i that matches a subsequence of S2 starting at the jth

position.
Having the GST preprocessed, LIME then applies a k-

difference hybrid dynamic programming algorithm [3] to de-
tect Type-3 clones. Given two sequences T and P of lengths
m and n respectively (n ≤ m), the algorithm finds all end
locations in T where P matches with at most k differences
(edit distance) in O(km) time and O(m+n) space complex-
ities. Here, k = ⌈(n × θ)/100⌉, 0 ≤ θ ≤ 100, and θ is the
user-defined dissimilarity threshold.

As the clone pairs are identified, they are clustered into
groups based on their similarities, and the results are re-
ported to the user through Eclipse’s interactive Tree View.
Our tool also augments Eclipse’s search engine by introduc-
ing the facility to find all exact and near-miss cloned copies
within a chosen boundary (selected files, packages/directo-
ries, projects, or the entire workspace) for any code fragment
selected in the editor.

2.2 Clone Management and Refactoring
To facilitate cost-effective semi-automatic management and

refactoring of exact and near-miss clones, we have been
working on the following areas.

Incremental Detection. Clone detection in a large code
base can consume significant amount of time and resource.
On the other hand, clone management during the devel-
opment process demands quick response. Hence, the IDE-
integrated clone management tools should preserve the ini-
tial clone detection results, track changes in the code corpus,
and incrementally update the clone detection results by com-
paring the modified and newly added code fragments to the
existing results. Moreover, the clone detection results should
also be carefully updated to remove references to any deleted
source code.

Clone Refactoring. To support consistent modification
of clone groups, a number of tools support simultaneous edit-
ing for Type-1 and Type-2 clones [5] including the work of
Hou et al. [2]. For near-miss clones (specially, Type-3), sup-
port for edit propagation is also necessary, where the edit
operations on a code snippet can be semi-automatically ap-
plied to all its cloned fragments as well. In addition to the
support for rename refactoring, earlier research [1] identi-
fied that extract function and pull-up method refactoring
patterns could be promising towards code clone refactoring.
In this regard, we propose a two-phase approach for object-
oriented code base.

In the first phase, extract method refactoring pattern is
applied. For each class, the cloned fragments that do not
constitute the entire method bodies, are identified as refac-
toring candidates. Then those fragments can be replaced
by calls to a newly introduced method that unifies all those
cloned fragments in one place.

The second phase applies pull-up method. To find the
refactoring candidates, all method level clones across all
classes are identified. If classes containing such methods
possess a common superclass, those methods are removed
from all those classes, and a generalized method is intro-
duced in the common superclass. If, in case, those classes
do not share a common superclass, an abstract class can be
introduced as a common superclass, to which the methods

can be pulled up. This two-phase refactoring approach, with
minor tuning, can also be applied to procedural code.

Refactoring Schedule. Effective application of the refac-
toring candidates is likely to be a cumbersome task. Under-
lying activities such as the identifier renaming, redefinition
of method signature, and parameter reordering are likely
to introduce interdependencies and conflicts. There may
also be certain restrictions and priorities from the organiza-
tion’s side due to limited time and resource. Given the re-
strictions and limited resources, only a subset of refactoring
candidates may be required to have chosen for application,
where the target remains maximizing the code/design qual-
ity while minimizing the efforts. However, different choices
of refactorings may incur distinguishable impact on the qual-
ity. Thus, a flexible way to plan for the refactoring schedule
is also necessary. We plan to model such a scheduling as a
constraint satisfaction optimization problem, and incorpo-
rate a smart refactoring scheduler with the clone manage-
ment system.

Refactoring Verification. The purpose of code clone
refactoring is mainly to restructure the source code for en-
hancing maintainability without altering its functionality.
Therefore, we believe, as the refactoring patterns are ap-
plied, test cases should automatically be generated to ver-
ify that those refactorings do not change the program be-
haviour.

3. CONCLUSION
This paper presents our ongoing work towards an IDE-

based clone management and refactoring tool. We have al-
ready implemented the clone detection part of this system
and conducted an empirical study on identifying both exact
and near-miss clones in Weltab and PostGreSQL, and com-
pared the results with NiCad [6]. We experienced that our
algorithm reported almost no false positives, and detected
all the clones that NiCad detected. We believe, once com-
pleted, our clone management system will significantly help
the clone community and industry practitioners in dealing
with both exact and near-miss clones.

Acknowledgments: This work is supported in part by
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

4. REFERENCES
[1] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.

Refactoring support based on code clone analysis. In
PROFES’04, pp. 220–233, 2004.

[2] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an
environment for the proactive management of
copy-and-paste programming. In ICPC’09, pp.
238–242, 2009.

[3] G. Landau and U. Vishkin. Fast parallel and serial
approximate string matching. J. Algorithms, 10(2):
157 – 169, 1989.

[4] M. O. Rabin. Fingerprinting by random polynomials.
Report TR-15-81, Harvard University, 1981.

[5] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: a qualitative approach. Sc. of Com. Prog., 74:
470–495, 2009.

[6] C. K. Roy and J. R. Cordy. NICAD: Accurate
detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In ICPC’08,
pp. 172 –181, 2008.

[7] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14: 249 – 260, 1995.


