
IDE-based Real-time Focused Search for Near-miss Clones

Minhaz F. Zibran Chanchal K. Roy
Department of Computer Science, University of Saskatchewan

Saskatoon, SK, Canada S7N 5C9
{minhaz.zibran, chanchal.roy}@usask.ca

ABSTRACT
Code clone is a well-known code smell that needs to be de-
tected and managed during the software development pro-
cess. However, the existing clone detectors have one or more
of the three shortcomings: (a) limitation in detecting Type-
3 clones, (b) they come as stand-alone tools separate from
IDE and thus cannot support clone-aware development, (c)
they overwhelm the developer with all clones from the entire
code-base, instead of a focused search for clones of a selected
code segment of the developer’s interest.

This paper presents our IDE-integrated clone search tool,
that addresses all the above issues. For clone detection,
we adapt a suffix-tree-based hybrid algorithm. Through an
asymptotic analysis, we show that our approach for clone
detection is both time and memory efficient. Moreover, us-
ing three separate empirical studies, we demonstrate that
our tool is flexibly usable for searching exact (Type-1) and
near-miss (Type-2 and Type-3) clones with high precision
and recall.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, and reverse engineering

General Terms
Algorithm, Design, Management

Keywords
clone detection, clone search, maintenance, reengineering

1. INTRODUCTION
Code clone is a well-known code smell, and duplicate or

near-duplicate code fragments are regarded as code clones.
Programmers’ copy-paste-modification practice is regarded
as one of the main reasons for the intentional clones that
are beneficial in many ways [8]. Practically, unintentional
clones also appear due to a number of reasons. For example,
the use of design patterns, frameworks, and similar APIs
may result in unintentional code clones. Previous studies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

reported that software systems might have 9%-17% [26] du-
plicated code, up to 50% [15]. However, such clones may
cause fault propagation, inflate the code-base, and increase
maintenance effort [24].

Over the past decade several techniques and tools for de-
tecting code clones have been proposed. While most of them
are capable of detecting Type-1 (exactly similar code frag-
ments except for white-spaces and formatting) and Type-2
(syntactically similar code snippets, where identifiers/vari-
ables can be renamed) clones, only a few of them are re-
ported to detect Type-3 (where one or more lines of code
can be added/modified/removed) clones.

Moreover, most clone detectors are developed as separate
tools that facilitate ‘postmortem’ approach of clone detec-
tion after code development is complete [11]. While such
tools are beneficial in the analysis and investigation of code
clones and their evolution, they fail to provide necessary
clone management support [25] for clone-aware development
process, as they are not IDE-based. Those few tools that
are integrated with IDEs (Integrated Development Environ-
ments) are mostly focused on detecting Type-1 and Type-2
clones, and typically report all the clones in the entire code-
base. Such flooding of information may overwhelm the de-
veloper, who in practice, is likely to be interested in only the
clones of a certain portion of code she deals with at a time.

To address these issues, we have developed an IDE-based
clone search engine (as a plugin to the Eclipse IDE) to
facilitate focused search of both exact (Type-1) and near-
miss (Type-2 and Type-3) clones during the real development
time. By “focused clone search”, we mean searching and re-
porting the clones of a selected code segment only, some-
thing similar to that shown in Figure 1. This selected code
segment is called the seed fragment for the search, and it en-
compasses one or more consecutive lines of code ignoring the
comments. The search space may be the entire code-base,
or a portion of it (e.g., set of directories/packages, projects,
files) according to the user’s choice. Thus, such focused
clone search avoids the unnecessary computation overhead
that the traditional clone detectors would perform in finding
all the clones from the entire code-base.

Upon identifying the desired code clones, the developer
then may decide to perform clone refactoring, or make ref-
erence to existing code instead of introducing a new clone
fragment. Beside support for such clone-aware development
activities, the focused clone search can also be useful in find-
ing similar code fragments from different projects indicating
potential reuse, or examples of usage of the concerned APIs.

Figure 1: Focused clone search facility

2. CLONE DETECTION
Clone detection techniques can broadly be categorized

as token-based, text-based, tree-based, graph-based, and
metric-based [19], which have their advantages and weak-
nesses. For clone detection, we adopt a hybrid approach
combining strengths of multiple techniques. Figure 2 presents
a schematic diagram of the major algorithmic modules and
the process of clone detection used in our approach.

Given a seed fragment our technique finds all of its near-
miss clones residing in the bodies of the functions within
the user-defined search space. For clone identification, each
function within the search space is examined with respect to
the seed fragment. In the following subsections we describe
our clone detection procedure with an illustrative example.
First, consider the top two code fragments in the Figure 3.

1 void sumProd (int p) {
2 float sm = 0.0; // C1
3 float prd = 1.0; // C2
4 // C3
5 for(int x = 1; x <= p; x++){
6 sm = sm + x;
7 prd = prd * x;
8 foo(sm, prd);
9 // C4
10 }
11 // C5
12 }

1 void sumProd(int q)
2 {
3 float sum = 0.0; //C1
4 float prod = 1.0; //C2
5 int i = 0;
6 while (i < q)
7 {
8 sum = sum + i;
9 prod = prod * i;
10 foo(sum, prod);
11 i++;
12 }
13 }

1 void sumProd(int v1){
2 float v2 = 0.0;
3 float v3 =1.0;
4 int v4 = 0;
5 while (v4 < v1){
6 v2 = v2 + v4;
7 v3 = v3 * v4;
8 foo(v2, v3);
9 v4++;
10 }
11 }

1 void sumProd(int v1){
2 float v2 = 0.0;
3 float v3 = 1.0;
4 for(int v4 =1; v4 <= v1; v4++){
5 v2 = v2 + v4;
6 v3 = v3 * v4;
7 foo(v2, v3);
8 }
9 }

 Fragment 1 (original) Fragment 2 (original)

Fragment 2 (processed)Fragment 1 (processed)

Preprocessing

Fingerprinting

0123456AA 012784569AA

Figure 3: Preprocessing and fingerprinting

These two fragments represent the editing scenario S4(d)
of the clone detection technique evaluation framework pro-
posed by Roy and Cordy [19]. They showed that most of the
existing clone detection tools did not perform well to detect
clones in this scenario. However, we will now show how our
multi-phase technique can efficiently detect them as clones.

2.1 Code Preprocessing
At the very first phase, using Eclipse’s JDT API’s, we

generate ASTs (Abstract Syntax Trees) for the source code
within the user-defined search space. At this point, we filter
out the comments and blank lines, and extract all the func-

tions/methods. Then using the Eclipse’s refactoring API, we
further normalize the code by consistently renaming identi-
fiers and variable names. Such normalization is applied to
the seed fragment as well. The normalized code fragments
are then uniformly formatted with the help of Eclipse’s code
formatter API. Thus, upon completion of the preprocessing,
the original code segments are transformed to fragments free
from variations in variable names, comments and layout, as
shown in the Figure 3. For our current example, the original
code snippets (top two in the Figure 3) are preprocessed to
the transformed fragments (the two fragments in the mid-
dle of the Figure 3). The preprocessed code segments are
then fed to the next module, LIME (Language Independent
Matching Engine) [25], which performs further computation
and comparison.

2.2 Source Code Fingerprinting
Using Rabin’s fingerprinting algorithm [14], LIME com-

putes fingerprints for each line of all the preprocessed code
fragments, and thus generates unique integer value for ev-
ery distinct line of code. By using fingerprints instead of
original lines of source code, we avoid the overhead of com-
paratively expensive pairwise string comparisons. Suppose,
for the preprocessed code fragments shown in Figure 3, the
computed fingerprints are as presented in Table 1. The ac-
tual fingerprints are very different from what we show in
the table. But for the clarity of description, here we show
fingerprints having single digit hexadecimal integer values.

Table 1: Hypothetical fingerprints for lines of code
Line of Code Fingerprint

void sumProd(int v1){ 0
float v2 = 0.0; 1
float v3 = 1.0; 2
for (int v4 = 1; v4 <= v1; v4++){ 3
v2 = v2 + v4; 4
v3 = v3 * v4; 5
foo(v2, v3); 6
int v4 = 0; 7
while (v4 < v1){ 8
v4++; 9
} A

Having the lines source codes ‘fingerprinted’, for each code
fragment, we get a sequence of fingerprints. For the prepro-
cessed fragments of Figure 3 the sequence of fingerprints we
get are“0123456AA”for the fragment 1, and“012784569AA”
for the fragment 2.

2.3 Creation of Suffix Tree
Upon fingerprinting the preprocessed code fragments, we

prepare a generalized sequence of fingerprints by concate-
nating fingerprint-sequences from all the fragments. To sep-
arate fingerprint-sequences from subsequent fragments, we
use a distinct terminator (for the current example, say the ‘$’
and ‘#’ symbol) after each of the fingerprint-sequences. So,
for the preprocessed fragments of Figure 3, the generalized
fingerprint-sequence we get is“0123456AA$012784569AA#”.

Next, for the generalized fingerprint-sequence, we con-
struct a generalized suffix tree using Ukkonen’s online algo-
rithm [22], which runs in linear time. A suffix tree T for an
m-character string S is a rooted directed tree with exactly m

Fingerprinting Suffix Tree
Creation

Suffix Tree
Preprocessing

k-difference
Matching

Report
Generation

Preprocessed
Code

Snippets
Fingerprinted

Snippets
Preprocessed

Suffix Tree
Snippet

Extraction
Comment
Filtering

Code
Formatting

Code
Normalization

CODE PREPROCESSOR

AST

LIME
Raw

Source
Code

Figure 2: Schematic diagram of our approach for near-miss code clone detection

R

A

A

$ 012784569AA#

$ 012784569AA#

#

$ 012784569AA#

#

9AA#

784569AA#
84

56
9A

A#

3456AA$ 012784569AA#
012 3456AA$ 012784569AA#

784569AA#

12

34
56

AA
$ 0

12
78

45
69

AA
#

784569AA#

2

34
56

AA
$

01
27

84
56

9A
A#

78
45

69
AA

#

6

9AA#

AA$ 012784569AA#

56

9AA#

AA$ 0
12

78
45

69
AA#

456

9AA#

AA$ 012784569AA#

Figure 4: The suffix tree for the generalized se-
quence “0123456AA$012784569AA#”

leaves. Each internal node of the suffix tree, other than the
root, has at least two children, and each edge is labeled with
a nonempty substring of S. Moreover, no two edges out of
a node have edge-labels beginning with the same character.
Each leaf corresponds to a suffix of S that can be obtained by
concatenation of the edge-labels on a path from the root to
the leaf. A direct edge from a non-leaf node to a leaf node is
called a leaf edge. In the Figure 4, we present the suffix tree
for the sequence “0123456AA$012784569AA#” having the
root at the center marked with ‘R’. Upon creation of the suf-
fix tree, we discard from each of the edge-labels the portion
following the first (left-most) terminator symbol. Those dis-
carded portions are shown in the figure with strike-through
text. The label of each leaf edge thus ends with a terminator
symbol.

2.4 Finding Largest Common Subsequences
The concatenation of edge-labels on paths from the root

to the non-leaf internal nodes (filled circles in the figure)
of the suffix tree gives a set of all sub-sequences common
in the fingerprint-sequences. Which fragments participate
in a certain common sub-sequence can be determined by
looking at the terminator symbols on the labels of the leaf
edges on the path from corresponding internal node. For
our current example, {2, 12, 012, 6, 56, 456, A, AA} is the
set of common sub-sequences we find. We further filter out
this set by removing all those sequences that are subsumed
by any other sequences and those which are smaller than a
user-defined minimum size ω. For our example, the resulting
set of the largest common sub-sequences becomes {012, 456}
for ω ≥ 3 SLOC (Source Lines of Code).

Table 2: Global alignment of 0123456AA and
012784569AA (here, ‘ ’ denotes a space)

0 1 2 7 8 4 5 6 9 A A
0 1 2 3 4 5 6 A A

From this set of fingerprint-sequences we trace back the
actual lines of the original code fragments, and thus we find
that the first three lines of fragment 1 is a Type-2 clone of
the first four lines of the fragment 2. Similarly, lines six
through eight of the fragment 1 and the lines eight through
ten are also Type-2 clones of each other. To the best of our
knowledge, CCFinder, CloneDigger, Dup, RTF and the rest of
the suffix-tree-based clone detectors including that of Tairas
and Gray [20] exploit suffix trees up to this level with or
without fingerprinting the source code [19]. But, the usage
of suffix trees up to this point can facilitate the detection
of Type-1 and Type-2 clones only. The detection of Type-3
clones requires further computations.

2.5 Approximate Matching
For detecting Type-3 clones, we invoke a k-difference hy-

brid algorithm (described later in Section 3) on pairs of fin-
gerprinted code fragments. The approximate matching algo-
rithm finds all the occurrences of one sequence inside another
allowing at most k differences. Based on a user-defined dis-
similarity threshold, we compute k for each pair of code frag-
ment as, dk = l×threshold

100
e, where, l is the number of lines in

the smaller fragment. The threshold signifies what percent-
age of different lines of code be allowed in the approximate
matching. For example, consider two fragments of source
code having 100 and 120 lines respectively, and the user’s
given threshold is 10%. Then the value of k = 100×10

100
= 10,

which means in the approximate matching, difference of at
most 10 lines will be tolerated. Thus our computation of k
is sensitive to the size of the code fragments.

For our current example, the corresponding fingerprint-
sequences “0123456AA” and “012784569AA” approximately
match (with k ≥ 3) having three differences, yielding a
global alignment, for instance, as shown in Table 2. Thus,
given either of the original fragments of Figure 3 as seed,
we accurately detect the other as its Type-3 clone. All the
detected clones are then sorted according to their similarity
with the given seed fragment, and the result is then dis-
played in the Eclipse’s interactive Tree View. Choosing a
clone from the Tree View highlights the corresponding code
fragment in the editor.

3. K-DIFFERENCE HYBRID ALGORITHM
We adapted the k-difference hybrid algorithm from the

work of Landau and Vishkin [10]. The algorithm combines
the advantage of further preprocessed suffix tree with dy-
namic programming (DP). Readers interested in the details
of the algorithm are referred to elsewhere [5, 10]. In this
section, we provide a brief description of how we adapted
the algorithm for near-miss clone detection.

3.1 Preprocessing of Suffix Tree
We enumerate all the r nodes of the suffix tree T according

to the standard depth-first (preorder) numbering as shown
in Figure 5. Thus each node v of T is numbered with a
dlog2re bit integer.

Figure 5: Enumerated suffix tree having nodes par-
titioned into Runs marked with dotted rectangles [5]

Then, we map the enumerated suffix tree T to a hypo-
thetical rooted complete binary tree B, whose vertices are
enumerated according to inorder numbering, as shown in
Figure 6. Throughout the remainder of the paper, we will
simply use “node v”, to refer to the node in the enumerated
rooted tree having node number v.

Definition 1 (lowest common ancestor). The low-
est or least common ancestor (LCA) of any two nodes u and
v in a rooted tree Υ, denoted as LCAΥ(u, v), is the deepest
node x in the tree, which is an ancestor of both u and v [5].

Definition 2. For any node k, h(k) is the position (from
right) of the least significant 1-bit in the binary representa-
tion of k. For a node k in B, h(k) equals the height of the
node in B [5].

Definition 3. For a node v of T , I(v) is the node w in T
such that h(w) is the maximum over all nodes in the subtree
of v including v itself [5].

Definition 4. A run in T is a maximal subset of nodes
of T , denoted as Tr, such that, ∀〈u, v〉 ∈ Tr, I(u) = I(v).
The head of a run is the node closest to the root [5].

We map each node v in T to a node I(v) in B. Figure 5
presents an example of partitioning the nodes of suffix tree T
into seven different runs. Figure 6 shows a complete binary
tree B, which the nodes of the suffix tree T of Figure 5 are
mapped to. In the Figure 6, the binary representation of the
number a node v in B is shown if there is a node in T that
maps to v.

!""!"!!!""!!

!"!""!!"

"!""

!"""
#

!$

!" !%

%

$ &

'! () !!* !)!'

Figure 6: Binary tree with nodes enumerated ac-
cording to inorder numbering [5]

Moreover, for each node v in T , we create an O(log2r) bit
number Av. Bit Av(i) is set to 1 if and only if node v has
some ancestor in T that maps to height i in B, i.e., if and
only if v has an ancestor u such that h(I(u)) = i.

3.1.1 Computing LCA in Binary Tree
Having the inorder numbering of the nodes of binary tree
B, we compute LCAB(u, v) in constant time using shift and
XOR operations. We first determine if u is an ancestor of
v, or vice versa. Using h(u) and h(v) we determine which
of the nodes u and v is higher (closer to the root). If u is
the higher node, we find the number of edges on the path
from the root to node u. Then we take the XOR of u and v,
and find the position k of the left-most 1-bit (counting from
the left). Node u is an ancestor of node v if and only if k is
larger than the number of edges on the path from the root
to node u. In this case node u is the LCA of nodes u and v.

In the cases, where none of u and v is an ancestor of the
other, we XOR u and v, find the left-most 1 bit in the kth

position in the result. Then we right shift u by d− k places
(where d = dlog2re is the number of bits used in numbering
the nodes of B), set the right-most bit to 1, and left shift it
back by d− k places.

3.1.2 Computing LCA in Suffix Tree
Using the following procedure [5], we find z in constant

time, where z = LCAT (x, y) for the suffix tree T prepro-
cessed as described before.

1. Find b = LCAB(I(x), I(y)).
2. Find the smallest position ρ ≥ h(b) such that both

numbers Ax and Ay have 1-bits in position ρ.
3. Find x′, the node closest to x on the same run as z

(unknown yet) as follows.
(a) Find location ρr of the right most 1-bit in Ax.
(b) If ρr = ρ, then set x′ = x, and go to step 4.

Otherwise continue to next steps.
(c) Find the position ρl of the left-most 1-bit in Ax,

which is to the right of position ρ. Form the num-
ber iw consisting of the bits of I(x) to the left
position of ρl, followed by a 1-bit in position ρl,
followed by all zeros. Then find the head w of
the run containing node iw. Set node x′ to be the
parent of node w in T .

4. Find y′, the node closest to y on the same run as z,
using the same approach as in step 3.

5. If x′ < y′ then z = LCAT (x, y) = x′, otherwise, z =
LCAT (x, y) = y′.

3.1.3 Finding Longest Common Extension
Suppose, S = [s1 s2 s3 . . . sm] is a sequence of length m,

and [si si+1 si+2 . . . sj] (where, 1 ≤ i ≤ j and 1 ≤ j ≤ m)
is a subsequence of S, which we denote as S[i . . . j]. Thus,
a suffix [si si+1 si+2 . . . sm] starting from element si is de-
noted by S[i . . .m], and S(i) refers to the ith element in
sequence S. Given a pair of sequences S1 (of length m) and
S2 (of length n), and an index pair 〈i, j〉 where i and j refer
to element-positions in S1 and S2 respectively, the longest
common extension (LCE) between the sequences (with re-
spect to the given index pair) is the longest subsequence
of S1 starting at position i that matches a subsequence of
S2 starting at the jth position; in other words, the longest
prefix of S1[i . . .m] that matches a prefix of S2[j . . . n].

Using a preprocessed generalized suffix tree T for the
sequences, given an index pair 〈i, j〉 corresponding to se-
quences S1 and S2, the LCE can be computed in constant
time. We first find the LCA, z of the leaves of T that cor-
respond to S1[i . . .m] and S2[j . . . n]. The concatenation of
the edge-labels on the path from the root to z yields the
LCE we want.

3.2 Hybrid Dynamic Programming
A classical way to represent a sequence matching prob-

lem is to express it in terms of global alignment. Given a
couple of sequences S1 and S2, their global alignment is ob-
tained by first inserting spaces in chosen places (between
elements, at the end or beginning of S1 and S2) to make the
resulting sequences S′1 and S′2 have equal length l, and then
superimposing one above the other so that every element or
space in either sequence is opposite a unique sequence or
a unique space in the other sequence [5]. Table 2 presents
an example of global alignment. Typically, a score g(x, y)
is associated with the alignment of each pair 〈x, y〉 of ele-
ments. The score of an alignment of S1 and S2 is computed
as
Pl

i=1 g(S′1(i), S′2(i)), and the alignment with the optimal
score yields the optimal global alignment.

Let V (i, j) denotes the score of the optimal global align-
ment of S1[1 . . . i] and S2[1 . . . j]. The optimal global align-
ment of the sequences having score V (m,n) can be com-
puted in O(mn) time by traditional dynamic programming
(DP) using the following recurrence.

V (i, j) = min

8<: V (i− 1, j − 1) + g(S1(i), S2(j)),
V (i− 1, j) + g(S1(i),),
V (i, j − 1) + g(, S2(j))

where the base conditions are,

V (0, j) =
X

1≤p≤j

g(, S2(p)) and V (i, 0) =
X

1≤1p≤i

g(S1(p),).

We formulate the focused clone searching problem as a
variation of the optimal global alignment problem. Let S2

and S1 be the fingerprint-sequences of respectively the seed
and another fragment in the search space. We define a scor-
ing scheme as follows:

g(S1(i), S2(j)) =

0, if S1(i) = S2(j)
1, if S1(i) 6= S2(j)

g(S2(i),) = 1

g(, S1(j)) =

8<: 0, if ∀j′ < j, S1(j′) aligned to ‘ ’
or, j > m

1, otherwise.
Instead of finding their optimal global alignment, we need
to find all the global alignments with scores no more than
the k. The k-difference hybrid approach makes use of suf-
fix trees to solve subproblem of computing the LCE queries
within the framework of DP. Consider an m× n traditional
DP table for S1 and S2. The solution to the optimal global
alignment problem computed using traditional DP approach
yields a path on the DP table specifying the computed opti-
mal alignment as well as giving the number of pairwise char-
acter matches and differences. The same concept of path is
used in the hybrid algorithm.

For the sake of the hybrid algorithm, we enumerate the
diagonals of the DP table as follows. The main diagonal of
the table consisting of cells 〈i, i〉, for 0 ≤ i ≤ n ≤ m, is
numbered diagonal 0. The diagonals above the main diago-
nal are numbered 1 through m; the diagonal starting at cell
〈0, i〉 is diagonal i. The diagonals below the main diagonal
are enumerated −1 through −n; the diagonal starting at cell
〈i, 0〉 is diagonal −i.

Definition 5 (d-path). A d-path in the DP table is a
path that starts in the row zero and specifies a total of exactly
d mismatches and spaces [5].

Definition 6 (farthest reaching d-path). A d-path
is farthest reaching on diagonal i, if it is a d-path ending on

diagonal i, and the index of its ending column c along di-
agonal i is the maximum among all the d-paths ending on
diagonal i [5].

For d > 0, three distinct d-paths on diagonal i can be
computed from (d−1)-paths on diagonals i−1, i, and i+1 [5]:
Rv-path is composed of the farthest-reaching (d− 1)-path

on diagonal i+1, trailed by a vertical edge (correspond-
ing to a space in S1) to diagonal i, and a maximal ex-
tension along diagonal i that corresponds to identical
subsequences in S2 and S1.

Rh-path consists of the farthest-reaching (d − 1)-path on
diagonal i−1, trailed by a horizontal edge (correspond-
ing to a space in S2) to diagonal i, and a maximal ex-
tension along diagonal i that corresponds to identical
subsequences in S2 and S1.

Rd-path is made up of the farthest-reaching (d − 1)-path
on diagonal i, trailed by a diagonal edge (correspond-
ing to a mismatch between an element in S2 and an
element in S1) along diagonal i, followed by a maximal
extension along diagonal i that corresponds to identi-
cal subsequences in S2 and S1.

With these specifications, in Algorithm 1, we describe the
k-difference hybrid algorithm.

Algorithm 1 : k-Difference Hybrid Algorithm [5]

for i = 0 to m do
find the LCE between S1[i . . .m] and S2[1 . . . n] by
LCE query to suffix tree. This specifies the end column
of the farthest reaching 0-path on diagonal i.

end for
Any path reaching row n in column c, defines an exact
match of S2 in S1 ending at S1(c).
for d = 1 to k do

for i = −n to m do
Find the end on diagonal i of paths Rv, Rh, and
Rd. The farthest-reaching of these three paths is
the farthest-reaching d-path on diagonal i.

end for
Any path reaching row n in column c, defines an
approximate match of S2 in S1 ending at S1(c) with
at most k differences.

end for

4. EVALUATION
In this section, we present both theoretical and empirical

evaluation of our approach in terms of performance, accu-
racy, and usability.

4.1 Algorithmic Complexity
Suppose, we have F code fragments in the search space

including the seed fragment, and fragment f has lf lines of
code. The total number of lines over all code fragments is
lF =

PF
f=1 lf . Without loosing generality, we can assume

that each line of code has c characters.
Code preprocessing is done in linear time. Using Rabin’s

fingerprinting algorithm (which runs in linear time [14]), we
fingerprint a line of code in O(c) time, and thus for com-
puting fingerprints of all lF lines it takes O(c × lF) time.
The number of characters in a nonempty line of source code
typically vary between 1 and 20. So, we may consider c
to be invariant, and thus the running time of Rabin’s fin-
gerprinting algorithm over all lines of source code becomes
O(lF).

To construct the generalized suffix tree we use Ukkonen’s
online algorithm [22], which also runs in linear time. Hence
the construction of the generalized suffix tree also takes
O(lF) time. Exact matches are readily detected as we con-
struct the generalized suffix tree. Since, the fragments are
preprocessed to discard variations in variable names and for-
matting, all Type-1 and Type-2 clones across all code the
fragments are also detected in O(lF) time.

Preprocessing of the generalized suffix tree also takesO(lF)
time. Given a text S1 of length m and a pattern S2 of length
n, in O(km) time and O(m+ n) space, the k-difference hy-
brid algorithm can find all end locations in S1 where S2

matches with at most k differences [5, 10]. Based on the al-
gorithm, our implementation takes O(klF) time and O(lF)
space to find all occurrence of k-difference near-miss clones
of a chosen seed fragment in all other fragments in the search
space.

4.2 Usability and Customization
One of the primary objectives of our work is to support

clone-aware programming during the real development ac-
tivities. To make the focused clone search facility flexi-
bly usable, our tool enables the user to simply select a
code fragment and invoke focused search for it’s near-miss
clones by choosing the appropriate option from a drop-down
menu (Figure 1). The user can also define the search space
(i.e., projects, directories, or files). Moreover, the tool of-
fers a variety of customization options through an Eclipse-
preferences user-interface (UI) as shown in the Figure 7.

Figure 7: Customization options for clone detection

These customizations define a set of search options such
as the type of the target clones (i.e., Type-1, Type-2, and/or
Type-3), dissimilarity threshold, code normalization options,
minimum clone size, and match-unit (i.e., lines or tokens).
Though, in Section 2, we described our clone detection ap-
proach to have each line of code as a match-unit, the tech-
nique can also use each token/word as a match-unit, and
thus can offer more rigorous search if needed. For the token-
based operation, the code formatting phase is simply skipped,
and the rest of the phases remain as they are. The code nor-
malization phase is skipped if only the Type-1 clones need
to be identified, and the k-difference hybrid algorithm is in-
voked only when the Type-3 clones have to be detected.

4.3 Empirical Evaluation
Since our tool is developed as a plugin to Eclipse, it is te-

dious and time consuming to use the Eclipse’s editor UI to
manually select code fragments, find their clones and then

Table 3: Systems subject to the comparative study
Subject Total # of # of Clone
Systems SLOC Functions Groups Fragments

weltab 9936 123 20 68
PostGreSQL 154843 4689 203 519

verify accuracy. Therefore, we created a variant of our tool
by replacing the Eclipse-coupled“code preprocessor”module
by a separate TXL1 implementation. Such an implementa-
tions can handle any programming language, as long as the
appropriate Grammar and the transformation rules are de-
fined. Ours can handle C, C#, and Java. Also note that,
except the “code preprocessor” module, the rest of our tool
is language independent.

The stand-alone variant of our tool can operate outside
IDE, and we used this to empirically evaluate the accuracy
of clone detection (Section 4.3.1 and Section 4.3.2). We also
carry out a user-study (Section 4.3.3) to evaluate the us-
ability of our tool and its usefulness in context. Due to
limitation of space, we present abridged summaries of these
studies, instead of providing very detailed descriptions.

4.3.1 Comparison with NiCad
Traditional clone detectors are not directly comparable to

our tool, as the objective of our tool is to enable focused
clone search instead of the detection of all clones from the
entire code-base. The work of Lee at al. [11] could have been
comparable, but their implementation was not available in
public. So, we devised a technique for comparison with
NiCad [16], a state-of-the-art tool for detecting exact (Type-
1) and near-miss (Type-2, and Type-3) clones. We chose
NiCad for two main reasons. First, the threshold schemes
of our tool and NiCad are similar and comparable. Second,
as a clone detector, NiCad was reported to have high preci-
sion [16, 18] and recall [17].

For both NiCad and our tool, we set the minimum clone
size to three SLOC in the pretty-printed format [16] of the
source code. Moreover, the UPIT (Unique Percentage of
Items Threshold) for NiCad and the dissimilarity threshold
for our tool, both were set to 30%. Since NiCad performs
line-based comparison, the match-unit for our tool was also
set to ‘line’. Then we instructed NiCad to detect all near-
miss function clones from the two subject systems, weltab
and PostGreSQL (Table 3). These systems obtained from
www.bauhaus-stuttgart.de/clones/, are two of those used in
the clone detectors comparison framework of Bellon et al. [1].
NiCad reports the clone detection result having the clones
clustered into clone-groups. The number of clone-groups and
the total number of individual clone fragments as identified
by NiCad, are presented in the right-most two columns of
the Table 3.

From each of the clone-groups, we randomly picked a frag-
ment, passed it to our tool as the seed fragment, and invoked
the tool to perform a focused search for all the clones of
the seed. Then we verified the search result to determine
whether our tool detected all other members of the clone-
group (as of the seed), and whether any false positives were
reported. For each seed fragment obtained from every clone-
group over both the subject systems, our tool did find all the
remaining members of the corresponding group, and did not
report any false positives.

1http://www.txl.ca/

Table 4: Accuracy of clone detection
Measurement Type-1 Type-2 Type-3 Overall

precision 1.0 1.0 1.0 1.0
recall 1.0 0.96 0.90 0.94
f-score 1.0 0.97 0.94 0.96

4.3.2 Mutation-based Evaluation
The aforementioned comparative study evaluated our tool’s

accuracy in clone detection with respect to that of NiCad.
Using a variant of the mutation framework proposed by Roy
and Cordy [17], we further evaluated the precision and recall
of our tool. As the code-base subject to this study, we chose
JHotDraw-5.4b1, which had 20,613 SLOC Java code.

We selected, as seed fragments, 10 arbitrary functions
(f1 . . . f10) of different sizes from different locations of the
code-base. Then we made 15 copies (f1

i . . . f
15
i) of each of

those 10 fragments, and modified them following a subset
of mutation operators [17]. Thus, we produced five Type-1
clones, five Type-2 clones, and five Type-3 clones of each
seed fragment fi, resulting a total of 150 synthetic function
clones. Then we injected these clones into different locations
of the original code-base, resulting a mutated code-base.

We configured our tool according to the specifications
shown in the Figure 7. Then we invoked focused clone search
on the mutated code-base, providing each of the 10 seed frag-
ments, one at a time. For each of the seed fragments, we
investigated whether all of its synthetic clones (Type-1, Type-
2, and Type-3) were reported in the search result. Some
additional fragments were also reported as clones, as they
existed in the code-base but we did not know about them in
advance. We manually verified those additional clones for
any possible false positives.

With respect to the injected synthetic clones, we compute
the precision (p), recall (r), and f-score (`) of our tool as,

p =
|cs ∩ cd|
|cd|

, r =
|cs ∩ cd|
|cs|

, ` =
2× p× r
p+ r

where cs and cd are respectively the sets of injected synthetic
clones, and those that our tool detects. In the Table 4 we
present the accuracy of our tool in detecting those synthetic
clones. Our tool missed two of the Type-2 and five of the
Type-3 synthetic clones. We manually investigated those
clones, and found that while creating the Type-2 clones, we
altered the order of declaration of variables. The normaliza-
tion based on “consistent renaming” of identifiers is sensitive
to such orders, and this was set in the configuration. This
is why our tool could not detect those as clones, but it was
able to capture them when later we applied normalization
using the“blind renaming”operation. The five Type-3 clones
escaped due to the fact that upon modification, those frag-
ments simply went beyond the 30% dissimilarity threshold
we used.

4.3.3 User Study
We carried out a user study involving eight programmers

who were graduate students having more than five years
of experience in programming under different IDEs includ-
ing Eclipse. We provided our Eclipse plugin to them, and
they used it for an extended period of time while doing some
programming tasks. Then we interviewed them with a ques-
tionnaire comprising both open and closed questions. The
closed questions included a Likart-scale query saying, “How

will you rate this tool’s usability and usefulness?”. The par-
ticipants had to choose one of the answers: very poor, poor,
moderate, good, very good, or excellent. In response, five of
the participants chose ‘good’, two chose ‘moderate’, and the
other participant chose ‘very good’. A noteworthy comment
from one of the participants was, “...this [tool] is intuitive!”.

5. RELATED WORK
There are many clone detection tools out there and a com-

prehensive list can be found elsewhere [19]. Among all those
clone detectors, those which are integrated with IDEs are the
most relevant to our work.
CloneBoard [3] and CPC [23] are Eclipse plugins that can

detect and track clones based on clip-board (copy-paste) ac-
tivities of programmers. Based on programmer’ copy-paste
activities, CReN [6] (another plugin to Eclipse), offers some
sort of clone refactoring support by consistent renaming
of identifiers. While such an approach based on program-
mers’ copy-paste activities may be able to handle intentional
clones, they cannot deal with unintentional clones. More-
over, such tools may not be suitable for distributed develop-
ment, as they may fail to combine information about clones
separately created by distinguished developers working in a
distributed environment.
CPD2 is a part of Java source code analyzer, PMD. SDD [12]

and Simian3 are plugins to Eclipse. Tairas and Gray [20]
also developed a suffix-tree based clone detector as a plugin
for the Microsoft Phoenix framework, which is also an inspi-
ration to our work. All of these clone detectors can detect
Type-1 and Type-2 clones only, but not Type-3 [2]. Another
Eclipse plugin, CloneDR4, is an AST-based clone detector
that can detect Type-1 and Type-2 clones, but it also fails
to detect Type-3 clones in many scenarios [19]. CloneDetec-
tive [7] uses a suffix-tree-based algorithm to detect Type-1
and Type-2 clones but “probably not” Type-3 [19]. However,
SimScan5, which is a parser-based tool available as plugin to
Eclipse, IDEA, or JBuilder, can detect Type-1, Type-2, and
possibly a subset of Type-3 clones.
SHINOBI [9] is a plugin to the Microsoft Visual Studio.

It internally uses CCFinderX’s preprocessor, and thus it can
detect Type-1 and Type-2 clones only, but not Type-3. It
was developed as a client(IDE)-server(CVS) application to
relocate the the clone detection overhead from the client to
a central server. A similar clone detection tool is Clever [13]
that is available as an add-on to Subclipse/SVN, an Eclipse
plugin software configuration management tool. However,
such client-server configuration may not be suitable for those
individual practitioners who work on their separate stand-
alone machines.
CloneTracker [4] uses SimScan as the underlying clone de-

tector, allows the developer to select individual clone groups,
and supports simultaneous modifications of clone regions.
CeDAR [21] can incorporate the results from different clone
detection tools (e.g., CCFinder, CloneDR, DECKARD, Simian,
or SimScan) and can display properties of the clones in an
IDE. DupMan6 is an Eclipse duplication management frame-
work for clone detection and removal. It also works on top

2http://pmd.sourceforge.net/cpd.html
3http://www.harukizaemon.com/simian
4http://www.semdesigns.com/Products/Clone/
5http://blue-edge.bg/download.html
6http://sourceforge.net/projects/dupman/

of other clone detectors (e.g., SimScan, CCFinder, CloneDR,
Dup, Duploc, Duplix). While all these three tools are devel-
oped as plugins to Eclipse, they suffer from the limitations
of the underlying clone detectors they use internally.

All of the aforementioned tools adopt the traditional ‘post-
mortem’ approach to detect clones from the entire codebase,
which is overkill for a focused search of only the clones of an
individual code fragment [11]. Besides, most of those tools
have limitations in detecting Type-3 clones. Ours is the first
that enables efficient focused search not only for Type-1 and
Type-2 clones, but also for Type-3. Moreover, our tool, un-
like SHINOBI and Clever, can be conveniently adopted in
both distributed or centralized development environment.
Lee at al. [11] used an algorithm based on feature-vector
computation over AST and finds the k most similar clones
of a given code segment. But, their tool was not reported
to have integration with IDE. On the contrary, integration
with IDE was a main objective of our work. Moreover, us-
ing a suffix-tree-based hybrid algorithm, our tool finds all
the clones of a given code segment for a given similarity
threshold.

6. CONCLUSION
In this paper, we have presented an IDE-integrated fo-

cused clone search tool implemented based on a suffix-tree-
based k-difference hybrid algorithm. Using an asymptotic
complexity analysis, we have shown that our approach is
efficient in terms of both time and memory. Performing a
mutation-based evaluation, we have also demonstrated that
our tool is highly accurate in terms of precision and recall.
This was further confirmed by a case study comparing our
tool with NiCad, a state-of-the-art near-miss clone detector.
Moreover, from a user-study, we found that our tool is flex-
ibly usable for clone-aware software development.

In the future, we plan to further evaluate our tool in the
industrial context with larger code-bases. We have also been
working to extend this towards a versatile clone management
system [25] by incorporating features such as clone tracking
and semi-automated clone refactoring support.

7. REFERENCES
[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and

E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Trans. on Softw. Engg.,
33(9):577–591, 2007.

[2] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams,
Y. Zou, and A. Hassan. An empirical study on
inconsistent changes to code clones at release level.
Science of Computer Programming, 17 pages, 2010.

[3] M. de Wit. Managing Clones Using Dynamic Change
Tracking and Resolution. M.Sc. thesis, Delft
University of Technology, 2008.

[4] E. Duala-Ekoko and M. Robillard. CloneTracker: tool
support for code clone management. In ICSE, pages
843–846, 2008.

[5] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Computer and Computational Biology.
Cambridge University Press, 1st edition, 1997.

[6] P. Jablonski and D. Hou. CReN: a tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the IDE. In ETX, pages 16–20, 2007.

[7] E. Juergens, F. Deissenboeck, and B. Hummel.
CloneDetective - a workbench for clone detection
research. In ICSE, pages 603–606, 2009.

[8] C. Kapser and M. Godfrey. “Cloning considered
harmful” considered harmful. In WCRE, pages 19–28,
2006.

[9] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida,
Y. Kamei, M. Nagura, and H. Iida. SHINOBI: A tool
for automatic code clone detection in the IDE. In
WCRE, pages 313–314, 2009.

[10] G. Landau and U. Vishkin. Fast parallel and serial
approximate string matching. J. Algorithms,
10(2):157–169, 1989.

[11] M. Lee, J. Roh, S. Hwang, and S. Kim. Instant code
clone search. In FSE, pages 167–176, 2010.

[12] S. Lee and I. Jeong. SDD: high performance code
clone detection system for large scale source code. In
OOPSLA, pages 140–141, 2005.

[13] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen. Clone-aware configuration management.
In ASE, pages 123–134, 2009.

[14] M. Rabin. Fingerprinting by random polynomials.
Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[15] M. Rieger, S. Ducasse, and M. Lanza. Insights into
system-wide code duplication. In WCRE, pages
100–109, 2004.

[16] C. Roy and J. Cordy. NICAD: Accurate detection of
near-miss intentional clones using flexible
pretty-printing and code normalization. In ICPC,
pages 172–181, 2008.

[17] C. Roy and J. Cordy. A mutation/injection-based
automatic framework for evaluating code clone
detection tools. In ICSTW, pages 157–166, 2009.

[18] C. Roy and J. Cordy. Near-miss function clones in
open source software: an empirical study. J. of Softw.
Maintenance and Evolution: Research and Practice,
22(3):165–189, 2010.

[19] C. Roy, J. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and
tools: A qualitative approach. Sci. Comput. Program.,
74:470–495, 2009.

[20] R. Tairas and J. Gray. Phoenix-based clone detection
using suffix trees. In ACM-SE, pages 679–684, 2006.

[21] R. Tairas and J. Gray. Get to know your clones with
CeDAR. In OOPSLA, pages 817–818, 2009.

[22] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14:249–260, 1995.

[23] V. Weckerle. CPC: an eclipse framework for
automated clone life cycle tracking and update
anomaly detection. Master’s thesis, Freie Universität
Berlin, Germany, 2008.

[24] M. Zibran and C. Roy. A constraint programming
approach to conflict-aware optimal scheduling of
prioritized code clone refactoring. In SCAM, pages
105–114, 2011.

[25] M. Zibran and C. Roy. Towards flexible code clone
detection, management, and refactoring in IDE. In
IWSC, pages 75–76, 2011.

[26] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy.
Analyzing and forecasting near-miss clones in evolving
software: An empirical study. In ICECCS, pages
295–304, 2011.

