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Abstract—Tracking source code lines between two different
versions of a file is a fundamental step for solving a number of
important problems in software maintenance such as locating
bug introducing changes, tracking code fragments or defects
across versions, merging file versions, and software evolution
analysis. Although a number of such approaches are available
in the literature, their performance is sensitive to the kind and
degree of source code changes. There is also a marked lack of
study on the effect of change types on source location tracking
techniques. In this paper, we propose a language-independent
technique, LHDiff, for tracking source code lines across versions
that leverages simhash technique together with heuristics to
improve accuracy. We evaluate our approach against state-of-the-
art techniques using benchmarks containing different degrees of
changes where files are selected from real world applications. We
further evaluate LHDiff with other techniques using a mutation
based analysis to understand how different types of changes affect
their performance. The results reveal that our technique is more
effective than language-independent approaches and no worse
than some language-dependent techniques. In our study LHDiff
even shows better performance than a state-of-the-art language-
dependent approach. In addition, we also discuss limitations of
different line tracking techniques including ours and propose
future research directions.
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I. INTRODUCTION

Tracking source code across multiple versions of a program
is an essential step for solving a number of problems related
with multi-version program analysis. For example, consider
the problem of locating bug introducing changes. Existing
techniques solve this problem by finding the lines that are
affected through bug fixes and then trace back those lines
to determine their origin. If a bug has been identified in
a software system, tracking lines containing the bug in the
subsequent versions can help us determine whether the same
problem persists in the next versions and if yes, allows
developers to fix the problem at ease. Results obtained from
a line tracking technique can be aggregated for fine-grained
evolutionary analysis. For example, clone evolution analysis
requires tracking clone fragments across multiple versions of
a software system. Tracking lines of a clone fragment can
help us understand how that fragment evolves over time. Such
analysis can also guide us in understanding the nature, effects,
and reasons for cloning. To support collaboration in software
development, annotation or tagging has been used in source
code that can facilitate both navigation and coordination [28],

and source location tracking techniques can help manage tags
across versions. Software development involves more than just
the creation of source code. There are also different kinds of
software artifacts that can benefit from mapping lines across
versions. Possible applications are, but not limited to, studying
when and how requirements are changed or ensuring whether
intended changes have been applied to all configuration files.

A number of line tracking techniques can be found in
the literature. Reiss [20] listed a number of approaches
for tracking lines across versions and found that language-
independent approaches often provide good results. Canfora et
al. [4] proposed another language-independent line matching
technique, called ldiff, that uses a combination of information
retrieval techniques and Levenshtein distance for mapping
lines. Techniques that take into account the syntactic structure
of source files can provide change information at a more fine-
grain level [9]. An example of a line tracking technique that
falls in this group is SDiff [27] that can determine changes at
method and identifier levels. If fine-grain source code change
information is not required, language-independent text-based
approaches are suitable for tracking source code lines and can
be applied to different kinds of documents besides source code
(e.g., test cases or use cases). They also have the potential
to be integrated with existing version control systems with
little or no modification. However, the performance of these
techniques vary depending on the degree of changes applied
to the source code. In a recent comparative study of source
location tracking techniques, William and Spacco[27] found
that techniques that performed well in the Reiss study did
not perform well against their benchmark in which files had
a higher degree of changes. This motivates us to investigate
the reasons behind this discrepancy and to device a robust
language-independent solution.

This paper introduces LHDiff, a language-independent tech-
nique to track the evolution of source code lines across
versions of a software system. The technique uses Unix diff
between two different versions of a file to determine the set of
unchanged lines. To track the remaining lines, it uses a com-
bination of context and content similarity. However, to speed
up the mapping process, it first leverages simhash technique
to determine a list of mapping candidates for each deleted
line in the old file. Next, the technique computes similarity
scores again, but this time on the source code lines instead of
the simhash values, to select one line from each set of mapping



candidates. To validate the effectiveness of our language-
independent technique, we compare it against state-of-the-
art techniques using different benchmarks where the files are
collected from real world applications. We further evaluate
our technique with other approaches using different types of
changes in a mutation based analysis. The experimental results
in both cases suggest that the technique is superior to other
language-independent approaches, and even often gives better
result than the language-dependent technique SDiff.

The remainder of the paper is organized as follows. Section
II covers previous work related with our study. Section III
describes our hybrid line mapping technique. Section IV
presents a quantitative evaluation of line tracking techniques
using three different benchmarks. In Section V, we describe
results of mutation based analysis. Section VI explains some
threats to our study and finally, Section VII concludes the
paper with future research directions.

II. RELATED WORK

Tracking source code lines across program versions is
crucial to support various maintenance activities and several
approaches exist that consider line content, context, abstract
syntax tree, edit distance or a combination of these techniques
to solve the problem. In general, existing techniques can be
divided into two categories: (1) text-based and (2) syntax
tree-based. The first group of techniques is purely textual
in nature and does not require parsing source files. As a
language-independent technique the Unix diff algorithm has
been widely used in many studies, not only to track lines but
also for program differencing. Diff is based on solving the
problem of longest common subsequence and it reports the
minimum number of line changes that can convert one file to
another. However, it has its limitations. For example, it cannot
detect reordered lines. The addition of comments to a line can
cause diff to report deletion of the old line and addition of a
new line. However, such cosmetic changes are irrelevant to a
programmer and should be ignored [13].

Diff reports regions of file lines that differ between a pair
of files where each region is called a hunk. Zimmermann
et al. [32] addressed this modification changes using an
annotation graph where large modifications are considered
as combined addition and deletion of lines, otherwise all
lines between hunk pairs are connected with each other in
a modification. The technique detects origins conservatively,
does not consider the issue of reordered lines and is susceptible
to errors.

Canfora et al. [5], [4] developed a line differencing tech-
nique, called ldiff, to track line locations independent of
languages. Their technique uses the Unix diff algorithm to
determine the unchanged lines. After that, set-based and
sequence-based metrics are used to complete the mapping of
remaining lines. However, they only compared the technique
with Unix diff algorithm. To the best of our knowledge, Reiss
was the first to conduct a study to evaluate the performance
of several techniques for tracking source locations [20]. In-
terestingly, the result reveals that simple techniques like the

one mentioned above that do not consider program structure
perform better than those that consider syntactic structure
of source files (like abstract syntax tree-based techniques).
Reiss also recommended the W BESTI LINE technique to
track line locations, which uses a combination of context and
content similarity to find the evolution of lines independent of
languages. While LHDiff is also language-independent, our
technique differs from the above approaches in that it uses the
simhash technique to speed up the mapping process and a set
of heuristics to improve the effectiveness of tracking source
locations.

Spacco and Williams [27] extended the idea of tracking lines
for tracking program statements across multiple revisions of
Java code. They developed SDiff, an abstract syntax tree based
technique that leverages tokenization, Unix diff and Kunhn-
Munkres algorithm [17] to complete tracking line locations.
SDiff is a great algorithm to determine differences at the line
level. However, the technique cannot be applied to arbitrary
source code and cannot handle comments. While comments
are not executed, their importance cannot be ignored. Tags [28]
are usually associated with comments to support asynchronous
collaboration and they need to be tracked across versions.
Moreover, SDiff requires that the source code to be parsed
without any error. However, in reality this can not be guar-
anteed. For example, the source code may be written using
an old grammar of a language or developers may issue file
differencing commands in the middle of an edit operation.
LHDiff on the contrary is a language-independent technique,
can be applied to arbitrary source code, and can track the
evolution of comments/tags across versions.

Line location information can be obtained through tech-
niques that determine fine-grain differences between two ver-
sions of a file. However, these techniques require knowledge
about language constructs. Among these approaches, most
notable is the ChangeDistiller [9], which considers the ab-
stract syntax tree of a Java source file and leverages a tree
differencing algorithm to determine fine-grain changes in the
source code. The algorithm is not immune to cosmetic changes
(changes that do not affect the behaviour of a program like
addition of a comment), cannot work on arbitrary text files and
is limited to Java files only. Xing and Stroulia [31] presented
an algorithm, known as UMLdiff to determine structural
changes in object-oriented software. It uses a combination
of name similarity and structure similarity measures for rec-
ognizing conceptually the same entities. Apiwattanapong [2]
presented an algorithm to determine changes between two
Java programs. The technique considers program structure and
semantics of programming language constructs to determine
changes that are difficult to detect with a pure textual differenc-
ing technique. While these approaches are language specific
and focus on fine-grain change details, LHDiff focuses on
tracking lines independent of source code languages.

Techniques for tracking program elements across versions
are also related with our study. Matching higher level language
constructs prior to mapping lines improves mapping quality. A
comprehensive survey of various techniques can be found in



the work of Kim et al. [16]. Godfrey and Zou [11] developed
a semi-automatic technique to detect merging and splitting of
source code entities during the evolution of a software system.
Kim et al. [15] used a combination of textual similarity and
a location overlapping score to track clone fragments across
versions. Duala-Ekoko and Robbillard developed a technique
to track the evolution of clones [8]. The technique is also
available as an Eclipse-plugin, called Clone Tracker. Here,
clones are identified using an abstract clone region descriptor
(CRD) that is independent of source code line locations. While
the above techniques focus on tracking code fragments, we
focus on tracking individual lines.

III. LHDIFF: A LANGUAGE-INDEPENDENT HYBRID LINE
TRACKING TECHNIQUE

This section introduces LHDiff, our language-independent
hybrid line tracking technique. Figure 1 summarizes the entire
mapping process.

A. Preprocess input files

The algorithm starts with reading lines from two different
versions of a file. A large number of changes in source code
are only cosmetic in nature and do not change the behaviour of
a program. Examples include changes to whitespace/newline
characters. They are inserted to change the indentation of a
program to improve readability. To ignore such changes each
line of the source file is normalized so that multiple spaces
are replaced by only one. We also remove all parentheses and
punctuation symbols from the text except curly braces because
we obtained best results when considering them as part of the
line context.

B. Detect unchanged lines

After preprocessing we apply Unix diff, which uses the
longest common subsequence algorithm to determine the set
of unchanged lines. We use diff because previous studies
report that it can detect the set of unchanged lines with great
accuracy [20]. Diff reports the sequences of lines that have
been deleted or added between the files. We store the list of
deleted and added lines into two different lists. From now on,
we refer them as the left and right lists correspondingly.

C. Generate Candidate List

Now, our goal is to determine the mapping of a line from
the left list to that of the right list. Similar to W BESTI LINE
(recall that W BESTI LINE is another language-independent
source location tracking technique), we use both context and
content of a line to determine the correct mapping. The line
itself represents the content and the context is created by
concatenating four lines before and after the target line. While
the content similarity between a pair of lines is calculated
using normalized Levenshtein edit distance which considers
the order of characters in them, the content similarity is
calculated applying cosine similarity that does not consider the
order of tokens/characters. While building context we ignore
blank lines, but keep the curly braces. Such changes allow

us to gather sufficient contextual information for a line. We
then determine a combined similarity score by considering
both content and context similarity. We need to calculate such
scores between all possible pairs of deleted and added lines.
After that we map only those lines that provide the highest
similarity scores and also exceed a predefined threshold value.
However, the complete operation would take a long time to
complete because of the complexity associated with computing
similarity scores, particularly the normalized Levenshtein edit
distance. To improve the running time of the algorithm we
follow a different strategy. We first apply a form of locality
sensitive hashing and calculate the combined similarity score
of the hash values instead of the original lines to determine a
small set of possible mapping candidates for each line of the
left list. Then we use the original line content and combined
similarity score to select a line from each set of mapping
candidates. Since the hashing technique reduces large data into
a much shorter sequence of bits, the overall mapping time is
reduced significantly.

While a cryptographic hash function tries to avoid gen-
erating the same key to ignore collisions, in this form of
hashing files containing similar content are mapped to identical
or very similar binary hash keys. The technique is known
as simhash [7] and it has been found that the technique is
practically useful to determine near-duplicate pages in a large
collection of documents [18]. The core of the algorithm uses
a hash function to generate simhash values. Among various
non-cryptographic hash functions we use Jenkin hash function
since it shows better similarity preserving behaviour compared
to other functions and also found effective in detecting near-
miss code fragments in other studies [1], [29], [30]. We
generate a 64 bit simhash value for both context and content
using the simhash algorithm [25]. Instead of working on the
original lines, we are now working on the simhash values.
We now calculate the context and content similarity for each
pair of added and deleted lines by calculating the Hamming
distance between their corresponding simhash values. While
the Hamming distance between two strings is the number of
substitutions required to convert one string into another, for
binary strings (a and b) Hamming distance is calculated by
counting the number of 1 bits in a⊕ b (bitwise exclusive OR
operation between a and b). The smaller the Hamming distance
is, the closer the two strings are (see Figure 2). The context
and content similarity values are normalized between zero and
one. A combined similarity score is calculated for each pair of
lines using 0.6 times the content similarity and 0.4 times the
context similarity (this is determined after experimenting with
different combinations of values). For each line on the left list,
we then determine k-neighbours from the right list that are the
most probable mapping candidates of that line based on the
combined score. We refer this set as the matching candidates
list. Since we are not comparing raw source code lines for
selecting the mapping candidates, this saves significant time.
During our study with different values of k we found that
k = 15 is a good choice to work with.
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Fig. 1: Summarizing the line mapping process in LHDiff

D. Resolve conflicts

We now have a candidate list for each line of the left list
(except those that are detected as deleted/unchanged by the
algorithm), but we do not know the exact mapping yet. The
objective of this step is to select one line from each candidate
list to resolve the conflicts. As an example, consider that we
are looking for the mapping of line 20, and from the previous
step we determine that the candidate list consists of three
lines (37, 46, 51). We now use the original lines to generate
both context and content, and the algorithm determines the
combined similarity score between each possible mapping
pairs ({20, 37} , {20, 46} ,and {20, 51}). It selects the one that
gives the highest similarity score and also exceeds a predefined
threshold value. We now use normalized Levenshtein distance
to measure context similarity and cosine similarity to measure
content similarity. Both the values are normalized and the
combined similarity score is determined using 0.6 times the
content similarity and 0.4 times the context similarity. These
were the same values used by Reiss. We set the threshold value
to 0.45 after experimenting with various other values because
at this setting LHDiff provides best result.

  1.  public int largest (int num1, int 

 2.            num2, int num3){

 3.   //original function

 4.   //Function to obtain  

 5.   //largest value among numbers

 6.      int largest = 0;

 7.  

 8.      if(num1>num2)

 9.         largest = num1;

10.      else largest = num2;

11.  

12.      if(largest>num3)

13.         return largest;

14.      else return num3;

15.

16. }

 1. public int largest (int first, int 

 2.       second, int third){

 3.  //Function to obtain largest 

 4.  // value among three numbers

 5.  //change variable names

 6.    int value = 0;
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13.       return value;
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15.    else return third;

16. }
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Fig. 2: An example of calculating Hamming distance

    ...

20. protected Size2D arrangeRR

21. (Range withRange,

22. Range heightRange,

23  Graphics2D g2){

24. double[]w = new double[5];

25. double[]h = new double[5];

    ...

    ...

40. protected Size2D arrangeRR 

    (Range withRange, Range   

    heightRange, Graphics2D g2){

41. double width [] = new double[5];

42. double height[] = new double[5];

    ...

Fig. 3: An example of a line splitting

E. Detect line splits

The last part of our technique deals with detecting line
splitting. We use the term line splitting instead of statement
splitting since LHDiff is not aware of the boundary of a
statement, and only works at the line-level. An example of
line splitting is shown in the Figure 3 where a single line
breaks into multiple small lines. The basic LHDiff algorithm
tries to map each line from the old file to a line in the new
file, but fails to map some lines where the textual similarity
differs a lot. To track lines affected by the line splitting we use
the following approach. For each unmapped line of the new
file, we repeatedly concatenate the line to the successive lines,
one at a time, and determine normalized Levenshtein distance
(LD) with another unmapped line in the old file until the sim-
ilarity value starts to decrease. Then, if the textual similarity
between the concatenated lines and the left side line crosses
a predefine threshold value we map them. As an example,
we concatenate line 20 with 21 and determine the normalized
Levenshtein distance between R20+21 and L40. The similarity
value is greater than the similarity between R20 and L40.
Thus we concatenate the next line and determine the similarity
again between R20+21+22 and L40. Since the similarity is
again greater than the previous step we continue the con-
catenate operation until the similarity decreases. This happens
as soon as we add line 24 (LD(R20+21+22+23+24, L40) <
LD(R20+21+22+23, L40)). This indicates that line 24 cannot
be a part of the split lines. Since LD(R20+21+22+23, L40)
exceeds the threshold value and there are four lines in the
concatenated part, LHDiff maps all these four lines to line 40
on the left side. To avoid false mapping we set the threshold
value to a high value, 0.85, and we also limit the concatenation
to a maximum of 8 lines. During our manual analysis we did
not find any example where a line splits more than that. This
heuristic approach can only compensate line splitting when
such an operation does not change the contents of the line or
changes only little. It cannot detect other complex line splitting
operations, such as those described in Section V-A.

F. Evaluation

We evaluate the effectiveness of LHDiff using two different
methods. First, we consider three different benchmarks, each
of them containing line mapping information of versions of
files where the files are collected from real world applications.
Second, we also compare LHDiff with other state-of-the-art
techniques using a mutation based analysis where we consider



different types of changes. We describe details about these two
evaluation methods in the following two sections.

IV. EVALUATION USING BENCHMARKS

This section describes the benchmarks we used to evaluate
source location tracking techniques including results of our
evaluation.

A. Experiment details

We used two different benchmarks available from previ-
ous studies to measure the effectiveness of source location
tracking techniques. The first one was developed by Reiss,
which contains location information of 53 lines of a file
(ClideDatabaseManager.java) in 25 revisions and amounts to
1325 test cases [20]. We also evaluated our technique with
another benchmark developed by Reiss that contains locations
of 14 lines of the JiveRuntime.java file in 27 different re-
visions. However, we did not report the result in this paper
because the changes are simple and there is no significant
differences among source location tracking techniques for
those changes. In both cases, lines were selected by looking at
every tenth line of the source file discarding those containing
blank lines. Additional problematic or interesting changes
(such as name and comment changes) were also included.
Williams and Spacco developed another benchmark (known as
Eclipse benchmark) containing the change information of 232
lines [27]. We manually analyzed all changes. By doing this
we not only validated changes but also identified interesting
change patterns during the evolution of these lines. It should
be noted that during our manual investigation we found a few
incorrect mappings in the Eclipse benchmark. We used the
benchmark in our evaluation after correcting those mappings.
That is why readers will notice a slight difference in our results
for Eclipse benchmark than what was reported in the original
paper [27].

In addition, we also developed a third benchmark using
source code from the NetBeans project [19]. NetBeans is
an integrated development environment for developing ap-
plications using different languages. We randomly selected a
number of lines (including those we found challenging) and
then determined the new locations of those lines in another
version. Since the decision is subjective in nature, to avoid
bias the first two authors of this paper determined the correct
mapping of these lines separately. Cases where there was a
disagreement between the two authors, we removed that line
from our study.

TABLE I: Three forms of incorrect mappings

Label Meaning
Change the algorithm finds a mapping of a line but the mapping

is not correct
Spurious the algorithm detects mapping of a line but the line is

deleted
Eliminate the algorithm detects deletion of a line but the line exists

in the new file

Although our technique is language-independent, we con-
sidered techniques in both categories for comparison. We
instructed ldiff to ignore all whitespaces and also to ignore
changes whose lines are all blank. For all other settings of
ldiff we used default values except we changed the number
of iterations to four different values. When the value is set to
0, ldiff considers only line similarity. For all other positive
values it considers hunk similarity. In the case of SDiff,
we evaluated all different nine configurations used in the
original experiment. For details of these configurations we
refer interested readers to their original paper [27]. Among
various techniques evaluated by Reiss we report the result of
W BESTI LINE, with the same similarity thresholds and con-
text length suggested by Reiss, because Reiss recommended
this technique for tracking lines. We also include results of diff,
configured to ignore spacing differences and cases of letters
during the mapping process.

To calculate a score for each method, we followed the
basic scoring mechanism used in previous studies where the
score was calculated by determining the number of correct
mappings. To document line mapping information, we used
the following approach. If a line in the old file is deleted,
the new location of that line is encoded with −1, otherwise
each line of an old file is associated with a non-negative
integer representing the new position of that line. Incorrect
classifications can result from three different types of errors
and we use different labels to signify them as shown in Table I.
All experiments were conducted on a computer running with
Ubuntu Linux that has a 2.93 GHz Intel Core i7 processor and
8 GB of memory.

B. Results

Table II shows the results of our evaluation. For each
benchmark and line tracking technique we not only provide
the percentage of correct mappings but also show results
for each incorrect mapping type (these are: change, spurious
and eliminate; see Table I for their definitions). From the
table we can see that LHDiff performs better than both
SDiff and ldiff. The default settings of ldiff uses cosine
similarity for mapping hunks and Levenshtein distance for
mapping lines. We considered all possible combinations of
metrics and tokenizers. While for the Reiss benchmark ldiff
correctly maps around 96.5% of lines, the performance drops
significantly for the Eclipse benchmark. This is similar to
the result provided by Spacco and Williams. On the other
hand, although W BESTI LINE performs similar to LHDiff
for the Reiss benchmark, accuracy drops to around 53% for
the Eclipse benchmark. The latter contains a large number of
changes as the files are heavily edited in it. The performance
of W BESTI LINE and ldiff varies depending on the number
of changes occured to the files. However, both SDiff and
LHDiff are stable in nature. Although SDiff shows around 87%
accuracy for the Reiss benchmark, according to the authors
accuracy can be even up to 96% if we ignore curly braces
and non executable statements. For the Eclipse benchmark,
SDiff produces around 74% accurate result. However, SDiff



TABLE II: Running location tracking techniques against Reiss, Eclipse, and NetBeans benchmarks
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Language
independent
Techniques
(Text-based
approach)

W BESTI LINE 96.7 0 29.6 70.5 4.8 52.6 28.2 56.4 15.5 0.7 61.9 41.9 45.2 12.9 2.9
LHDiff 97.0 42.5 0 57.5 4 82.8 22.5 20 57.5 3.3 85.5 18.6 13.6 67.8 6.8

diff 92.5 0 0 100 0.2 41.0 0.7 0 99.3 0.1 48.4 1.4 0 98.6 0.2
ldiff [ -i 0 ] 96.4 0 66.7 33.3 25.7 62.5 9.2 1.2 89.7 58.2 74.0 16.0 7.6 76.4 6.1
ldiff [ -i 1 ] 96.4 0 25 75 73.9 59.1 9.5 1.1 89.5 209.2 76.4 14.6 5.2 80.2 103.5
ldiff [ -i 3 ] 96.2 0 29.4 70.6 118.6 72.0 20 4.7 75.4 419.7 80.6 24.1 8.9 67.1 171.5
ldiff [ -i 5 ] 96.2 0 29.4 70.6 160.7 72.4 20.3 4.7 75 472.4 81.3 25 9.2 65.8 218.2

Git 92.5 0 0 100 0.8 45.3 0.8 0 99.2 0.3 53.7 1.6 0.5 97.9 0.2

Language
Dependent
Technique
(Requires
access to
abstract
syntax tree)

SDiff 86.2 0 86.3 13.7 1.9 70.7 11.8 80.9 7.4 1.7 71.8 7.0 86.1 7.0 4.2
SDiff-probable 87.0 3.0 82.4 14.6 1.7 69.9 11.4 75.7 12.9 1.5 73.5 9.3 82.4 8.3 4.3

SDiff-possible-probable 87.0 3.0 82.4 14.6 1.7 70.7 11.8 75 13.2 1.6 75.4 12 77 11 4.3
SDiff-min 85.6 0 82.5 17.5 2.6 74.1 13.3 76.7 10 2 72.5 7.1 85.7 7.1 6.8

SDiff-min-probable 86.4 2.9 78.6 18.5 2.6 73.3 12.9 74.2 12.9 2.1 74.2 10.5 81.0 8.6 6.8
SDiff-min-possible-probable 86.4 2.9 78.6 18.5 2.6 74.1 13.3 73.3 13.3 2.1 75.2 12.9 74.3 12.9 6.8

SDiff-token 85.6 0 82.5 17.4 1.0 73.3 11.3 79.0 9.7 1.0 71.0 6.8 87.3 5.9 2.3
SDiff-token-probable 85.6 2.7 79.8 17.5 1.0 73.3 11.3 75.8 12.9 1.0 73.7 10.3 82.2 7.5 2.3

SDiff-token-possible-probable 86.4 2.9 78.7 18.5 1.0 74.1 11.7 75 13.3 1.0 74.5 11.5 76.9 11.5 2.3

takes into account the structure of source files, requires the
files to be syntactically valid, and is only available for Java.
LHDiff, on the other hand, is purely textual in nature and can
be applied to any files (be it a source file or a plain text file).
Without considering structural information, LHDiff provides
around 97% of correct mappings for the Reiss benchmark
and for the Eclipse one the result is around 83%. Among the
incorrect mappings we found for the Eclipse benchmark, the
highest amounts (more than 57%) were due to elimination.

For the NetBeans benchmark (see Table II), LHDiff shows
better result than the other techniques. While LHDiff detects
around 86% correct mapping, SDiff detects only around 75%.
Although ldiff detects more correct mappings (81%) than
SDiff, it requires more computation time.

C. Discussion

In this section we first explain the reasons behind the
poor results of W BESTI LINE and also ldiff on the Eclipse
benchmark that originally motivated us to develop another
language-independent source location tracking technique. We
then compare LHDiff with the content tracking technique of
Git and present another study result where we tried to improve
the accuracy of LHDiff using tokenization.

1) Why technique recommended by Reiss or ldiff did
not perform well with Eclipse benchmark?: The algorithm
(W BESTI LINE) recommended by Reiss works fine as long
as the context and content of a line do not change significantly.
The technique fails when both of them go through a large
amount of changes. Another possible threat to this approach
is the addition of blank lines or lines containing stop list
or punctuation symbols only. If a developer inserts blank
lines before and/or after a line, the line becomes isolated
and the context differs remarkably. If the line also changes

significantly, the algorithm fails to map the old line to the
new one. Reiss did not consider this issue. However, we can
eliminate this problem by ignoring blank lines which can help
locate proper contextual information. Another downside of
this technique is that the cost of running the technique is
high. For a line in the old version, the technique compares
the line with every other lines in the new version and selects
the one that provides the best matching. If the objective is to
determine new locations of a few lines of the old file, then
the technique may be adequate. However, situations where we
need to map every line of an old file to the new file, then
the approach may be expensive particularly when the size of
the file is large. That is why we use the simhash technique in
LHDiff to faster the mapping process. W BESTI LINE tries
to map a subset of lines of an old file to the new file whose
mappings are requested by a user. While this approach lessens
the running time of the algorithm, it drops the accuracy of
the technique, particularly where files have gone through a
large number of changes. A line (loldi ∈ fold) cannot be
aggressively mapped to another line (lnewj ∈ fnew) without
considering the similarity of lnewj to all other lines of the old
file. Their might be another line (loldk ∈ fold) to which the
newly mapped line (lnewj ∈ fnew) best matches. For these
reasons W BESTI LINE performed poorly for the Eclipse
benchmark.

The running time of ldiff improves because of applying
Unix diff at the beginning to determine unchanged lines.
A threat to the technique comes from the fact that before
mapping lines ldiff tries to map a hunk from the old file to
another hunk of the new file. If the hunk similarity exceeds a
threshold value then a line mapping process begins. However,
there is a possibility that hunk similarity does not exceed the
threshold value because of their size difference and only a few



TABLE III: Results of LHDiff before and after applying
tokenization
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Reiss Non-tokenize 96.98 42.50 0 57.50
Tokenize 93.66 0 48.81 51.19

Eclipse Non-tokenize 82.76 22.50 20 57.50
Tokenize 82.76 47.50 32.50 20

NetBeans Non-tokenize 85.50 18.64 13.56 67.80
Tokenize 82.56 32.39 9.86 57.75

lines are common between the hunks. In such a situation ldiff
reports them as deleted and added lines which contributed to
its poor performance for the Eclipse benchmark.

2) How is LHDiff comparable to the content tracking tech-
nique of Git?: Some version control systems (like CVS or
SVN) change code authorship of a line even if the line goes
through formatting changes or moves to a different location.
In both cases, the line is reported as a new one. Git overcomes
such a limitation by tracking the content of a file across
versions. Git blame -C -M command can track the movement
of unchanged lines. Here, -C finds code copies and -M finds
code movement. However, if the lines move even with slight
changes, Git assigns code authorship to the new author and
marks them as newly created, although ideally these lines
come from different locations of the previous version. To
compare the content tracking technique of Git with LHDiff, we
first commit each pair (the original one and its new version)
of file versions of a benchmark in a local repository and then
apply the git blame -M -n to determine the origin of line
locations of the new file. Here, -n tells Git to show the line
numbers in the original commit which is by default turned
off. The results are summarized in Table II. In general, the
mapping accuracy is similar to diff, except it detects more
correct mappings for some cases where lines are moved within
files (such as encapsulation, function split and reordering
categories).

Besides blame, Git also offers pickaxe to dig deeper into
the history. While it can find the commits that change a block
of code in a file, it cannot find the list of commits that contain
the block of code. In general, Git focuses more on tracking
code blocks instead of individual lines and stays out from
the advanced diff or line tracking technique, possibly because
of eliminating the overhead of running such an algorithm.
Thus, the line level content tracking technique of Git is not as
powerful as ldiff [3] or LHDiff.

3) Can tokenization improve the performance of LHDiff?:
Source code can go through various cosmetic changes that
can affect performance of text-based source location tracking
techniques. For example, the order in which parameters appear
in the method definition can be changed. In object-oriented
programming languages, developers often use this keyword
to access object fields or methods which does not change
the behaviour of the program. The access modifier of a class

     . . .

 1. int sum = 0; 

 2.  int number= 0;

 3. LinkedList<Integer> list = 

new LinkedList<Integer>();

 4.  System.out.println("Hello")  

      . . .

     . . .

 1. num sum op val colon 

 2.  num number op val colon

 3. LinkedList list op new  

     LinkedList colon

 4.  out.println string  

      . . .

Fig. 4: Example of tokenization
can change from private to public to make a class visible to
all other classes. Handling these changes requires accessing
individual source code elements and in this regard tokenization
can assist us.

Tokenization is the process of converting a sequence of
characters of a source file into a set of tokens, where each
token is a string of characters representing a category of sym-
bols. Tokenization does not require parsing source files and
can be implemented using regular expressions. We anticipate
that instead of working on raw source files, working on the
tokens may help us to ignore the effect of source code changes
and thus, improve the accuracy of the algorithm. To verify this,
we first tokenize source files of our benchmarks according to
the lexical rules of the Java programming language. During
this process we keep track of the line locations of each
token so that we can construct source files with tokens later.
Next, we apply a set of transformation rules to normalize
token sequences (an example is shown in Figure 4). This
step is necessary to eliminate differences between source code
versions. We then reconstruct source files using transformed
token sequences and use LHDiff to track source code lines
across file versions.

Working on the tokens does not improve the performance
of the LHDiff algorithm. While for the Eclipse benchmark
tokenization does not change mapping quality, performance
drops by 3% for the NetBeans benchmark. When we examined
those lines that were not correctly mapped by LHDiff, we
found that working on the tokens eliminates differences be-
tween file versions. While for some cases it helps to correctly
map lines that were earlier detected as deleted (the percentage
of incorrect mapping for eliminate category drops from 67.8%
to 57.75% for the NetBeans benchmark) but for some cases
it leads to false mapping too (the percentage of spurious
mapping increases from 18.64% to 32.39%). We observe
similar picture for other benchmarks also. Though tokenization
does not require parsing of source code, it requires knowledge
of the tokens of programming languages. Since our objective
is to develop a language-independent solution, LHDiff does
not include tokenization as a part of the detection process.
Moreover, our study results reveal that even tokenization can
lead to poor result.

Although the above results show the performance of LHDiff
over other methods, it does not explain how source code
changes affect line tracking techniques. To find this out, we use
a mutation based analysis that considers the editing taxonomy
of source code changes as describe in Section V-A.

V. EVALUATION USING MUTATION BASED ANALYSIS

While previous studies evaluate source location tracking
techniques against manually verified line mapping data, there



TABLE IV: Editing taxonomy of source code changes

No Name Example DescriptionOld File New File

else if (list.get(i)%3 == 0) else
if (list.get(i)%3 == 0)

An else if statement
splits into two lines

1 Line
Splitting/Merging if (list.get(i)%3 == 0) sum + = list.get(i);

if (list.get(i)%3 == 0){
System.out.println(“i = ” + i);
sum + = list.get(i)
}

A statement in one line
splits into multiple lines
where each contains one
statement and some lines
are added in between
them.

list.add(Integer.parseInt(line));
number = Integer.parseInt(line);
System.out.println(number);
list.add(number);

Another example of line
splitting of the above kind.

2 Function
Splitting/Merging

public int sum(File file){
//Read numbers from the file
//Store them in a list

. . .

//Now process the list
//Calculate sum of the numbers

. . .

return sum;
}

public ArryaList readF ile(Filefile){
//Read numbers from the file
//Store them in a list
. . .

return numberList
}
public int sum(File file){

ArrayList list = readF ile(file)
//Now process the list
//Calculate sum of the numbers
. . .

return sum;
}

A developer creates a
function readFile with
some lines from sum
and replace those lines
in sum by adding a call to
that function in the new
version of sum or vice
versa

3
Wrapping/
Unwrapping while((line = br.readLine())! = null)

try {
while((line = br.readLine())! = null)
}
catch (IOException e){

e.printStackTrace()

A line in the old file
moves to a try-catch block
in the new version of the
file or vice versa

4
Change in
Data Structure

ArrayList list = new ArrayList();
LinkedList list = new LinkedList();

ArrayList data structure is
replaced by LinkedList or
vice versa

5 Renaming sum = sum + list.get(i);
return sum;

total = total + list.get(i);
return total;

Variable sum is renamed
to total or vice versa

6 Code Reordering

public ArrayList readF ile (File file) {
. . .

}
public int sum (File file) {

. . .

}

public int sum (File file) {
. . .

}
public ArrayList readF ile (File file) {

. . .

}

Functions sum and read-
File are reordered or vice
versa

is not much discussion about the types of changes appearing
in them. This opens the question of how stable/vulnerable
the techniques are to different change groups and makes it
difficult to compare them in an objective fashion. Instead of
a random selection of lines from source code and tracking
their positions in subsequent versions, we use a taxonomy of
source code changes to synthesize new lines and evaluate the
techniques objectively. Towards this goal, in this section we
first present an editing taxonomy that captures typical actions
performed by developers during source code evolution and
then use a mutation based analysis to evaluate line tracking
techniques based on the taxonomy following Roy and Cordy’s
[22], [21] mutation analysis framework for evaluating software
clone detectors [23].

A. Editing taxonomy of source code changes

We developed an editing taxonomy by studying a large body
of published work [10], [11], [16], [14], clone taxonomy [21],
our previous study on code clones [24], and through manual
investigation of the previous benchmarks [27], [20]. We further
refined our taxonomy by analyzing changes of two open source

Java systems (NetBeans [19] and iText [12]). We choose Java
because of our familiarity with this programming language
which helped us to determine correct mapping of lines with
less confusion. Presenting the frequency of the changes in
software systems is out of the scope of this paper.

Table IV shows our editing taxonomy of source code
changes. For each change type we also provide an example
that shows the change from the old version of a file to the
new version of that file. The edit operations describe in the
taxonomy are not mutually exclusive. Instead, they can be
applied together to create more complex changes. To save
space, simple edits (addition, deletion or modification of lines)
are not discussed although they are the building blocks of all
kinds of edits.

The first group of change in our taxonomy is line split-
ting/merging. Use of code formatters can trigger line splitting
to improve readability of a source code. Table IV shows three
different kinds of line splitting examples. We do not show
any example of line merging since it is the opposite action of
line splitting. Function merging/splitting is the second change
type in our taxonomy. While Merging is done for service



TABLE V: Results of mutation based evaluation
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W BESTI LINE 18.8 86.7 4.3 93.4 17.9 82.7
LHDiff 56.3 90 68.1 93.4 35 83.8

Unix diff 6.3 80 2.1 55.7 0 13.5
Git 6.3 80 2.1 85.3 0 66.2

ldiff [-i 0] 12.3 80 40.1 55.7 42.5 13.5
ldiff [-i 1] 6.3 90 44.7 86.9 35 52.7
ldiff [-i 3] 6.3 90 40.7 95.1 35 78.4
ldiff [-i 5] 6.3 90 40.7 95.1 35 82.4

SDiff 81.3 80 51.1 10 10 82.4
SDiff-probable 93.8 80 51.1 10 10 82.4

SDiff-possible-probable 93.8 80 51.1 15 15 82.4
SDiff-min 87.5 80 51.1 15 15 82.4

SDiff-min-probable 93.8 80 51.1 15 15 82.4
SDiff-min-possible-probable 93.8 80 51.1 15 15 82.4

SDiff-token 87.5 80 51.1 15 15 82.4
SDiff-token-probable 93.8 80 51.1 15 15 82.4

SDiff-token-possible-probable 93.8 80 51.1 15 15 82.4

consolidation or code clone elimination, it can be split also.
The term Wrapping refers to a change where an old line is
moved inside a block of code and we define the opposite action
as unwrapping. Wrapping makes a line difficult to trace even
when we try with contextual information since the context may
differ and can be worse if the line itself changes significantly.
In some cases, one form of wrapping can be changed into
another. For example, the line attached with an if statement
can be moved to the else part. We found scenarios where
data structures used in previous versions are replaced with
other kinds. For example, a HashTable can be replaced by
a Map or an ArrayList implementation can be replaced by a
LinkedList (see Table IV(4)). Changes of this kind may or may
not preserve the textual similarity of lines and pose a threat
to line mapping techniques. Changes in identifier names are
common in source code evolution, particularly where copy-
paste programming is involved. Location tracking techniques
in general perform well when identifiers use descriptive names.
Other language constructs such as function, method or class
name can be changed. The last group of change type in our
taxonomy is code reordering where functions or blocks of code
can be reordered.

B. Experiment Details

In the generation phase, we mutate source files. First, we
select a source file in version vi. We then make another copy of
that source file. The mutation is carried out either by injecting
or changing existing code fragments in the copied file in such
a way that considers several possible change scenarios listed
in our taxonomy of source code changes. To avoid bias in
comparison, we did not consider mapping of comments or
curly braces in our analysis since SDiff ignores mapping them.

C. Results

The results of our mutation based analysis is summarized
in Table V. In most of the change groups, LHDiff either

outperforms other techniques or performs very close to the
best technique with an exception in the data structure change
category. In that case, accuracy drops to 56.3% whereas SDiff
correctly detects around 93% mappings. When we investigate
the reasons, it reveals that both context and content changes
significantly which leads to such poor result.

W BESTI LINE suffers from the problem of detecting
boundary of language constructs (such as a statement) and
thus is immune to line splitting. SDiff operates at the statement
level and can detect line splitting, but the accuracy is variable.
For example, cases where lines are added in between of the
split lines (see Table IV(1), second example), SDiff cannot
determine correct mappings. In our mutation based analysis
LHDiff performs not too bad in detecting line splitting. Manual
investigation reveals that even in the case of line splitting, they
do share some degree of similarity with the original line.

While W BESTI LINE and ldiff work at line level, they can
track movement of lines because of function splitting/merging.
SDiff is affected by function or method splitting and cannot
detect a block of lines that is moved to other functions. Thus,
SDiff reports them as deleted. For instance, SDiff cannot
track lines that are moved from function sum to readFile (see
Table IV(2)) and report them as deleted. The reason is that
SDiff first tries to map functions and if it finds a mapping,
it tries to map the lines. For this example, SDiff finds a
mapping between sumold and sumnew and then maps their
lines without considering the fact that lines of the sum function
can be moved to other functions also.

Renaming of variables, functions or classes also affect
line tracking techniques and ldiff, LHDiff or W BESTI LINE
may or may not map the line containing function declara-
tion depending on the amount of changes occurred in the
file. However, SDiff uses an origin analysis technique [14]
to map functions across versions and thus can determine
renaming of functions. In case of reordering, both LHDiff and
W BESTI LINE show good performance. As expected Unix
diff cannot detect any reordering since reordering of lines
causes Unix diff to report them as addition and deletion of
lines. While SDiff shows 82.4% accuracy in detecting changes
via reordering, Unix diff become the last.

VI. THREATS TO VALIDITY

There are a number of threats to the validity of this study.
In this section we discuss them in brief.

First, the mapping of a line is subjective in nature and we
cannot guarantee that there is no incorrect mapping in our
benchmarks. However, we tried to minimize the number of
false mapping as much as possible. The first two authors of
this paper manually investigated all mappings including those
found in the Reiss and Eclipse benchmarks. Cases where it was
difficult to correctly map a line or there was a disagreement,
the mapping was removed to avoid ambiguity. Second, consid-
ering the small sample size of the benchmarks one can argue
that the sample may not represent the population and thus the
performance observed in our study does not reflect the original
scenario. However, finding changes of lines across versions



and determining their correctness is a time consuming task.
We carefully validated the correctness of existing benchmarks
and developed a new benchmark containing different types of
changes. We also used mutation based analysis to evaluate our
technique with other approaches. Third, lines can be changed
in various ways. In this paper we describe various kinds of
changes that can affect the evolution of a line. Although we
cannot guarantee that benchmarks contain all change types,
we tried to minimize the effect of change types on their
evaluation through collecting line change data at random.
Finally, we penalize line tracking techniques with the same
weight for detecting different false mapping types (spurious,
change and eliminate). While one can argue about weighting
false mapping types, we want to highlight to the fact that this
is the same scoring scheme used in previous studies [20] and
we followed the same strategy to make the result comparable
with others.

VII. CONCLUSION

This paper proposes a novel, language-independent line
tracking approach called LHDiff. Our experiment shows that
lines can effectively be tracked across versions with LHDiff.
We not only evaluate LHDiff with benchmarks created from
real world applications but also use a mutation based analysis
to evaluate it with other line tracking techniques against
different types of source code changes. The results reveal that
LHDiff is more effective than any other language-independent
line tracking technique. We also compared LHDiff with SDiff
which is a state-of-the-art language-dependent technique and
found that in most cases LHDiff provides better result than SD-
iff. The mutation based analysis also enables us to explain the
strength and weaknesses of line tracking techniques and can
help a user to decide when to use which technique. Although
LHDiff incorporates some features from W BESTI LINE, an-
other simple line tracking technique developed by Reiss, but
the potential of that technique is not fully explored in the
early work, possibly because that work focused on comparing
a large number of techniques and the benchmark used in that
experiment contains small changes. LHDiff is reasonably fast
(Comparable in speed to SDiff also), requires a small amount
of memory, can easily be incorporated into source code control
systems, and can be used with arbitrary text files. For future
study, we plan to identify the degree of structural knowledge
required to reduce incorrect mappings. The current imple-
mentation of LHDiff only uses information available within
files and we would like to explore whether information stored
within source code control systems can assists us mapping
lines. While this work focuses on tracking lines, visualizing
this information poses another challenge that we also want to
address. The code of LHDiff, data files used in this experiment,
and complete evaluation results can be found online [26].
Acknowledgements: We would like to thank Steven P. Reiss
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