
LHDiff: Tracking Source Code Lines To Support
Software Maintenance Activities

Muhammad Asaduzzaman Chanchal K. Roy Kevin A. Schneider Massimiliano Di Penta†
Department of Computer Science, University of Saskatchewan, Canada

†Department of Engineering, University of Sannio, Italy
{md.asad, chanchal.roy, kevin.schneider}@usask.ca, dipenta@unisannio.it

Abstract—Tracking lines across versions of a file is a necessary
step for solving a number of problems during software develop-
ment and maintenance. Examples include, but are not limited
to, locating bug-inducing changes, tracking code fragments or
vulnerable instructions across versions, co-change analysis, merg-
ing file versions, reviewing source code changes, and software
evolution analysis. In this tool demonstration, we present a
language-independent line-level location tracker, named LHDiff,
that can be used to track lines and analyze changes in various
kinds of software artifacts, ranging from source code to arbitrary
text files. The tool can effectively detect changed or moved lines
across versions of a file, has the ability to detect line splits, and
can easily be integrated with existing version control systems.
It overcomes the limitations of existing language-independent
techniques and is even comparable to tools that are language
dependent. In addition to describing the tool, we also describe
its effectiveness in analyzing source code artifacts.

Index Terms—differencing tools; line tracking; language-
independent differencing tool

I. INTRODUCTION

Software maintenance activities often require tracking
source code lines across versions of a software system. One
reason may be to separate changed lines from those that
are deleted from an old version of a file or added to its
new version during code review. If a bug has been identified
in a software system, tracking lines containing the bug can
assist us in locating the bug in subsequent versions. Mining
version archives for co-changed lines can recommend line
locations after a change. Source location tracking techniques
can help in this regard to obtain an accurate estimation of
changed lines. Results obtained from line tracking techniques
can be used to track higher level language constructs. For
example, the evolution of functions, methods or classes can
be tracked across versions using location mapping data of
changed lines. In addition, a line tracking tool can be used to
track the evolution of other kinds of software artifacts, such
as requirements, design documents or configuration files.

Versioning systems (such as CVS or Subversion) and many
development environments rely on Unix diff or its variants to
track lines between two versions of a text file. Diff reports the
minimum number of added, deleted or changed lines between
two file revisions. However, it has limitations in detecting
reordered or changed lines that prevents it from becoming an
ideal line tracking tool [3]. To address the problems, a number
of line tracking techniques and tools have been developed [1].
For example, Canfora et al. developed the ldiff tool that

uses a combination of information retrieval techniques and
Levenshtein distance to track lines across versions of a file
independent of source code language [2], [4]. In addition
to describing various source location tracking techniques,
Reiss recommends W BESTI LINE to track lines which uses
context and content similarity to track lines [9]. Spacco and
Williams developed another tool, SDiff, that accesses the
syntactic structure of Java source files to track lines across
versions [10]. All these techniques are sensitive to the degree
and kind of source code changes. While techniques that use
an Abstract Syntax Tree (AST) can provide fine grain change
information, they require the source file to be parsed which
may not always feasible. For example, developers may issue
a file differencing command in the middle of editing a file,
which may not be possible to parse at that point in time.

In this paper, we describe the LHDiff tool that can track
source code lines across versions of a software system. It
does not consider the AST of source files, and thus can be
applied to arbitrary text files. The tool takes two versions of
a file as input and utilizes Unix diff to track lines other than
those that are reported as either deleted from the old file or
added to the new file by diff. To determine mapping between
the set of added and deleted lines reported by diff, the tool
uses both context and content of a line. While the line itself
represents the content, the context is computed by combining
its top and bottom four lines. However, to make the mapping
process faster, it leverages the simhash technique [5], [8] to
compute mapping candidates for each deleted line of the old
file. Next, it computes the context and content similarity using
source code lines to select one from each set of mapping
candidates. Since the algorithm and its evaluation with other
state-of-the-art line tracking techniques have been discussed
in a separate paper [1], we briefly summarize the algorithm in
this tool paper and explain tool syntax.

The remainder of the paper is organized as follows. Section
II provides examples that motivate us developing the tool.
Section III briefly describes the LHDiff tool. Section IV briefly
summarizes the tool effectiveness, while Section V describes
its syntax and usage. Finally, Section VI concludes the paper.

II. MOTIVATING EXAMPLES

Fig. 1 shows four different examples, each one showing
two different versions of a file. Due to space limitations, we
only show code fragments from the files (except Fig. 1-a).

1

1. public int put(double key, int value) {

2. if (elementSize == keyTable.length) {

3. // resize

4. System.arraycopy(

5. keyTable,

6. 0,

7. (keyTable = new double[elementSize * 2]),

8. 0,

9. elementSize);

. . .

15. }

16. keyTable[elementSize] = key;

17. valueTable[elementSize] = value;

18. elementSize++;

19. return value;

20. }

1. public int put(double key, int value) {

2. if (elementSize == keyTable.length) {

3. // resize

4. System.arraycopy(

keyTable,

0,

(keyTable = new double[elementSize * 2]),

0,

elementSize);

. . .

11. }

12. keyTable[elementSize] = key;

13. valueTable[elementSize] = value;

14. elementSize++;

15. return value;

26. }

 . . .

1. int [] address = new int [1];

2. for (int i=0; i<count; i++) {

3. if (i == index) continue;

4. OS.memmove (address, oldPtr + (i * 4), 4);

5. str [0] = OS.strdup (address [0]);

6. if (str [0] == 0)

7. error(SWT.ERROR_ITEM_NOT_ADDED);

8. OS.memmove (newPtr + (j++ * 4), str, 4);

9. }

 . . .

 . . .

1. for (int i=0; i<count; i++) {

2. if (i == index) {

3. offset = -1;

4. continue;

5. }

6. int [] address = new int [1];

7. OS.memmove (address, oldPtr + (i * 4), 4);

8. int length = OS.strlen (address [0]);

9. int str = OS.malloc (length + 1);

10. if (str == 0)

11. error (SWT.ERROR_ITEM_NOT_ADDED);

12. OS.memmove (str, address [0], length + 1);

13. OS.memmove (newPtr + ((i + offset) * 4),

 new int [] {str}, 4);

14. }

 . . .

 . . .

1. public ArrayList<Integer> readFile (File file){

2. FileReader fr = new FileReader(file);

3. BufferedReader br = new BufferedReader(fr);

4. String l = null;

5. while ((l = bufferReader.readLine())!=null)

 {

6. arrayList.add(Integer.parseInt(line));

7. }

8. return arrayList;

9. }

10. public int sum(File file) throws IOException{

11. int sum = 0; int number= 0;

12. //read numbers from a file

13. ArrayList<Integer> list = this.readFile(file);

14. //determine sum of numbers divisible by 2

15. for(int i=0;i<list.size();i++){

16. if (list.get(i)%2==0) sum = sum+list.get(i);

17. }

18. return sum;

19. }

 . . .

 . . .

1. public ArrayList<Integer> readFile (File file){

2. FileReader fr = new FileReader(file);

3. BufferedReader br = new BufferedReader(fr);

4. String line = null;

5. while ((line = bufferReader.readLine())!=null)

6. {

7. arrayList.add(Integer.parseInt(line));

8. }

9.

10. int sum = 0; int number= 0;

11. //calculate sum of numbers divisible by 2

12. for(int i=0;i<list.size();i++){

13. if (list.get(i)%2==0) sum = sum+list.get(i);

14. }

15. return sum;

16. }

 . . .

 . . .

1. public TypeBinding resolveType(BlockScope scope) {

2.

3. constant = Constant.NotAConstant;

4. TypeBinding arrayType = receiver.resolveType(scope);

5. if (arrayType != null) {

6. if (arrayType.isArrayType()) {

7. this.resolvedType = ((ArrayBinding)

8. arrayType).elementsType(scope);

9. } else {

10. scope.problemReporter().reference

11. MustBeArrayTypeAt(arrayType, this);

12. }

13. }

14. TypeBinding positionType =

 position.resolveTypeExpecting(scope, IntBinding);

15. if (positionType != null) {

16. position.implicitWidening(IntBinding,

 positionType);

17. }

18. return this.resolvedType;

19. }

 . . .

 . . .

1. public TypeBinding resolveType(BlockScope scope) {

2.

3. constant = Constant.NotAConstant;

4. TypeBinding arrayTb = receiver.resolveType(scope);

5. if (arrayTb == null)

6. return null;

7. if (!arrayTb.isArrayType()) {

8. scope.problemReporter().referenceMustBeArrayTypeAt

9. (arrayTb, this);

10. return null;

11. }

12. TypeBinding positionTb =

 position.resolveTypeExpecting(scope, IntBinding);

13. if (positionTb == null)

14. return null;

15. position.implicitWidening(IntBinding, positionTb);

16. return this.expressionType = arrayElementBinding =

 ((ArrayBinding) arrayTb).elementsType(scope);

17 }

 . . .

A B

C D

Fig. 1: Line tracking examples.

The highlighted lines are the ones we are interested in and
the correct mapping of those lines are marked with arrows.
Fig. 1-a shows an example of a line split. In the new version
of the file in Fig. 1-b, the highlighted line is moved outside
the for loop. Fig. 1–c shows an example of a method split,
where lines from the readFile method are moved to another
method in the new version. In the last example (Fig. 1-d), the
variable arrayTb is replaced with arrayType and the condition
part of if block is updated.

Unix diff fails to provide a correct mapping in all four
examples. Lines that are changed, or moved are reported as
either added or deleted by diff. Although existing state-of-
the-art line tracking techniques provide better results than
diff, they have their own limitations. While SDiff was able
to detect line splits, it fails to detect lines that are moved
to another method (see Fig. 1-c). Ldiff fails to detect line
splits or mapping of lines in the last example (Fig. 1-d). The
technique recommended by Reiss is also not an exception.
This shows the limitation of existing source location tracking
tools in detecting changed or moved lines and motivates us to
develop an enhanced line tracking tool.

III. LHDIFF: TRACKING SOURCE CODE LINES

Unlike SDiff that requires parsing source files, LHDiff is
purely textual in nature and can be applied to arbitrary text
files. It is a hybrid technique because it leverages findings
collected through analyzing incorrect mappings of existing
state-of-the-art location tracking techniques. The tool works in
five different phases and they are briefly summarized below
(further details about the LHDiff approach/algorithms can be
found in a related research paper [1]):

• Step 1 involves normalization of the input files where
the objective is to remove editing differences that are
only cosmetic in nature. For example, multiple spaces
are replaced with only one.

• Step 2 applies Unix diff to determine the set of un-
changed lines. Diff reports list of lines that are deleted

1. public void fileReader (String path){

2. FileReader fr = new fileReader();

3. LineNumberReader reader = new LineNumberReader(fr);

4. String line = null;

5

6. while(line = reader.readLine)

7. {

8. System.out.println(line);

9. }

10. }

 A Line

C
o
n
te

x
tC

o
n
te

n
t

Fig. 3: An example of finding context and content of a line.

from the old file and added to the new file. We refer to
them as the left and right lists. Since diff often fails in
detecting changed and moved lines, we need to find the
missing link between the lines of these two lists.

• Step 3 acts as an intermediate step to speed up the
mapping process without sacrificing accuracy. For each
line in the left list we need to find a line from the
right list, if there exists any mapping for that line. We
leverage content and context of lines to determine the
correct mapping. The line itself represents the content
and context is calculated by concatenating its top and
bottom four lines (see Fig. 3). To speed up the mapping
process, we add an intermediate step instead of acting
on source code lines in the first place. For each line
in the left list we determine a small set of lines from
the right list that are the probable mapping candidates.
Instead of working on raw lines, we first apply a hash
function to determine a 64 bit binary simhash value for
both context and content. A simhash is nothing but a
short binary representation of a much longer string with
an important property that simhash values of two similar
strings have a small Hamming distance. The content and
context similarity scores are calculated by calculating the
Hamming distance between their corresponding simhash
values. If a and b are two binary strings, the Hamming
distance is the number of 1s in a⊕b (the bitwise exclusive

2

public void fileReader (String path){

 FileReader fr = new fileReader(path);

 LineReader reader = new LineReader(fr);

 String line = null;

 while(line = reader.readLine)

 {

System.out.println(line);

 }

}

public void fileReader (String path){

 //change LineReader to BufferedReader

 FileReader fr = new fileReader(path);

 BufferedReader reader = new BufferedReader(fr);

 String line = null;

 while(line = reader.readLine)

 {

System.out.println(line);

 }

 fr.close();

 }

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

[3] LineReader reader = new LineReader(fr);

[2] // Change LineReader to a BufferedReader

[4] BufferedReader reader = new BufferedReader(fr);

[10] fr.close();

[3] LineReader reader = new LineReader(fr);

[2] // Change LineReader to a BufferedReader

[10] BufferedReader reader = new BufferedReader(fr);

Levenshtein distance similarity between lines:0.28

 Cosine similarity between line context :0.65

Apply Unix Diff. It reports minimum lines that are deleted from the old file and added to the new file

(marked with red and blue colors respectively) to convert the old file to the new file

Left Line List Right Line List

For each line, calculate simhash value of both context and content. Then determine combine

similarity score

0
.8

4

0
.7

1

0
.4

3

Mapping candidatesLines from Left List

Calculate combine similarity score at the line level instead of simhash value

Result of final mapping

Old File New File

public void fileReader (String path){

 FileReader fr = new fileReader(path);

 LineReader reader = new LineReader(fr);

 String line = null;

 while(line = reader.readLine)

 {

System.out.println(line);

 }

}

public void fileReader (String path){

 //change LineReader to BufferedReader

 FileReader fr = new fileReader(path);

 BufferedReader reader = new BufferedReader(fr);

 String line = null;

 while(line = reader.readLine)

 {

System.out.println(line);

 }

 fr.close();

 }

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Old File New File

0
.6

8

0.77

Levenshtein distance similarity between lines:0.70

 Cosine similarity between line context :0.71

Fig. 2: Working steps of LHDiff.

OR between a and b). We now calculate the combine
similarity score by taking 0.6 times the content similarity
and 0.4 times the context similarity for all pairs of lines
between left and right lists. For each line in the left
list, we then determine a set of lines that constitute the
possible mapping candidates using a predefined threshold
value.

• Step 4 selects one line from each set of mapping can-
didates. For each line from the left list and its mapping
candidates, we select the line pair that gives the highest
similarity score, but this time the similarity scores are
calculated on the raw lines instead of on the simhash
values. The content similarity between a pair of lines
is calculated by applying the Levenshtein edit distance,
and the context similarity is calculated using cosine
similarity. A combined similarity score is then calculated
by combining both context and content similarity.

• Step 5 deals with detecting line splits. This step can
be enabled/disabled through a command line option or
programatically. To detect line splits, LHDiff does the
following. For each unmapped lines of the old file, it
repeatedly concatenates lines of the new file, one at a time
and starting from the top unmapped line of the old file,

and calculates the Levenshtein edit distance similarity.
We repeat the concatenating operation until the similarity
value starts dropping. If such a similarity value crosses a
predefined threshold value, we map all the concatenated
lines of the new file to that line of the old file.

Fig. 2 shows an example that explains working steps of
LHDiff. We omit the preprocessing step from the figure for
the sake of simplicity.

IV. PERFORMANCE

This section briefly summarizes the performance of LHDiff.
Details about evaluation procedure and detailed results can
be found in a separate paper [1]. In the following, we also
highlight the benefits of using the simhash technique, and also
warn users about the limitation of the tool.

A. Correctness of tracking lines and time requirements

We compared LHDiff with other state-of-the-art line track-
ing tools using three different benchmarks (Reiss, Eclipse
and NetBeans) where the lines are collected from real-world
applications. Our evaluation results reveals that LHDiff out-
performs all language dependent techniques and even a lan-
guage dependent technique, SDiff. For example, while the tool
correctly maps 82.8% of target lines in Eclipse benchmark,

3

Fig. 4: Tool output example.

where the files underwent changes to a higher degree than
other benchmarks, the closest score to ours is 74.1% by SDiff.

In terms of execution time, LHDiff is comparable with
other state-of-the-art techniques. Although LHDiff may require
slightly more time than some of the techniques, this small
additional time gives the tool the ability to achieve higher
accuracy.

B. Performance gain from the simhash technique

The tool leverages the simhash technique to filter map-
ping candidates for lines from the left list because calcu-
lating similarity scores at the line level between all pairs
of lines of left and right lists is computationally expen-
sive, and this is particularly true for what concerns the
Levenshtein edit distance. To better understand the effect
of simhash, we ran LHDiff without enabling step-3 on the
files in Reiss benchmark [9], which consists of 25 revisions
of ClideDataManagerManager.java file. While the
original LHDiff tool took 5.22 sec. to complete tracking line
locations, the modified version took 18.06 sec. to complete
running. This indicates more than three times improvement of
running time from using simhashing, and it can be even more
when differencing a large number of source code files.

C. Limitations

LHDiff fails to track lines when both context and content of
a line changes a lot. The combined similarity score gives more
weight on the content similarity and this sometimes leads to
an incorrect mapping for short lines. For example, even if the
context suggests that there is no connection between line 13 of
the old file to line 26 of the new file, content similarity gives
a very high score, because of the matching keywords and the
length of the keywords dominating the total line length which
results in an incorrect mapping (see Fig. 5).

V. TOOL IMPLEMENTATION

An implementation of the LHDiff tool is available in Java as
a command line tool [7]. The tool supports the use of various
similarity/distance metrics (Levenshtein, Cosine, Jaccard, and
Dice) and Table I summarizes the configuration options LHDiff
has available. Fig. 4 shows an example of running the tool
from the command line, where the input files are the same
ones we used in Fig. 2.

TABLE I: LHDiff configuration options.

Option Description Default Set-
tings

-i Ignore case differences disabled
-k The size of mapping candidate set 15
-p Context weight (0 ≤ CXW ≤ 1) and

the threshold value (0 ≤ TH ≤ 1) for
combine similarity score used in Step
4. Content weight will be automatically
set to 1− CXW

0.4 and 0.6

-cnm Line content similarity metric Levenshtein
-cxm Line context similarity metric Cosine
-cxs Context size 4
-ls detect line split disabled
-ob Output both line number and content display only

line number

. . .

protected int sum(int input){

int s = 0;

for(int i=1;i<=x;i++){

s = s + i;

}

return s;

}

public int add(int n1,int n2){

int sumOfNumbers = x+y;

return sumOfNumbers;

}

. . .

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. . .

protected int add(int x, int y){

int z = x+y;

return z;

}

. . .

11.

12.

13.

14.

15.

16.

17.

Correct mapping

LHdiff incorrectly map these lines

Fig. 5: An example of incorrect mapping.

VI. CONCLUSION

This paper describes LHDiff, a line tracking tool that can
be applied to any text files, can easily be integrated with
existing version control systems, and can even detect line
splits. The demonstration will show how LHDiff can be used to
analyze source code or other text files, track buggy lines, and
examples from real world applications where LHDiff succeeds
in mapping lines but Unix Diff or other state-of-the-art line
tracking techniques fail(s). As a work-in-progress, we are
investigating how to reduce the degree of false mappings,
and developing visualizations to aid comprehending the results
from the tool.

REFERENCES

[1] M. Asaduzzaman, C. K. Roy, K. A. Schneider, M. Di Penta, “LHDiff:
A Language-Independent Hybrid Approach for Tracking Source Code
Lines”, accepted to be published in ICSM, 2013

[2] G. Canfora, L. Cerulo, and M. Di Penta, “Tracking Your Changes: A
Language-Independent Approach”, in IEEE Softw., pp. 50-57, 2009.

[3] G. Canfora, L. Cerulo, M. Di Penta, “Identifying Changed Source Code
Lines from Version Repositories”, in MSR, pp.14, 2007.

[4] G. Canfora, L. Cerulo and M. Di Penta, “Ldiff: An enhanced line
differencing tool”, in ICSE, pp. 595 -598, 2009.

[5] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms”, in STOC, pp. 380-388, 2002.

[6] M. Kim and D. Notkin, “Program element matching for multi-version
program analyses”, in Proceedings of the 2006 international workshop
on Mining software repositories, pp. 58-64, 2006.

[7] “The LHDiff Tool” http://asaduzzamanparvez.wordpress.com/Research
[8] G. S. Manku, A. Jain and A. D. Sarma, “Detecting Near Duplicates for

Web Crawling, in WWW, pp. 141-150, 2007.
[9] S. P. Reiss, “Tracking source locations”, in ICSE, pp. 11-20, 2008.
[10] J. Spacco and C. Williams, “Lightweight Techniques for Tracking

Unique Program Statements”, in SCAM, pp. 99–108, 2009.

4

