
An Empirical Study on Clone Stability
Manishankar Mondal Chanchal K. Roy Kevin A. Schneider

Department of Computer Science,
University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider}@usask.ca

ABSTRACT
Code cloning is a controversial software engineering practice
due to contradictory claims regarding its effect on software
maintenance. Code stability is a recently introduced mea-
surement technique that has been used to determine the
impact of code cloning by quantifying the changeability of a
code region. Although most existing stability analysis stud-
ies agree that cloned code is more stable than non-cloned
code, the studies have two major flaws: (i) each study only
considered a single stability measurement (e.g., lines of code
changed, frequency of change, age of change); and, (ii) only
a small number of subject systems were analyzed and these
were of limited variety.

In this paper, we present a comprehensive empirical study on
code stability using four different stability measuring meth-
ods. We use a recently introduced hybrid clone detection
tool, NiCAD, to detect the clones and analyze their sta-
bility in different dimensions: by clone type, by measuring
method, by programming language, and by system size and
age. Our in-depth investigation on 12 diverse subject sys-
tems written in three programming languages considering
three types of clones reveals that: (i) cloned code is gener-
ally less stable than non-cloned code, and more specifically
both Type-1 and Type-2 clones show higher instability than
Type-3 clones; (ii) clones in both Java and C systems ex-
hibit higher instability compared to the clones in C# sys-
tems; (iii) a system’s development strategy might play a key
role in defining its comparative code stability scenario; and,
(iv) cloned and non-cloned regions of a subject system do
not follow any consistent change pattern.1

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, Reverse Engineering and
Reengineering.

General Terms
Measurement and Experimentation

Keywords
Software Clones, Types of Clones, Code Stability, Modifica-
tion Frequency, Changeability, Overall Instability.

1This work is based on an earlier work: SAC ’12 Proceed-
ings of the 2012 ACM Symposium on Applied Computing,
Copyright 2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2231969.

1. INTRODUCTION
Frequent copy-paste activity by programmers during soft-
ware development is common. Copying a code fragment
from one location and pasting it to another location with
or without modifications cause multiple copies of exact or
closely similar code fragments to co-exist in software sys-
tems. These code fragments are known as clones [22, 25].
Whatever may be the reasons behind cloning, the impact
of clones on software maintenance and evolution is of great
concern.

The common belief is that the presence of duplicate code
poses additional challenges to software maintenance by mak-
ing inconsistent changes more difficult, introducing bugs and
as a result increasing maintenance efforts. From this point of
view, some researchers have identified clones as “bad smells”
and their studies showed that clones have negative impact
on software quality and maintenance [8, 15, 16, 19]. On
the other hand, there has been a good number of empirical
evidence in favour of clones concluding that clones are not
harmful [1, 7, 10, 11, 27]. Instead, clones can be useful from
different points of views [9].

A widely used term to assess the impact of clones on soft-
ware maintenance is stability [7, 12, 13, 15]. In general,
stability of a particular code region measures the extent to
which that code region remains stable (or unchanged) during
the evolution of a software system. If cloned code is more
stable (changes less frequently) as compared to non-cloned
code during software evolution, it can be concluded that
cloned code does not significantly increase maintenance ef-
forts. Different studies have defined and evaluated stability
from different viewpoints which can be broadly divided into
two categories:

(1) Stability measurement in terms of changes: Some
methodologies [7, 12, 15, 6] have measured stability by quan-
tifying the changes to a code region using two general ap-
proaches: (i) determination of the ratio of the number of
lines added, modified and deleted to the total number of
lines in a code region (cloned or non-cloned) [12, 15, 6] and
(ii) determination of the frequency of modifications to the
cloned and non-cloned code [7] with the hypothesis that the
higher the modification frequency of a code region is the less
stable it is.

(2) Stability measurement in terms of age: This ap-
proach [13] determines the average last changed dates of
cloned and non-cloned code of a subject system. The hy-
pothesis is that the older the average last change date of a
code region is, the more stable it is.

To measure the comparative stability of cloned and non-
cloned code, Krinke carried out two case studies [12, 13].

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 20

In his first study, he calculated the comparative instabilities
caused by cloned and non-cloned regions in terms of addi-
tion, deletion and modification in these regions whereas in
a most recent study [13] (elaborated in Section 3.2), he de-
termined the average last change dates of the regions. Both
of these studies suggest cloned code to be more stable than
non-cloned code.

Hotta et al., in a recent study [7], calculated the modification
frequencies of cloned and non-cloned code and found that
the modification frequency of non-cloned code is higher than
that of cloned code.

1.1 Motivation
Though all of the studies [7, 12, 13, 6] generally agreed on
the higher stability of cloned code over non-cloned code, we
conducted our research to address the following drawbacks
of these studies.

(1) The studies only considered limited aspects of stability.

(2) General decisions were made without considering a wide
variety of subject systems.

(3) No study addresses the comparative stabilities as well as
impacts of different clone types. This issue is important in
the sense that different types of clones might have different
impacts (good or bad) on maintenance. Based on impact
variability, we might take care of some specific clone types
while leaving others alone.

(4) Instability of clones on the basis of language variabil-
ity was not measured. This information might be very im-
portant from a managerial perspective. Projects developed
using programming languages that exhibit high clone insta-
bility may require more care regarding cloning activities.

(5) Different studies were conducted on different experimen-
tal setups (e.g. different subject systems, different clone de-
tection tools with different parameters, considering software
releases or revisions at different intervals), which might be
a potential cause behind their contradictory outcomes.

(6) No study performed statistical tests about how signif-
icant is the difference between the metric values of cloned
and non-cloned code. If the metric values regarding cloned
and non-cloned code are not significantly different, then we
do not need to be much worried about clones.

(7) The existing metrics are not sufficient to reveal all as-
pects of changeability (as well as stability) of cloned and
non-cloned code.

1.2 Contribution
Focusing on the issues mentioned above, our study con-
tributes in the following ways.

(1) Considering the count of lines affected in source code
modifications (additions, deletions or changes) we propose a
new method which calculates four new metrics: UP (Unsta-
ble Proportion), UPHL (Unstable Proportion per 100 LOC),
PCRM (Proportion of Code Region Modified), and OICR
(Overall Instability of Code Region) that provide us more
precise information about code changeability in comparison
with existing metrics as well as methods [12, 6] that con-
sidered line counts. The comparison between our proposed
metrics and the existing ones has been elaborated in Section

3.5. We investigated these metrics to compare the stability
of cloned and non-cloned code.

(2) We have investigated four methods in total by imple-
menting them on the same experimental setup and answered
seven research questions as listed in Table 1. One of the four
methods is our proposed new method that has already been
mentioned in the previous point. Two of these methods are
existing and were proposed by Hotta et al. [7] and Krinke
[13]. The last method is our proposed variant of Krinke’s
method [13]. The reasons behind introducing this variant
are elaborated in Section 3.3. The research questions (Table
1) belong to five different dimensions. The first three re-
search questions are answered by investigating the metrics
calculated by our proposed new method. The other four
questions are answered by combining the experimental re-
sults of all four candidate methods.

For detecting clones, we used the recently introduced hybrid
clone detection tool NiCad [3] that combines the strengths
and overcomes the limitations of both text-based and AST-
based clone detection techniques and exploits novel applica-
tions of a source transformation system to yield highly ac-
curate identification of Type-1, Type-2 and Type-3 cloned
code in software systems [20].

Our experimental results on three clone types of 12 subject
systems written in three languages (Java, C and C#) reveal
that:

(1) Cloned code gets modified significantly more often (sup-
ported with Mann-Whitney Wilcoxon (MWW) tests [17])
than non-cloned code.

(2) A significantly higher proportion of cloned LOC is mod-
ified in commit operations compared to non-cloned LOC.

(3) Type-1 and Type-2 clones are potential threats to a
system’s stability while Type-3 clones are possibly not.

(4) Clones in Java and C systems exhibit a higher level of
instabilities as compared to those of C# systems. This is
also statistically supported by Fisher’s Exact Test [5].

(5) Cloned code generally exhibits higher instability than
non-cloned code. However, cloned and non-cloned regions
of subject systems do not follow any consistent change pat-
tern. Moreover, the development strategy may have a strong
impact on the stability of cloned and non-cloned code.

The rest of the paper is organized as follows. Section 2
outlines the relevant research. Section 3 elaborates on the
candidate methods. Our experimental setup is described in
Section 4 and Section 5 contains the experimental results.
A detailed analysis of the experimental results is presented
in Section 6 while Section 7 mentions some possible validity
threats of our study. Section 8 concludes the paper and
describes future directions. The work presented in this paper
is an extended version of our earlier work [18].

2. RELATED WORK
Over the last several years, the impact of clones has been
an area of focus for software engineering research resulting
in a significant number of studies and empirical evidence.
Kim et al. [10] introduced a clone genealogy model to study
clone evolution and applied the model on two medium sized
Java systems. They showed that: (i) refactoring of clones

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 21

Table 1: Research Questions

Research Questions (RQs) Dimensions

RQ1 How often is a particular code region type (cloned or non-cloned) modified
during evolution? Which code region type is modified more often?

RQ2 Which code region type (cloned or non-cloned) has a higher proportion of
LOC modifications in the commit operations?

Comparative stability
centric

RQ3 Which code region type (cloned or non-cloned) exhibits higher instability
compared to the other?

RQ4 Do different types of clones exhibit different stability scenarios? Which
type(s) of clones is (are) more vulnerable to the system’s stability?

Type centric

RQ5 Why and to what extent do the decisions made by different methods on
the same subject system differ?

Method centric

RQ6 Do different programming languages exhibit different stability scenarios? Language centric

RQ7 Is there any effect of system sizes and system ages on the stability of cloned
and non-cloned code?

System centric

may not always improve software quality and (ii) immediate
refactoring of short-lived clones is not required and that such
clones might not be harmful. Saha et al. [27] extended their
work by extracting and evaluating code clone genealogies at
the release level of 17 open source systems and reported that
most of the clones do not require any refactoring effort in
the maintenance phase.

Kapser and Godfrey [9] strongly argued against the conven-
tional belief of harmfulness of clones by investigating dif-
ferent cloning patterns. They showed that: (i) about 71%
of the cloned code has a kind of positive impact in soft-
ware maintenance and (ii) cloning can be an effective way
of reusing stable and mature features in software evolution.
Lozano and Wermelinger et al. performed three studies [14,
15, 16] on the impact of clones on software maintenance
considering method level granularities using CCFinder [2].
They developed a prototype tool CloneTracker [14] to inves-
tigate the changeability of clones. The other studies, though
conducted on a small number of Java systems (4 in [15] and
5 in [16]), reported that clones have a harmful impact on
the maintenance phase because clones often increase main-
tenance efforts and are vulnerable to a system’s stability.

Juergens et al. [8] studied the impact of clones on large
scale commercial systems and suggested that: (i) incon-
sistent changes occurs frequently with cloned code and (ii)
nearly every second unintentional inconsistent change to a
clone leads to a fault. Aversano et al. [1] on the other hand,
carried out an empirical study that combines the clone de-
tection and co-change analysis to investigate how clones are
maintained during evolution or bug fixing. Their case study
on two subject systems confirmed that most of the clones
are consistently maintained. Thummalapenta et al. [28] in
another empirical study on four subject systems reported
that most of the clones are changed consistently and other
inconsistently changed fragments evolve independently.

In a recent study [6] Göde et al. replicated and extended
Krinke’s study [12] using an incremental clone detection
technique to validate the outcome of Krinke’s study. He
supported Krinke by assessing cloned code to be more sta-
ble than non-cloned code in general.

Code stability related research conducted by Krinke [12, 13]
and Hotta et al. [7] referred to in the introduction is elabo-
rated on in the next section.

In our empirical study, we have replicated Krinke’s [13] and
Hotta et al.’s [7] methods and implemented our variant of
Krinke’s method [13] and our proposed new method using
NiCad [3]. Our experimental results and analysis of those
results reveal inportant information about comparative sta-
bilities and harmfulness of three clone types along with lan-
guage based stability trends.

3. STABILITY MEASURING METHODS
This section discusses the three methods and associated met-
rics that we have implemented for our investigation. These
methods follow different approaches and calculate different
metrics but their aim is identical in the sense that each of
these methods takes the decision about whether cloned code
of a subject system is more stable than its non-cloned code.
For this reason we perform a head-to-head comparison of
the stability decisions indicated by the metrics of these three
methods and focus on the implementation and strategic dif-
ferences that cause decision dissimilarities.

3.1 Modification Frequencies
Hotta et al. [7] calculated two metrics: (i) MFd (Modifica-
tion Frequencies of Duplicate code) and (ii) MFn (Modi-
fication Frequencies of Non-Duplicate code) considering all
the revisions of a given codebase extracted from SVN. Their
metric calculation strategy involves identification and check-
ing out of relevant revisions of a subject system, normal-
ization of source files by removing blank lines, comments
and indents, detection and storing of each line of duplicate
code into the database. The differences between consecu-
tive revisions are also identified and stored in the database.
Then, MCd (Modification Count in Duplicate code region)
and MCn (Modification Count in Non-Duplicate code re-
gion) are determined exploiting the information saved in the
database and finally MFd and MFn are calculated using the
following equations [7]:

MFd =
∑rεRMCd(r)

∣R∣
∗
∑rεR LOC(r)

∑rεR LOCd(r)
(1)

MFn =
∑rεRMCn(r)

∣R∣
∗
∑rεR LOC(r)

∑rεR LOCn(r)
(2)

Here, R is the number of revisions of the candidate subject
system. MCd(r) and MCn(r) are the number of modifica-
tions in the duplicate and non-duplicate code regions respec-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 22

tively between revisions r and (r+1). MFd and MFn are the
modification frequencies of the duplicate and non-duplicate
code regions of the system. LOC(r) is the number of LOC
in revision r. LOCd(r) and LOCn(r) are respectively the
numbers of duplicate and non-duplicate LOCs in revision r.

3.2 Average Last Change Date
Krinke [13] introduced a new concept of code stability mea-
surement by calculating the average last change dates of
cloned and non-cloned regions of a codebase using the blame
command of SVN. He considers only a single revision (gener-
ally the last revision) unlike the previous method proposed
by Hotta et al. [7] that considers all the revisions up to the
last one. The blame command on a file retrieves each line’s
revision and date when the line was last changed. He calcu-
lates the average last change dates of cloned and non-cloned
code from the file level and system level granularities.

File level metrics: (1) Percentage of files where the av-
erage last change date of cloned code is older than that of
non-cloned code (PFc) (cloned code is older than non-cloned
code) in the last revision of a subject system. (2) Percent-
age of files where the average last change date of cloned code
is newer than that of non-cloned code (PFn) (cloned code
is younger than non-cloned code) in the last revision of a
subject system.

System level metrics: (1) Average last change date of
cloned code (ALCc) for the last revision of a candidate sub-
ject system. (2) Average last change date of non-cloned code
(ALCn) for the last revision of a candidate subject system.
To calculate file level metrics in our implementation, we con-
sidered only the analyzable source files, which excludes two
categories of files from consideration: (i) files containing no
cloned code and (ii) fully cloned files. But, system level met-
rics are calculated considering all source files. According to
this method, the older the code is the more stable it is.

Calculation of average last change date: Suppose five
lines in a file correspond to 5 revision dates (or last change
dates) 01-Jan-11, 05-Jan-11, 08-Jan-11, 12-Jan-11, 20-Jan-
11. The average of these dates was calculated by deter-
mining the average distance (in days) of all other dates
from the oldest date 01-Jan-11. This average distance is
(4+7+11+19)/4 = 10.25 and thus the average date is 10.25
days later to 01-Jan-11 yielding 11-Jan-11.

3.3 Proposed Variant of Krinke’s Method
We have proposed a variant of Krinke’s methodology [13] to
analyze the longevity (stability) of cloned and non-cloned
code by calculating their average ages. We also have used
the blame command of SVN to calculate the age for each of
the cloned and non-cloned lines in a subject system.

Suppose we have several subject systems. For a specific
subject system we work on its last revision R. By applying
a clone detector on revision R, we can separate the lines
of each source file into two disjoint sets: (i) containing all
cloned lines and (ii) containing all non-cloned lines. Differ-
ent lines of a file contained in R can belong to different pre-
vious revisions. If the blame command on a file assigns the
revision r to a line x, then we understand that line x was pro-
duced in revision r and has not been changed up to the last
revision R. We denote the revision of x as r = revision(x).
The creation date of r is denoted as date(r). In the last

revision R, we can determine the age (in days) of this line
by the following equation:

age(x) = date(R) − date(revision(x)) (3)

We have calculated the following two average ages for cloned
and non-cloned code from system level granularity.

1. Average age of cloned code (AAc) in the last revision of a
subject system. This is calculated by considering all cloned
lines of all source files of the system.

2. Average age of non-cloned code (AAn) in the last revision
of a subject system. AAn is calculated by considering all
non-cloned lines of all source files of the system.
According to our method, a higher average age is the impli-
cation of higher stability.

We have introduced this variant to address the following
issues in Krinke’s method.

1. blame command of SVN gives the revisions as well as
revision dates of all lines of a source file including its com-
ments and blank lines. Krinke’s method does not exclude
blank lines and comments from consideration. This might
play a significant role on skewing the real stability scenario.

2. As indicated in the average last change date calculation
process, Krinke’s method often introduces some rounding
errors in its results. This might force the average last change
dates of cloned and non-cloned code to be equal (There are
examples in Section 5).

3. The method’s dependability on the file level metrics
sometimes alters the real stability scenario. The type-3
case of ‘Greenshot’ is an example where both Hotta et al.’s
method and our proposed variant make a similar decision
(non-cloned code is more stable); but, the file level metrics of
Krinke’s method alters this decision. The system level met-
rics (ALCs) of Krinke’s method could not make a stability
determination because the metrics corresponding to cloned
(ALCc) and non- cloned (ALCn) code were the same.

Our proposed variant overcomes these issues while calcu-
lating stability results. It does not calculate any file level
metrics because its system level metrics are adequate in de-
cision making. It should also be mentioned that Hotta et
al.’s method also ensures the exclusion of blank lines and
comments from consideration through some preprocessing
steps prior to clone detection.

3.4 Proposed New Method and Metrics
Hotta et al.’s method [7] calculates modification frequency
by only considering the count of modifications that occurred
in a subject system without considering the number of lines
affected by those modifications. Focusing on this issue, we
propose a new method that calculates four new metrics for
measuring the stability (as well as changeability) of a par-
ticular code region. The descriptions and calculation proce-
dures of the metrics are given below.

UP (Unstable Proportion): Unstable proportion (UP)
of a particular code region (cloned or non-cloned) is the pro-
portion of the commit operations in which that code region
is modified.

Suppose C is the set of all commit operations through which
a subject system has evolved. The two sets of commit op-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 23

erations in which the cloned and non-cloned regions of this
system was modified are Cc and Cn respectively. We should
note that the sets Cc and Cn might not be disjoint. The
unstable proportions of cloned and non-cloned regions are
calculated using the following two equations, respectively.

UPc =
100 × ∣Cc∣

∣C ∣
(4)

UPn =
100 × ∣Cn∣

∣C ∣
(5)

Here, UPc is the unstable proportion of cloned code and
UPn is the unstable proportion of non-cloned code.

UPHL (Unstable Proportion per 100 LOC): Gen-
erally the UP of a particular code region (cloned or non-
cloned) is positively proportional to the total LOC of that
region. UPn is expected to be higher than the correspond-
ing UPc for a particular subject system. To determine how
often a particular code region is modified, we should also
consider the total LOC of that region. From this perspec-
tive we calculated the UPHL using equations Eq. 6 and Eq.
7. According to the equations, the UPHL of a particular re-
gion is equal to the UP per 100 LOC of that region. In other
words, UPHL determines the likelihood of being modified per
100 LOC of a code region. As there are many revisions of a
particular software system, we determined the total LOC of
the cloned or non-cloned region of this system by calculating
the average LOC per revision of the corresponding region.

UPHLc =
100 ×UPc × ∣C ∣

∑ciεC
LOCcci

(6)

UPHLn =
100 ×UPn × ∣C ∣

∑ciεC
LOCnci

(7)

Here, UPHLc and UPHLn are the unstable proportions
per 100 LOC of the cloned and non-cloned regions respec-
tively. LOCc(ci) is the count of total cloned LOC of the
revision corresponding to the commit ci. Also, LOCn(ci)
is the count of total non-cloned LOC of the revision corre-
sponding to the commit ci.

PCRM (Proportion of Code Region Modified): For
a particular code region (cloned or non-cloned) we calcu-
late the PCRM by determining the proportion of that code
region getting modified in commit operations. Here, we
consider only those commit operations where the particular
code region had some modifications. Considering the pre-
vious example, we can calculate the PCRM of cloned and
non-cloned code according to the following equations.

PCRMc =
100 ×∑ciεCc

LCc(ci)

∑ciεCc
LOCc(ci)

(8)

PCRMn =
100 ×∑ciεCn

LCn(ci)

∑ciεCn
LOCn(ci)

(9)

Here, PCRMc and PCRMn are respectively the proportions
of cloned and non-cloned regions that are modified. LCc(ci)
and LCn(ci) are the number of lines changed in cloned and
non-cloned regions in commit operation ci.

OICR (Overall instability of code region): We calcu-
late the OICR of a particular code region (cloned or non-
cloned) by multiplying its UP with its PCRM. We see that
the PCRM determines the proportion of a particular code
region being modified per commit operation and UP deter-
mines the proportion of commit operations in which that
particular code region is being modified. Thus, the multipli-
cation of these two will determine the instability exhibited
by the code region throughout the evolution. We calculate
OICR for cloned and non-cloned code according to the fol-
lowing two equations.

OICRc = UPc × PCRMc (10)

OICRn = UPn × PCRMn (11)

Here, OICRc and OICRn are respectively the overall in-
stabilities of cloned and non-cloned regions of a software
system.

3.5 Comparison of Our Proposed Metrics With
Existing Ones

Two existing studies performed by Krinke [12] and Göde
and Harder [6] investigated some metrics that are similar
to our proposed metric PCRM. Krinke [12] computed the
instabilities of cloned and non-cloned code with respect to
addition, deletion, and change. Göde and Harder extended
Krinke’s study [12] considering tokens instead of lines. While
Göde and Harder analyzed all of the revisions of a particular
software system, Krinke considered 200 weekly snapshots
for each of his candidate systems. However, none of these
studies could answer the first and second research questions
(RQ 1 and RQ 2 in Table 1).

RQ 1 was not addressed because no existing study defined
and evaluated a relevant metric. Our proposed metric UPHL
addresses this question.

Also, RQ 2 was not addressed by any existing studies. Our
metric PCRM answers this question. The studies performed
by Krinke [12] and Göde and Harder [6] computed some re-
lated metrics. However, the strategic difference between our
proposed metric (PCRM) and the existing ones is that while
calculating the metric value for a particular code region we
considered only those commits where that particular code
region was modified excluding those commits where that re-
gion did not have any modifications. However, the existing
studies did not exclude commits that do not have any ef-
fect on a particular code region while calculating the metric
value for the region.

We think that if a particular commit does not affect a par-
ticular code region, we should not consider that commit for
investigating the stability of that region, because that com-
mit is not responsible for increasing the instability of that
region. We call such a commit an ineffective commit for that
particular region. As the previous studies [12, 6] did not ex-
clude these ineffective commits for a particular region while
investigating the region’s instability, no study could deter-
mine what proportion of code from a particular region is
being modified when that region is actually receiving some
changes (due to effective commits). Our proposed metric
PCRM eliminates this drawback of the similar existing met-
rics.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 24

3.6 Major Difference Between Hotta’s Method
and Our Proposed New Method

Hotta et al.’s method relies on the count of modifications for
making stability decisions disregarding the number of lines
affected by the modifications. However, our proposed new
method relies on the count of affected lines. In a particular
commit operation, l (l >0) consecutive lines of a particular
code region might get modified. According to Hotta et al.’s
method the count of modifications is one. It calculates mod-
ification frequencies by considering this modification count
disregarding the number of lines modified. However, our
proposed new method calculates PCRM and OICR consid-
ering the count of affected lines (for this example l).

This difference may cause disagreements in the stability de-
cisions made by the two methods. Suppose the cloned and
non-cloned regions of a software system received respectively
mc and mnc modifications in a commit operation. The to-
tal number of lines affected by these mc and mnc modifi-
cations are lc and lnc respectively. If mc >mnc, Hotta et
al.’s method will decide that cloned code is more unstable.
However, in this situation our proposed new method may
decide the opposite, since lnc could be greater than lc.

3.7 Major Difference Between Hotta’s Method
and the Method Proposed by Krinke and
Its Variant

Hotta et al.’s method [7] considers all modifications to a
region from its creation and it does not matter when the
modifications to the region are applied. The other two meth-
ods only consider the last modification (which can also be
creation) and do not consider any modification before.

Suppose a file contains two lines denoted by x and y in re-
vision 1 and this file passed through 100 commits during
which x had 5 changes and y had only one change. Let the
change on y occur at the 99th commit and the last change on
x occur at the 50th commit. A blame command on the last
revision (100) of this file will assign x revision 50 and y will
be assigned revision 99. According to both Krinke’s method
and our variant, x is older than y because the revision date
corresponding to revision 50 is much older than the revi-
sion date corresponding to revision 99 and thus, x will be
suggested to be more stable than y by these two methods.
On the other hand, the method proposed by Hotta et al.
counts the number of modifications that occurred on these
two lines. Consequently, Hotta et al. will suggest y to be
more stable than x because the modification frequency of x
will obviously be greater than that of y.

4. EXPERIMENTAL SETUP
We implemented all four candidate methods in a common
framework in Java using MySQL for the back-end database.
Instead of using any existing implementations, we have reim-
plemented the two already existing methods (proposed by
Hotta et al.[7] and Krinke [13]) as we wanted to have a
common framework for comparison. Our selected subject
systems and setup of the clone detection tool are described
below.

4.1 Clone Detection
We used the NiCad [3, 21] clone detection tool to detect
clones in the subject systems in our study. NiCad can detect

Table 2: NiCad Settings

Clone
Types

Identifier Re-
naming

Dissimilarity
Threshold

Type 1 none 0%
Type 2 blindrename 0%
Type 3 blindrename 20%

Table 3: Subject Systems

Systems Domains LOC Rev

J
a
v
a

DNSJava DNS protocol 23,373 1635
Ant-
Contrib

Web Server 12,621 176

Carol Game 25,092 1699
Plandora Project Management 79,853 32

C

Ctags Code Def. Generator 33,270 774
Camellia Image Processing 100,891 608
QMail Ad-
min

Mail Management 4,054 317

Hashkill Password Cracker 83,269 110

C
#

GreenShot Multimedia 37,628 999
ImgSeqScan Multimedia 12,393 73
Capital
Resource

Database Management 75,434 122

MonoOSC Formats and Protocols 18,991 355

Rev = Revisions

both exact and near-miss clones at the function or block level
of granularity. We detected block clones with a minimum
size of 5 LOC in the pretty-printed format that removes
comments and formatting differences.

NiCad can provide clone detection results in two ways: (1)
by separating three types of clones (Type-1, Type-2, Type-
3) and (2) by combining all three types of clones. The NiCad
settings for detecting the three types of clones is provided in
Table 2. The dissimilarity threshold means that the clone
fragments in a particular clone class may have dissimilarities
up to that particular threshold value between the pretty-
printed and/or normalized code fragments. We set the dis-
similarity threshold to 20% with blind renaming of identi-
fiers for detecting Type-3 clones. For all these settings above
NiCad was shown to have high precision and recall [20]. We
have used NiCad’s combined type results for answering the
first three research questions. The remaining four questions
have been answered by investigating the three types of clones
separately.

4.2 Subject Systems
Table 3 lists the details of the subject systems used in our
study. We selected these subject systems because they are
diverse in nature, differ in size, span 11 application domains,
and are written in three programming languages. Also, most
of these systems differ from those included in the studies of
Krinke[13] and Hotta et al.[7], which was intentionally done
to retrieve exact stability scenarios.

5. EXPERIMENTAL RESULTS
For answering the first three research questions we applied
our proposed new method on the combined type clone detec-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 25

Table 4: Decision Making Strategy

Method
Metrics Decision Making

CC NC CC More
Stable

NC More
Stable

Proposed
Method

OICRc OICRn OICRc
<OICRn

OICRn
<OICRc

Hotta et
al. [7]

MFd MFn MFd
<MFn

MFn <MFd

Krinke
[13]

ALCc,
PFc

ALCn,
PFn

ALCc is
older

ALCn is
older

Krinke’s
Variant

AAc AAn AAc
>AAn

AAn >AAc

Special Decision for Krinke’s Method
if ALCc = ALCn then
PFc >PFn implies CC more stable
PFn >PFc implies NC more stable

CC = Cloned Code NC = Non-cloned Code

tion results of each of the 12 subject systems and obtained
the values of the four new metrics. However, for answering
the remaining questions we applied each of the four methods
on each of the three types of clones of each of the 12 candi-
date systems and calculated the metric values for three types
of clones separately. By applying our proposed new method
on the individual type results we obtained the value of the
fourth metric (OICR) only. So, in our investigation regard-
ing the research questions 4 to 7, each of the four methods
contributed one metric (4 metrics in total).

We should mention that we have three different implementa-
tions corresponding to three types of clones for each of the
candidate methods. Thus, we have 12 (4 subject systems
× 3 clone types) stability evaluation systems in total. For
answering the RQs 4 to 7, we applied each of these 12 sta-
bility evaluation systems on each of the 12 subject systems
to get the values of the stability metrics. So, we have 144
(12 subject systems × 12 stability evaluation systems) sets
of metric values from 144 different experiments. Each set
contains two values: (1) the metric value for cloned code (of
a particular type), and (ii) the metric value for non-cloned
code (corresponding to that particular type). From these
two values, we can make a decision about comparative sta-
bility of cloned and non-cloned code. For this reason, we
have called each of these metric value sets a decision point.
Finally, our investigation regarding the RQs 4 to 7 depends
on these 144 decision points obtained by conducting 144 dif-
ferent experiments. However, for answering the RQs 1 to 3
we conducted 12 experiments (by applying our proposed new
method on the combined type results of 12 subject systems).
The following paragraphs in this section describes the tables
that contain the results obtained from the experiments.

Table 5 shows the average last change dates obtained by
applying Krinke’s method. Table 7 and Table 9 contain
respectively the modification frequencies and average ages
of cloned and non-cloned code. File level metrics for two
special cases (Table 4) are shown in Table 6. The overall
instabilities of cloned and non-cloned code obtained by ap-
plying our proposed new method are presented in Table 8.
Interpretation of the table data is explained below.

Almost all of the tables are self-explanatory. Decision mak-
ing strategies for Tables 5, 7, 9, and 8 are elaborated in Table

Table 6: File Level Metrics for Two Systems

Subject System Clone Type PFc PFn

Plandora Type-2 6 4
Greenshot Type-3 43 12

Table 7: Modification Frequencies of Cloned (MFd)
and Non-cloned (MFn) code by Hotta et al.’s method

Type 1 Type 2 Type 3
Systems MFd MFn MFd MFn MFd MFn

J
a
v
a

DNSJava 21.61 7.12 19.34 6.99 7.93 8.66
Ant-Contrib 3.62 1.49 2.02 1.52 1.43 1.59
Carol 8.15 6.60 4.07 3.69 9.91 8.97
Plandora 0.44 0.92 0.45 0.97 0.55 1.11

C

Ctags 6.37 3.82 7.19 7.17 6.71 3.68
Camellia 18.50 18.04 42.37 17.73 30.02 17.53
QMailAdmin 5.09 2.74 8.83 5.47 8.24 2.58
Hash Kill 61.24 115.22 59.92 115.64 65.75 118.04

C
#

GreenShot 7.94 6.07 6.92 6.07 8.13 6.06
ImgSeqScan 0 20.93 0 21.06 0 21.29
Capital Re-
source

0 67.15 0 67.31 3.63 67.11

MonoOSC 8.58 29.14 7.92 29.23 10.62 29.63

4. However, for our proposed new method we have specified
only one metric Overall Instability of Code Region (out of
four) in Table 4. The other three metrics are investigated in
section 6.1.

The stability decisions (as per Table 4) of all the metric val-
ues contained in the Tables 5, 7, 8, and 9 are summarized
in Table 10, which contains decisions for 144 (12 subject
systems x 4 methods x 3 clone types) decision points corre-
sponding to 144 cells containing stability decision symbols
(‘⊕’ and ‘⊖’, explained in the table).

For decision making regarding Krinke’s method we prior-
itized the system level metrics (ALCc and ALCn) as they
represent the exact scenarios of the whole system. There are
only two examples of special cases as per Table 4: (i) Type-3
case of ‘Greenshot’ and (ii) Type-2 case of ‘Plandora’. For
these, the system level metrics (Table 5) are the same and
thus, we based the decisions on the file level metrics. We
show the file level metrics for these two cases in Table 6
without providing them for all 36 cases (12 subject systems
x 3 clone types).

6. ANALYSIS OF RESULTS
We present our analysis of the experimental results in five
dimensions and answer the seven research questions intro-
duced in Table 1.

To address the first three research questions we produced
four graphs: Fig. 1, Fig. 2, Fig. 3, and Fig. 4. Table
11 contains 36 (12 subject systems, 3 clone types) decision
points and was developed from Table 10 for the purpose
of answering research questions 4 to 7. Each cell in the
table corresponds to a decision point and implies agreement
(‘⊕’ or ‘⊖’) or disagreement (‘⊗’) of the candidate methods
regarding stability decisions. The meanings of ‘⊕’, ‘⊖’ and
‘⊗’ are provided in the tables.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 26

Table 5: Average Last Change Dates of Cloned (ALCc) and Non-cloned (ALCn) code

Clone Types Type 1 Type 2 Type 3
Systems ALCc ALCn ALCc ALCn ALCc ALCn

J
a
v
a

DNSJava 24-Mar-05 26-Apr-04 21-Jan-05 24-Apr-04 31-Mar-05 19-Apr-04
Ant-Contrib 22-Sep-06 03-Aug-06 18-Sep-06 02-Aug-06 08-Sep-06 03-Aug-06
Carol 25-Nov-07 18-Jan-07 25-Nov-07 14-Jan-07 12-Jun-05 27-Feb-07
Plandora 31-Jan-11 01-Feb-11 01-Feb-11 01-Feb-11 31-Jan-11 01-Feb-11

C

Ctags 27-May-07 31-Dec-06 24-Mar-07 31-Dec-06 17-Sep-06 01-Jan-07
Camellia 04-Nov-07 14-Nov-07 17-Jul-08 14-Nov-07 8-Feb-09 9-Nov-07
QMail Admin 07-Nov-03 24-Oct-03 19-Nov-03 24-Oct-03 26-Nov-03 24-Oct-03
Hash Kill 14-Jul-10 02-Dec-10 27-Jul-10 02-Dec-10 19-Jul-10 02-Dec-10

C
#

GreenShot 11-Jun-10 21-Jun-10 12-Jun-10 21-Jun-10 20-Jun-10 20-Jun-10
ImgSeqScan 19-Jan-11 14-Jan-11 17-Jan-11 14-Jan-11 19-Jan-11 14-Jan-11
Capital Resource 13-Dec-08 12-Dec-08 11-Dec-08 12-Dec-08 10-Dec-08 12-Dec-08
MonoOSC 08-Apr-09 21-Mar-09 05-Mar-09 21-Mar-09 21-Jan-09 22-Mar-09

Table 8: Overall Instabilities of Cloned (OICRc) and Non-cloned (OICRn) code by our proposed new method

Type 1 Type 2 Type 3
Systems OICRc OICRn OICRc OICRn OICRc OICRn

J
a
v
a

DNSJava 12.41 12.62 20.85 16.67 21.21 16.56
Ant-Contrib 37.16 7.28 3.65 8.53 10.61 7.94
Carol 6.06 8.64 5.31 8.79 12.41 8.00
Plandora 10.5 3.72 4.99 3.83 6.17 3.36

C

Ctags 4.63 9.37 9.72 9.33 5.90 9.65
Camellia 16.34 5.31 24.84 5.29 25.60 8.56
QMailAdmin 49.84 32.37 44.77 32.38 52.50 30.72
Hash Kill 7.42 53.69 0.71 53.44 11.75 55.23

C
#

GreenShot 10.76 10.18 8.27 10.29 10.63 10.24
ImgSeqScan 0 243.35 0 246.23 0 247.34
CapitalResource 0 9.88 0 9.78 2.05 9.83
MonoOSC 7.28 37.32 8.82 36.96 12.56 37.89

Table 9: Average Age in days of Cloned (AAc) and Non-cloned (AAn) code by the proposed variant

Type 1 Type 2 Type 3
Systems AAc AAn AAc AAn AAc AAn

J
a
v
a

DNSJava 2181 2441 2247 2443 2210.9 2446.9
Ant-Contrib 853.6 903.7 896.1 903.3 870.6 904.4
Carol 189.6 210.9 190.3 211.3 227 209.6
Plandora 51.82 51.32 50.6 51.4 51.5 51.32

C

Ctags 1301.4 1345.2 1351.9 1345 1564.8 1343.4
Camellia 1066.8 1056.7 810.9 1057.3 604.9 1062.4
QMail Admin 2664.2 2678.1 2651.7 2678.2 2644.6 2678.3
Hash Kill 261.5 118.5 250.3 118.4 257.9 118

C
#

Green Shot 103.1 97.1 102.9 97.1 94.5 97.2
ImgSeq Scan 14 20 15.6 20.3 14.4 20.4
Capital Resource 86.7 86.5 88 86.5 89.3 86.5
Mono OSC 315.4 313.5 347.9 313 378 312.3

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 27

Table 10: Comparative Stability Scenarios

Methods Krinke [13] Hotta et al.[7] Variant Proposed new
Systems T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

J
a
v
a

DNSJava ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖

Ant-Contrib ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖

Carol ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ ⊖

Plandora ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ ⊕ ⊖ ⊖ ⊖
C

Ctags ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ ⊖ ⊕

Camellia ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖

QMailAdmin ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Hash Kill ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

C
#

GreenShot ⊕ ⊕ ⊕ ⊖ ⊖ ⊖ ⊕ ⊕ ⊖ ⊖ ⊕ ⊖

ImgSeqScan ⊖ ⊖ ⊖ ⊕ ⊕ ⊕ ⊖ ⊖ ⊖ ⊕ ⊕ ⊕

CapitalResource ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

MonoOSC ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕=Cloned Code More Stable

⊖=Non-Cloned Code More Stable
T1, T2 and T3 denote clone types 1, 2 and 3 respectively

Table 11: Overall stability decisions by methods

Lang. Java C C#

C
lo

n
e

T
y
p

e
s

D
N

S
J
av

a

A
n
t-

C
o
n
tr

ib

C
a
ro

l

P
la

n
d
o
ra

C
ta

g
s

C
a
m

el
li
a

Q
M

a
il

A
d
m

in

H
a
sh

K
il
l

G
re

en
S
h
o
t

Im
g
S
eq

S
ca

n

C
a
p
it

a
l

R
es

o
u
rc

e

M
o
n
o
O

S
C

Type-1 ⊖ ⊖ ⊖ ⊕ ⊖ ⊗ ⊖ ⊕ ⊗ ⊗ ⊕ ⊕

Type-2 ⊖ ⊖ ⊖ ⊗ ⊖ ⊖ ⊖ ⊕ ⊕ ⊗ ⊕ ⊕

Type-3 ⊖ ⊖ ⊗ ⊕ ⊕ ⊖ ⊖ ⊕ ⊖ ⊗ ⊕ ⊕

⊕=Most of the methods agree with ⊕
⊖=Most of the methods agree with ⊖
⊗=Decision conflict (Two methods agree with ⊕ and

the remaining two methods agree with ⊖)

For example, in Table 10 three methods (excluding our pro-
posed new method) agree there is higher Type-1 clone insta-
bility in ‘Ctags’. For the Type-3 case in ‘Carol’, two methods
(the method proposed by Krinke and the proposed variant
of Krinke’s method) agree there is higher cloned code sta-
bility, whereas the other two methods agree there is higher
non-cloned code stability. Thus, in Table 11, Type-1 clones
for ‘Ctags’ is marked with ‘⊖’ and Type-3 clones for ‘Carol’
is marked with ⊗.

6.1 Analysis Regarding the Comparative Sta-
bility of Cloned and Non-cloned Code

6.1.1 Analysis regarding UP and UPHL
From the graph in Fig.1 presenting the unstable propor-
tions of cloned and non-cloned code we see that the un-
stable proportion of non-cloned code is always higher than
that of cloned code. This is obvious because a larger code re-
gion would generally require more modifications to be main-
tained. To get more precise information we determined the

UPHL for cloned and non-cloned regions of each of the can-
didate systems. The comparative scenario between UPHLc
and UPHLn is presented in Fig. 2.

According to this graph, for most of the subject systems (11
out of 12) UPHLc >UPHLn. Thus, cloned code is more
likely to be modified compared to non-cloned code. In answer
to the first research question (RQ 1) we can say that cloned
code is modified more often than non-cloned code.

We performed the MWW (Mann-Whitney Wilcoxon) test
[17] on the observed values (UPHLc and UPHLn) for the 11
subject systems with a higher UPHLc to determine whether
UPHLc is significantly higher than UPHLn. The two tailed
probability value (p-value) for this test is 0.00244672. The
p-value is much less than 0.05 and it implies that UPHLc
is significantly higher than UPHLn for our candidate sub-
ject systems. Thus, according to our experimental result,
cloned code is modified significantly more often than non-
cloned code.

6.1.2 Analysis regarding PCRM
The graph in Fig. 3 presents the comparison between the
PCRMc and PCRMn of the each of the candidate systems.
We see that for most of the subject systems (10 out of 12),
PCRMc >PCRMn. For one (ImgSeqScan) of the remaining
two subject systems, PCRMc = 0 because the cloned regions
of this subject system did not have any modifications. Thus,
in answer to the second research question (RQ 2) we can say
that the proportion of cloned regions (i.e., the proportion of
cloned LOC) modified due to effective commits is generally
higher than the proportion of the non-cloned regions getting
modified due to effective commits.

Considering the 10 subject systems with higher PCRMc we
performed the MWW (Mann-Whitney Wilcoxon) test [17]
on the observed values of PCRMc and PCRMn to deter-
mine whether PCRMc is significantly higher than PCRMn

for these systems. The two tailed probability value (p-value)
regarding the test is 0.01854338. We see that the p-value is
less than 0.05. Thus, the difference between PCRMc and
PCRMn is marginally significant according to our findings.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 28

Figure 1: Unstable proportions (UP) of cloned and non-cloned code

Figure 2: Unstable proportion per 100 LOC (UPHL) of cloned and non-cloned code

Figure 3: Proportions of cloned and non-cloned regions getting modified (PCRM)

Figure 4: Overall instabilities of cloned and non-cloned code (OICR)

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 29

6.1.3 Analysis regarding OICR
The comparison of the overall instabilities of the cloned and
non-cloned regions of the candidate systems is presented in
Fig. 4. According to this graph seven subject systems have
higher overall instability of cloned code (higher OICRc)
while the remaining five subject systems have the oppo-
site. For one (ImgSeqScan) of these remaining five systems,
OICRc equals zero because cloned regions of this system did
not get modified. In other words, the cloned regions of this
system did not have any effective commits. However, the
comparison scenario presented by the graph indicates that
in the presence of effective commits, overall instability of a
cloned region is generally higher than that of a non-cloned
region.

6.1.4 Analysis Result
From the analysis of our experimental results regarding the
comparative stability of cloned and non-cloned code, we see
that (1) cloned code gets modified significantly more often
than non-cloned code, (2) the proportion of cloned region
getting modified due to effective commits (defined in the
last paragraph of Section 3.5) is higher than that of non-
cloned region, and (3) finally, in answer to the third research
question (RQ 3) we can say that the overall instability of
cloned code is generally higher than that of non-cloned code.
The comparative scenario implies that software clones are
generally less stable than non-cloned code and thus, clones
should be managed with proper care to increase the stability
of software systems.

6.2 Type Centric Analysis
In this analysis, we tried to answer the fourth research ques-
tion (Table 1) by investigating how a particular method’s
decisions on a particular subject system vary with the vari-
ation of clone types. We have the following observations.

The stability decisions made by a method on a specific sub-
ject system corresponding to three types of clones are similar
for 31 cases with some minor variations for the remaining
cases. That is, Table 10, shows there are 64.58% similar
cases among 48 cases. Each case consists of three decisions
for three types of clones made by a particular method on a
particular subject system. As an example of variations, con-
sider the decisions made by Hotta’s method for ‘DNSJava’.
For the Type-3 case (Table 7), MFd < MFn suggests that
Type-3 clones are more stable than the corresponding non-
cloned code. However, according to this method, Type-1 and
Type-2 clones of ‘DNSJava’ are much less stable than non-
cloned code (the difference of MF s for the Type-3 case is
smaller compared to the differences for the other two cases).
We analyzed the experimental results in the following two
ways.

6.2.1 Analysis 1
This analysis is based on the agreement-disagreement sce-
nario of the Table 11. According to the agreed decisions
points (Table 11) of the Type-1 case:

(i) clones decrease the stability of a system with probability
= No. of cells with cloned code less stable/total no. of cells
= 5/12 = 0.42.

(ii) non-cloned code decreases the stability of a system with
probability = 4/12 = 0.33.

Figure 5: Type centric analysis

For the Type-2 case, these two probabilities are 0.50 (for
cloned code) and 0.33 (for non-cloned code) respectively.
So, for both of these cases (Type-1 and Type-2) cloned code
has a higher probability of decreasing the system’s stability.
But, for Type-3 case these two probabilities are the same
(0.42 for both cloned and non-cloned code). We see that for
both Type-1 and Type-2 cases, clones have higher probabil-
ity of making a system unstable compared to the probability
of corresponding non-cloned code. However, Type-3 clones
do not appear to be more unstable than non-cloned code
according to our findings.

6.2.2 Analysis 2
In this case, we analyzed the data in Table 10. In this table,
each type of clones contribute 48 decision points in total.
Considering these 48 decision points (for each type of clones)
we calculated the proportions of decision points agreeing
with higher instability of cloned or non-cloned code. These
proportions are plotted in Fig. 5.

According to this graph, the higher proportion of decision
points belonging to both Type-1 and Type-2 case agree with
the higher instability of cloned code compared to the Type-3
case. Thus, Type-1 and Type-2 clones are more vulnerable
in the software systems compared to the vulnerability ex-
hibited by Type-3 clones.

6.2.3 Analysis Result
Both Type-1 clones (created by exact copy-paste activities),
and Type-2 clones (created by renaming identifiers and chang-
ing data types) should be given more attention during the
development and maintenance phase.

6.3 Method Centric Analysis
We see that Table 10 contains 144 decision points where
each method contributes 36 decisions (corresponding to 12
systems and 3 clone types). From this we can retrieve the
decision making scenario presented in Table 12 exhibited by
the candidate methods. According to this table, the major-
ity of the methods (three out of four) agree there is higher
instability in cloned code. However, there are decision dis-
agreements among the methods. The disagreements have
been analyzed in the following way.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 30

Figure 6: Method centric analysis regarding dis-
agreements

6.3.1 Analysis of disagreements
We see that in Table 10 each method contributes 36 deci-
sion points. From this table we determined the percentage
of disagreements for each pair of methods. For each deci-
sion point belonging to a particular method we get a corre-
sponding decision point in another method. For each pair of
methods, we see whether the corresponding decision points
are conflicting (making different stability decisions) or not.
From 36 sets of corresponding points for a particular method
pair, we determine the proportion of conflicting sets. These
proportions are shown in the graph of Fig.6. We have the
following observations from the graph.

(1) We see that the method proposed by Krinke and its
variant have the lowest proportion of conflicts. As both of
these methods work on the last revision of a subject sys-
tem they should exhibit a higher proportion of agreements
in their decisions. The reason behind the observed disagree-
ments is that the proposed variant excludes blank lines and
comments from consideration while calculating average ages
of cloned and non-cloned code. But, Krinke’s method is bi-
ased by the blank lines and comments because it does not
exclude these from consideration while determining average
last change dates.

(2) Each of the methods proposed by Krinke and its variant
has strong disagreements with each of the other two methods
(proposed by Hotta et al. and our proposed new method).
The reason behind this disagreement is that while both of
the methods proposed by Hotta et al. and our proposed new
method examine each of the existing revisions of a particular
software system, the other two methods examine only the
last revision for making stability decisions. In the following
example we explain an observed strong disagreement.

Example and explanation of a strong disagreement:
We consider ‘ImqSeqScan’ as an (extreme) example. For
each clone type, each of the methods proposed by Hotta et
al. and the proposed new method shows strong disagree-
ment to the decision of Krinke’s method and its variant.
Each of the three types of clones was suggested to be more
stable than non-cloned code by the methods proposed by

Table 12: Stability w.r.t. candidate methods

Decision Pa-
rameters

% of Decision Points

Krinke
[13]

Hotta
et al.[7]

Proposed
variant

Proposed
New

Non-cloned
code more
stable (cloned
code less sta-
ble)

55.56 52.78 52.78 47.22

Cloned code
more stable

44.44 47.22 47.22 52.78

Hotta et al. (Table 7) and the proposed new method (Ta-
ble 8). However, both Krinke’s method and its variant yield
the opposite decisions (Table 5 and 9). More interestingly,
both Hotta et al.’s method and our proposed new method
reveal that the cloned regions of ‘ImgSeqScan’ did not re-
ceive any change (modification frequencies of cloned code
is 0 according to the Table 7, overall instability of cloned
code is 0 according to the Table 8) during the entire lifetime
(consisting of 73 commit transactions) where the other two
methods show that the cloned code is significantly younger.
In this case the regions of cloned code have only been cre-
ated lately and have not been modified after creation. The
following explanation will clarify this.

Suppose a subject system receives 100 commit transactions.
Some clone fragments were created in some of these com-
mits but no existing clone fragment was modified at all. In
such a case, both Hotta et al.’s method and our proposed
new method will see that there are no modifications in the
cloned region. As a result, MFd (for Hotta et al.’s method)
and OICRc (for the proposed new method) will be zero.
On the other hand, the blame command will retrieve the
creation dates of the clone fragments existing in the last
revision of the system and Krinke’s method will determine
the average last change date for the cloned region consid-
ering these creation dates. If the creation dates of some
clone fragments are newer than the modification dates of
non-cloned fragments which forces the average last change
date of the cloned region to be newer than that of the non-
cloned region, Krinke’s method will suggest cloned code to
be less stable than non-cloned code. Thus, the cloned or
non-cloned region of a subject system might be represented
to be less stable than its counterpart even if it does not
undergo any modifications during the entire evolution time
while its counterpart does.

(3) The proposed new method disagrees with Hotta et al.’s
method for 33.33% cases. The main reason behind this dis-
agreement has already been explained in Section 3.6. Plan-
dora is an extreme example of such disagreement. According
to Hotta et al.’s method, each type of clones of this subject
system are more stable than the corresponding non-cloned
code. But, our proposed new method makes the opposite
decision in each case.

Finally, in answer to the fifth research question (RQ 5) we
can say that the stability decisions made by the candidate
methods are often not similar and both Hotta et al.’s method
and our proposed new method have strong disagreements
with the other two methods in many cases.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 31

Table 13: Stability w.r.t. programming languages

Decision Parameters % of Agreed Decision Points
Java C C#

Non cloned code more
stable (Cloned code less
stable)

66.67 58.33 8.33

Cloned code more stable 16.67 33.33 58.33
Conflicting decisions 16.66 8.34 33.34

6.3.2 Analysis result
Considering all candidate methods and metrics we see that
cloned code (all three types) has a higher probability to
force a system into an unstable state compared to non-cloned
code. According to Table 10, cloned code is less stable than
non-cloned code for 75 cells (among 144 cells). The oppo-
site is true for the remaining 69 cells. So the probability
by which cloned code makes the system unstable is 75/144
= 0.52 which outweighs the probability of non-cloned code
(0.48). Though the difference between the probabilities is
very small, it disagrees with the conclusion drawn by both
Krinke [13] and Hotta et al.[7] regarding comparative stabil-
ity. Thus, clones should be carefully maintained and refac-
tored (if possible) instead of keeping aside.

6.4 Language Centric Analysis
We performed language centric analysis in two ways.

6.4.1 Analysis 1
This analysis is based on the agreement-disagreement sce-
nario of Table 11. Our set of subject systems consists of
four systems from each of the three languages (Java, C and
C#). In Table 11, each language contributes 12 (4 subject
systems, 3 clone types) decision points. Considering these
decision points we retrieved the language specific stability
scenario presented in Table 13.

According to this table, both Java and C exhibit higher
cloned code instability: 66.67% and 58.33% of the cases,
respectively. The majority of the candidate methods agreed
there is higher instability in cloned code. An exactly the
opposite scenario was observed for C#. Moreover, for C#
we can observe the highest proportion (33.33%) of decision
conflicts. Thus, clones in both Java and C systems have a
higher probability of making a system unstable compared to
the clones in C# systems. Our Fisher’s Exact Test results
regarding the language centric statistics are described below.

Fisher’s Exact Test: We performed Fisher’s exact tests
[5] on the three possible paired-combinations of the three
languages using the values in Table 13 to see whether there
are significant differences among the observed proportions of
different languages. We defined the following null hypoth-
esis. The values in Table 13 were rounded before using in
Fisher’s exact test.

Null Hypothesis: There is no significant difference between
the stability scenarios presented by different programming
languages.

From Table 14 we see the P value for each paired combi-
nation of programming languages is less than 0.05. This
rejects the null hypothesis and confirms that there are sig-

Table 14: Fisher’s Exact Tests for prog. languages

Java C Java C# C C#

CCLS 67 58 67 8 58 8

NCLS 17 33 17 58 33 58

DC 17 8 17 33 8 33

P = 0.0103 P <0.0001 P <0.0001

CCLS = Cloned Code Less Stable
NCLS = Non-cloned Code Less Stable
DD = Decision Conflicts

nificant differences among the observed scenarios of different
programming languages.

6.4.2 Analysis 2
This analysis is based on the Table 10. In this table we
see that each method contributes 12 decision points for each
programming language. For each combination of method
and language we determined two proportions: (1) the pro-
portion of decision points agreeing there is higher cloned
code instability, and (2) the proportion of decision points
agreeing there is higher non-cloned code instability. These
proportions are presented in Fig. 7.

In the bar chart (Fig. 7) we see that for each method, a
higher proportion of decision points belonging to both Java
and C agree there is higher cloned code instability. The
opposite scenario is exhibited by C#. For each method,
a higher proportion of decision points (belonging to C#)
agree that there is higher cloned code stability. Thus, from
this analysis we can also say that clones in both Java and
C systems have a higher probability of making a system
unstable compared to the clones in C#.

6.4.3 Analysis result
In answer to the sixth research question (RQ 6) we can say
that clones in both Java and C systems exhibit significantly
higher instability compared to the clones in C# systems and
so developers as well as project managers should be more
careful regarding clones during software development using
these languages (Java and C).

6.5 System Centric Analysis
In the system centric analysis we investigated whether sys-
tem sizes and system ages affect the comparative stabili-
ties. In this investigation we wanted to observe how modi-
fications occur in the cloned and non-cloned code of a sub-
ject system as the system becomes older and bigger in size.
So, we recorded and plotted the modification frequencies of
four subject systems for different revisions. We chose ‘DNS-
Java’, ‘Carol’, ‘MonoOSC’ and ‘Hashkill’ in this investiga-
tion. ‘DNSJava’ and ‘Carol’ have a large number of revisions
compared to the revision numbers of other two systems. On
the other hand ‘Hashkill’ is much bigger than the remaining
three systems in terms of LOC. So, selecting these system
we have a range of systems in terms of LOCs and revision
numbers covering three languages. Also, these subject sys-
tems yielded contradictory stability scenarios for the method
proposed by Hotta et al.

We present four line graphs (Fig. 8, Fig. 9, Fig. 10, Fig.
11) for these subject systems plotting their modification fre-

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 32

Figure 7: Language centric analysis

quencies for each of the revisions beginning with the second
revision. For each revision r (r ≥ 2), the modification fre-
quencies of cloned and non-cloned code plotted in the graph
were calculated by considering all revisions from 1 to r. The
intention is to calculate the modification frequencies for r
(r ≥ 2) considering r as the current last revision. These vi-
sual representations of the gradual changes of modification
frequencies reflect the exact trends of how the cloned and
non-cloned regions were modified in the development phase.

In both Fig. 8 and Fig. 10, we see that for some devel-
opment time cloned code was more stable than non-cloned
code and vice versa. But the graph in Fig. 9 shows that
for most of the development time, cloned code was modified
more frequently than the non-cloned code. The graph in Fig.
11 exhibits a completely different scenario. The four graphs
exhibit no change consistency or bias. Also, in the case of
Carol (Fig. 9) we see that although for most of the life time
the modification frequency curves showed opposite charac-
teristics, the curves tend to meet each other at the end. On
the other hand, the curves of the other three systems seem
to diverge from each other. From Table 3 we can see that
these four systems are of diverse sizes and nature. Thus,
the convergence or divergence of the modification frequency
curves is not dependent on the system sizes. So, RQ 7 can
be answered by the observation that system sizes and sys-
tem ages do not affect the stability of cloned and non-cloned
code in a consistent or correlated way.

It is worth noting that every system can have a different de-
velopment strategy which can affect changes to cloned and
non-cloned code. For example, programmers might be afraid
of changing cloned code because of the risk of inconsistent
changes and would try to restrict the changes to the non-
cloned code. Another possibility is that developers are ad-
vised to not change any code of other authors and thus are
forced to create a clone in order to apply a change. However,
such development strategies cannot be identified by looking
at the change history alone and thus it is not possible to
measure the impact on cloned and non-cloned code.

Figure 8: MFs for DNSJava (Type-1 case. Non-
cloned code is more stable)

Figure 9: MFs for Carol (Type-3 case. Non-cloned
code is more stable)

Figure 10: MFs for Hash Kill (Type-3 case. Cloned
code is more stable)

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 33

Figure 11: MFs for MonoOSC (Type-1 case. Cloned
code is more stable)

7. THREATS TO VALIDITY
In the experimental setup section we mentioned the clone
granularity level (block clones), difference thresholds and
identifier renaming options that we have used for detecting
three clone types. Different setups in corresponding clone
types might result in different stability scenarios. However,
the NiCad setups that we have used for detecting three types
clones are considered standard [23, 24, 26, 4, 29] and thus
we contend that the clone detection results that we have
investigated are reliable.

8. CONCLUSION
In this paper we presented an in-depth investigation on the
comparative stabilities of cloned and non-cloned code. We
presented a five dimensional analysis of our experimental re-
sults to answer seven research questions. The ultimate aim
of our investigation is to find out the changeabilities exhib-
ited by different types of clones and languages and whether
there is any yet-undiscovered consistency in code modifica-
tion biasing the stability scenarios. We introduced a new
method that calculates four new stability related metrics
for the purpose of analysis.

According to our comparative stability centric analysis, cloned
code is more unstable (as well as vulnerable) than non-
cloned code because clones get modified significantly more
often than non-cloned code (supported with Mann-Whitney-
Wilcoxon tests). Also, the proportion of the cloned regions
modified in effective commits is significantly higher than the
proportion of non-cloned regions being modified.

However, our system centric analysis suggests that there are
no existing biases in the modifications as well as stabili-
ties of cloned and non-cloned code, and system development
strategy can play an important role in driving comparative
stability scenarios.

Our type centric analysis reveals that Type-1 (exact clones)
and Type-2 (clones with differences in identifier names and
data types) clones are possibly harmful for a system’s sta-
bility. They exhibit higher probabilities of instabilities than
the corresponding non-cloned code. Thus, these clone types
should be given more attention both from a development
and a management perspective.

Our language centric analysis discovers that clones of Java
and C systems show higher modification probabilities com-
pared to those of C# systems. This argument is also sup-
ported by statistical proof using Fisher’s exact test (2 tailed).

Our method centric analysis discovers the causes of strong

and weak disagreements of the candidate methodologies in
making stability decisions. In this analysis we evaluated
144 decision points of comparative stabilities and found that
cloned code exhibits higher changeability than that of non-
cloned code which contradicts the already established bias
([13, 7]) regarding comparative stabilities of cloned vs. non-
cloned code. Thus, cloned code is not necessarily stable as
was observed in the previous studies [7, 13] and clones should
be managed.

Our future plan is to perform an exhaustive empirical study
for further analysis of the impacts of clones using several
clone detection tools, methods and a wider range of subject
systems.

Acknowledgments: This work is supported in part by
the Natural Science and Engineering Research Council of
Canada (NSERC).

9. REFERENCES

[1] Aversano, L., Cerulo, L., and Penta, M. D., “How
clones are maintained: An empirical study”, in Proc.
The 11th European Conference on Software
Maintenance and Reengineering (CSMR), 2007, pp.
81-90.

[2] CCFinderX.
http://www.ccfinder.net/ccfinderxos.html

[3] Cordy, J. R., and Roy, C. K., “The NiCad Clone
Detector”, in Proc. The Tool Demo Track of the 19th
International Conference on Program Comprehension
(ICPC), 2011, pp. 219-220.

[4] Cordy, J. R., and Roy, C. K., “Tuning Research Tools
for Scalability and Performance: The NICAD
Experience”, in Science of Computer Programming,
2012, 26 pp. (to appear)

[5] Fisher’s Exact Test. http://in-silico.net/
statistics/fisher_exact_test/2x3.

[6] Göde, N., and Harder, J., “Clone Stability”, in Proc.
The 15th European Conference on Software
Maintenance and Reengineering (CSMR), 2011, pp.
65-74.

[7] Hotta, K., Sano, Y., Higo, Y., and Kusumoto, S., “Is
Duplicate Code More Frequently Modified than
Non-duplicate Code in Software Evolution?: An
Empirical Study on Open Source Software”, in Proc.
The Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of
Software Evolution (IWPSE) , 2010, pp. 73-82

[8] Juergens, E., Deissenboeck, F., Hummel, B., and
Wagner, S., “Do Code Clones Matter?”, in Proc. The
31st International Conference on Software
Engineering (ICSE), 2009, pp. 485-495.

[9] Kapser, C., and Godfrey, M. W., ““Cloning considered
harmful” considered harmful: patterns of cloning in
software”, in Journal of Empirical Software
Engineering. 13(6), 2008, pp. 645-692.

[10] Kim, M, Sazawal, V., Notkin, D., and Murphy, G. C.,
“An empirical study of code clone genealogies”, in
Proc. The joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (ESEC-FSE), 2005, pp. 187-196.

[11] Krinke, J., “A study of consistent and inconsistent
changes to code clones”, in Proc. The 14th Working

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 34

Conference on Reverse Engineering (WCRE), 2007,
pp. 170-178.

[12] Krinke, J., “Is cloned code more stable than
non-cloned code?”, in Proc. The 8th IEEE
International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2008, pp. 57-66.

[13] Krinke, J., “Is Cloned Code older than Non-Cloned
Code?”, in Proc. The 5th International Workshop on
Software Clones (IWSC), 2011, pp.28-33.

[14] Lozano, A., Wermelinger, M., and Nuseibeh, B.,
“Evaluating the Harmfulness of Cloning: A Change
Based Experiment”, in Proc. The 4th International
Workshop on Mining Software Repositories (MSR),
2007, pp. 18-21.

[15] Lozano, A., and Wermelinger, M., “Tracking clones’
imprint”, in Proc. The 4th International Workshop on
Software Clones (IWSC), 2010, pp. 65-72.

[16] Lozano, A., and Wermelinger, M., “Assessing the
effect of clones on changeability”, in Proc. The 24th
IEEE International Conference on Software
Maintenance (ICSM), 2008, pp. 227-236.

[17] Mann-Whitney-Wilcoxon Test:
http://elegans.som.vcu.edu/ leon/stats/utest.html

[18] Mondal, M., Roy, C. K., Rahman, M. S., Saha, R. K.,
Krinke, J., and Schneider, K. A., “Comparative
Stability of Cloned and Non-cloned Code: An
Empirical Study”, in Proc. The 27th Annual ACM
Symposium on Applied Computing (SAC), 2012, pp.
1227–1234.

[19] Mondal, M., Roy, C. K., and Schneider, K. A.,
“Dispersion of Changes in Cloned and Non-cloned
Code”, in Proc. The 6th International Workshop on
Software Clones (IWSC), 2012, pp. 29-35 .

[20] Roy, C. K., and Cordy, J. R., “A mutation /
injection-based automatic framework for evaluating
code clone detection tools”, in Proc. The IEEE
International Conference on Software Testing,
Verification, and Validation Workshops , 2009, pp.
157-166.

[21] Roy, C. K., and Cordy, J. R., “NICAD: Accurate
Detection of Near-Miss Intentional Clones Using

Flexible Pretty-Printing and Code Normalization” in
Proc. The 16th IEEE International Conference on
Program Comprehension (ICPC), 2008, pp. 172-181.

[22] Roy, C. K., Cordy, J. R., and Koschke, R.,
“Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach”, in
Science of Computer Programming, 74 (2009) 470-495,
2009.

[23] Roy, C. K., and Cordy, J. R., “Near-miss Function
Clones in Open Source Software: An Empirical
Study”, in Journal of Software Maintenance and
Evolution: Research and Practice, 22(3), 2010, pp.
165-189.

[24] Roy, C. K., and Cordy, J. R., “An Empirical
Evaluation of Function Clones in Open Source
Software”, in Proc. The 15th Working Conference on
Reverse Engineering (WCRE), 2008, pp. 81-90.

[25] Roy, C. K., and Cordy, J. R., “Scenario-based
Comparison of Clone Detection Techniques”, in Proc.
The 16th IEEE International Conference on Program
Comprehension (ICPC), 2008, pp.153-162.

[26] Saha, R. K., Roy, C. K., and Schneider, K. A., “An
Automatic Framework for Extracting and Classifying
Near-Miss Clone Genealogies”, in Proc. The 27th

IEEE International Conference on Software
Maintenance (ICSM), 2011, pp. 293-302.

[27] Saha, R. K., Asaduzzaman, M., Zibran, M. F., Roy,
C. K., and Schneider, K. A., “Evaluating code clone
genealogies at release level: An empirical study”, in
Proc. The 10th IEEE International Conference on
Source Code Analysis and Manipulation (SCAM),
2010, pp. 87-96.

[28] Thummalapenta, S., Cerulo, L., Aversano, L., and
Penta, M. D., “An empirical study on the maintenance
of source code clones”, in Journal of Empirical
Software Engineering (ESE), 15(1), 2009, pp. 1-34.

[29] Zibran, M. F., Saha, R. K., Asaduzzaman, M., and
Roy, C. K., “Analyzing and Forecasting Near-miss
Clones in Evolving Software: An Empirical Study”, in
Proc. The 16th IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS), 2011, pp. 295-304.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 35

ABOUT THE AUTHORS:

Manishankar Mondal is a graduate student in the Department of Computer Science

of the University of Saskatchewan, Canada under the supervision of Dr. Chanchal

Roy and Dr. Kevin Schneider. He is a lecturer at Khulna University, Bangladesh and

currently on leave for pursuing his higher studies. He received the Best Paper Award

from the 27th Symposium On Applied Computing (ACM SAC 2012) in the

Software Engineering Track. His research interests are software maintenance and

evolution including clone detection and analysis, program analysis, empirical

software engineering and mining software engineering.

Chanchal Roy is an assistant professor of Software Engineering/Computer Science

at the University of Saskatchewan, Canada. While he has been working on a broad

range of topics in Computer Science, his chief research interest is Software

Engineering. In particular, he is interested in software maintenance and evolution,

including clone detection and analysis, program analysis, reverse engineering,

empirical software engineering and mining software repositories. He served or has

been serving in the organizing and/or program committee of major software

engineering conferences (e.g., ICSM, WCRE, ICPC, SCAM, ICSE-tool, CASCON,

and IWSC). He has been a reviewer of major Computer Science journals including

IEEE Transactions on Software Engineering, International Journal of Software

Maintenance and Evolution, Science of Computer Programming, Journal of

Information and Software Technology and so on. He received his Ph.D. at Queen’s

University, advised by James R. Cordy, in August 2009.

Kevin Schneider is a Professor of Computer Science, Special Advisor ICT Research

and Director of the Software Engineering Lab at the University of Saskatchewan. Dr.

Schneider has previously been Department Head (Computer Science), Vice-Dean

(Science) and Acting Chief Information Officer and Associate Vice-President

Information and Communications Technology. Before joining the University of

Saskatchewan, Dr. Schneider was CEO and President of Legasys Corp., a software

research and development company specializing in design recovery and automated

software engineering. His research investigates models, notations and techniques

that are designed to assist software project teams develop and evolve large,

interactive and usable systems. He is particularly interested in approaches that

encourage team creativity and collaboration.

APPLIED COMPUTING REVIEW SEP. 2012, VOL. 12, NO. 3 36

