
ForkSim: Generating Software Forks for Evaluating
Cross-Project Similarity Analysis Tools

Jeffrey Svajlenko Chanchal K. Roy
University of Saskatchewan, Canada

{jeff.svajlenko, chanchal.roy}@usask.ca

Slawomir Duszynski
Fraunhofer IESE, Kaiserslautern, Germany

slawomir.duszynski@iese.fraunhofer.de

Abstract—Software project forking, that is copying an existing
project and developing a new independent project from the copy,
occurs frequently in software development. Analysing the code
similarities between such software projects is useful as developers
can use similarity information to merge the forked systems or
migrate them towards a reuse approach. Several techniques for
detecting cross-project similarities have been proposed. However,
no good benchmark to measure their performance is available.
We developed ForkSim, a tool for generating datasets of synthetic
software forks with known similarities and differences. This
allows the performance of cross-project similarity tools to be mea-
sured in terms of recall and precision by comparing their output
to the known properties of the generated dataset. These datasets
can also be used in controlled experiments to evaluate further
aspects of the tools, such as usability or visualization concepts.
As a demonstration of our tool, we evaluated the performance of
the clone detector NiCad for similarity detection across software
forks, which showed the high potential of ForkSim.

I. INTRODUCTION

In software development, similar software projects called
software variants can emerge in various ways including
cloning [1]. Although systematic reuse approaches such as
software product lines are known to enable considerable effort
savings [2], existing projects are frequently just forked and
modified to meet the needs of particular clients and users [3].
These variants typically undergo further parallel development
and evolution, and reuse techniques are often not explored until
after the variants have matured. This leads to an increased
maintenance effort as many tasks are duplicated across the
variants.

Maintenance effort can be reduced by merging the forks or
by adopting a software reuse approach (e.g., software product
lines). Berger et al. [4] report that 50% of industrial software
product lines developed by participants of their study were
created in an extractive way, i.e., by merging already existing
products. This indicates a substantial practical demand for
cross-project similarity detection approaches that help software
developers discover the similarities between their software
variants and support decisions on reuse adoption strategy.
Several such approaches have been proposed (e.g., [5] [6]).

A current need is a benchmark for evaluating the per-
formance of tools which detect similarity between software
variants. Performance is measured in terms of recall and
precision. Recall is the ratio of the similar source code shared
between the variants that the tool is able to detect and report.

Precision is the ratio of the similar source code elements
reported by the tool which are not false positives.

Measuring recall and precision involves executing the
tool for a benchmark dataset (or datasets) and analysing the
tool’s output. Precision can be easily measured by manually
validating all (or typically a random subset) of the tool’s
output. However, measuring recall requires that all similar code
amongst the variants of the dataset be foreknown. This makes it
very difficult to use datasets from industry or open source (e.g.,
BSD Unix forks). Building an oracle by manually investigating
the dataset for similar code is, due to time required, essentially
impossible for datasets large enough to allow meaningful
performance evaluation.

To address these difficulties, and to reduce the amount
of required manual validation to a minimum, we developed
ForkSim, which uses source code mutation and injection to
construct datasets of synthetic software forks. The forks are
generated such that their similarities and differences at the
source level are known. Recall can then be measured automat-
ically by procedurally comparing a tool’s output against the
dataset’s known similarities. Precision can be measured semi-
automatically, as reported similarities which match known
similarities or differences in the dataset can be automatically
judged as true or false positives, respectively. Only the reported
similar code not matching known properties needs to be
manually investigated.

The forks generated by ForkSim can be used in any
research on detecting, visualizing, or understanding code simi-
larity among software products. The generated forks are a good
basis for evaluating automated analysis approaches, as well as
for performing controlled experiments to investigate how well
the specific tool supports users in understanding similar code.
ForkSim is publicly available for download1.

This paper is organized as follows. Related work is dis-
cussed in Section II, and software forking in Section III.
Section IV outlines ForkSim’s fork generation process, Sec-
tion V outlines the comprehensiveness of the simulation,
and Section VI discusses the quality of the generated forks.
Section VII outlines ForkSim’s use cases, while Section VIII
provides a demonstration of its primary use case: tool perfor-
mance evaluation. Section IX discusses our plans for future
experiments with ForkSim, and Section X our future work on
ForkSim. Finally, Section XI concludes the paper.

1http://homepage.usask.ca/∼jes518/forksim.html978-1-4673-5739-5/13/$31.00 c© 2013 IEEE

II. RELATED AND PREVIOUS WORK

Although automatic tool benchmark construction has been
proposed in various problem domains [7], to the best of our
knowledge there are no other tools which generate software
fork datasets for evaluating cross-project similarity analysis
tools, nor is there a reference case (e.g., a set of software
forks with known properties) which could be used for tool
evaluation. The most related work to ours is a manual val-
idation of cross-project similarity analysis results obtained
through clone detection by Mende et al. [6]. However, manual
result validation has several drawbacks, as discussed in the
introduction. ForkSim is unique in that tool evaluation can
be mostly automated for datasets generated by ForkSim, as
the similarities and differences between the generated software
forks are known.

In previous work, we built a framework which automat-
ically evaluates clone detection tools for intra-project clones
by generating a dataset of artificial clones using source code
fragment mutation and injection [8] [9] [10]. In this work,
we use source mutation and injection at a number of source
granularities (function, file, directory) to simulate a forking
scenario. The result is a set of software variants with known
similarities and differences which can be used to measure the
performance of cross-project similarity detection tools.

III. SOFTWARE FORKING

In the forking process, a software system is cloned and
the individual forks are evolved in parallel. Development
activities may be unique to an individual fork, or shared
amongst multiple forks. For example, code may be copied
from one fork to another. While forks may share source code,
the code may contain fork-specific modifications, and may
be positioned differently within the individual forks. A fork
may itself be forked into additional forks. Table I provides
a taxonomy of the types of source code level development
activities performed on forks. These development activities
describe how a fork may change with respect to its state at
the start of the forking process. This taxonomy is based upon
our research and development experience, and discussions with
software developers.

Existing code originates from pre-fork development, and
new code originates from post-fork development. The devel-
opment activities occur at various code granularities, including:
source directory, source file, function, etc. The result of forking
and these further development activities are a set of software
variants containing source code in the following three cate-
gories: (1) code shared amongst all the forks, (2) code shared
amongst a proper subset of the forks, and (3) code unique
to a specific fork. ForkSim creates datasets of forks resulting
from these development activities, and containing source code
in these three categories. It does this by simulating a simple
forking scenario.

IV. FORK GENERATION

ForkSim’s generation process begins with a base subject
system, which is duplicated (forked) a specified number of
times. Continued development of the individual forks is simu-
lated by repeatedly injecting source code into the forks. Specif-
ically, ForkSim injects a user specified number of functions,

TABLE I
TAXONOMY OF FORK DEVELOPMENT ACTIVITIES

ID Development Activity

DA1 New source code is added.

DA2 Existing source code is removed.

DA3 Existing source code is modified and/or evolved.

DA4 Existing source code is moved.

DA5
Source code is copied from another fork. It may be copied into a
different position than in the source fork, and it may be modified
and/or evolved independently of the source.

DA6 A fork may itself be forked.

source files, and source directories. Instances of source code of
these types are mined from a repository of software systems,
which ensures the injected code is realistic and varied.

Each of the chosen functions, files and directories are
injected into one or more of the forks. The number and
particular forks to inject a source artefact into are selected
at random. Injection into a single fork creates code unique to
that fork, while injection into a subset of the forks creates code
shared amongst those forks. Injection locations are selected
randomly, but only amongst the code inherited from the
base system, i.e., not inside previously injected code. This
prevents the injected code from interacting, which makes the
generation process much easier to track and thereby simplifies
tool evaluation using the generated dataset. When code is
injected into multiple forks, the injection location may be kept
uniform or varied, given a specified probability. Forks may
share code, but that code may be positioned differently within
the individual forks.

Before code is injected into a fork it may be mutated, i.e.,
automatically modified in a defined way, given a specified
probability. This causes code shared by the forks to contain
differences, simulating that shared code may be modified or
evolved independently for the needs of a particular fork.

Files and directories may be renamed before injection,
given a specified probability. While forks may share code at the
file and directory level, they may not have the same name. For
example, they may have been renamed to match conventions
used in the fork.

Each injection operation (injection of a function, a file, or
a directory) is logged. This includes recording the forks the
code was injected into, the injection locations used, and if and
how the code was mutated and/or renamed before injection. A
copy of the code and any of its mutants are kept separately and
referenced by the log. ForkSim also maintains a copy of the
original subject system. From the log and the referenced data
the directory, file and function code similarities and differences
inherited from the original system and introduced by injection,
can be procedurally deduced.

Fig. 1 depicts this generation process. On the left side
are the inputs: the subject system, source repository and user-
specified generation parameters. The subject system duplicates
(forks) are modified by the boxed process, which repeats
for each of the source files, directories and functions to be
introduced. The figure shows an example of this process, in
which a randomly selected function from the source repository
is introduced into the forks. ForkSim randomly decided to

inject this function into three of the four forks using non-
uniform injection locations, and to mutate the function before
injection into the latter two forks. On the right side are the
outputs: the generated fork dataset and the generation log.

ForkSim supports the generation of Java, C and C# fork
datasets. It is implemented in Java 7 (main architecture and
simulation logic) and TXL [11] (source code analysis, ex-
traction and mutation). ForkSim’s generation parameters are
summarized in Table II.

Injection. Directory and file injection is accomplished
by copying the directory or file into a randomly selected
directory in the fork. In order to prevent injected directories
from dominating a fork’s directory tree, only leaf directories
(those containing no subdirectories) are selected for injection.
Function injection is performed by selecting a random source
file from the fork, and copying the function’s content directly
after a randomly selected function in the chosen file. The
generation process can be parametrized to only select functions
for injection which fall within a specified size range measured
in lines before mutation.

Mutation. ForkSim uses mutation operators to mutate

Subject System

Repos-
itory

Forks Dataset

1.Select Code

2. Select Forks

3. Select Injection
Locations

4. Mutate Code

6. Log

5. Inject Code

Repeat for X source files, Y source directories and Z functions.

Generation
Parameters Log

Fig. 1. Fork Generation Process

TABLE II
FORKSIM GENERATION PARAMETERS

Parameter Description

Subject System The base system which is forked during the genera-
tion process.

Source Repository A collection of systems from which the source files,
directories and functions are mined.

Language Language of forks to generate (Java, C or C#).

Forks Number of forks to generate.

Files Number of files to inject.

Directories Number of directories to inject.

Functions Number of functions to inject.

Function Size Maximum/Minimum size of functions to inject.

Max Injections Maximum number of forks to inject a particular
function/file/directory into.

Uniform Injection Rate Probability of uniform injection of a source artefact.

Mutation Rate
Probability of source mutation before injection. Spec-
ified separately for function, file and directory injec-
tions.

Rename Rate Probability of renaming before injection.

Max Mutations Maximum number of mutations to apply to injected
code. Specified as a ratio of the code’s size in lines.

code before injection. Fifteen mutation operators, named and
described in Table III, were implemented in TXL [11]. Each
operator applies a single random modification of its defined
type to input code. These mutation operators are based upon a
comprehensive taxonomy of the types of edits developers make
on cloned code [12], which makes them suitable for simulating
how developers modify shared code duplicated between forks.

Files and functions are mutated by applying one of the
mutation operators a random number of times before injection.
The number of mutations is limited to a specified ratio of
the size of the file/function measured in lines after pretty
printing. This provides an upper limit on how much simulated
development is allowed to occur on a source file or function
in a particular fork. Pretty printing (one statement per line,
no empty lines, comments removed) the source artefact before
measurement ensures the measure is consistently proportional
to the amount of actual source code contained. This ratio can
be specified separately for files and functions.

A small mutation ratio is recommended (10-15%) as too
many changes may cause the variants of a file/function injected
into multiple forks to become so dissimilar that they would no
longer be a clone. Detection tools would be correct not to
report them. ForkSim datasets are only useful if the elements
declared as similar are indeed similar.

When directories are injected, each of the source files in
the directory may be mutated using the same process as used
for injected files. The directory mutation probability parameter
defines how likely a file in an injected directory is mutated.

As a principle of mutation analysis, ForkSim does not
mix mutation operators. This makes it easier to discover if a
similarity analysis tool struggles to detect similar code with
particular types of differences. ForkSim cycles through the
mutation operators to ensure that each is represented in the
generated forks roughly evenly. When it is not possible to
apply a given operator to the file or function, another operator
is chosen randomly.

Renaming. The probability of a file or directory being

TABLE III
MUTATION OPERATORS FROM A CODE EDITING TAXONOMY FOR

CLONING

ID Description

mCW A Change in whitespace (addition).

mCW R Change in whitespace (removal).

mCC BT Change in between token (/* */) comments.

mCC EOL Change in end of line (//) comments.

mCF A Change in formatting (addition of a newline).

mCF R Change in formatting (removal of a newline).

mSRI Systematic renaming of an identifier.

mARI Arbitrary renaming of a single identifier.

mRL N Change in value of a single numeric literal.

mRL S Change in value of a single string literal.

mSIL Small insertion within a line (function parame-
ter).

mSDL Small deletion within a line (function parameter).

mIL Insertion of a line.

mDL Deletion of a line.

mML Modification of a whole line.

renamed before injection is specified separately from that
of source code mutation, and both are allowed to occur on
the same injection. Renamed source files keep their original
extensions.

Usage. ForkSim operation is very simple. The user makes
a copy of the default generation parameters file, and tweaks it
for the dataset they wish to generate. This includes specifying
paths to the subject system and source repository to use. Once
the parameters file and systems are prepared, the user executes
ForkSim and specifies the location of the parameters file and
a directory to output the forks and generation log into. Once
execution is complete, the forks and generation log are ready
for use in experiments involving similarity analysis tools.

V. SIMULATION OF DEVELOPMENT ACTIVITIES

During the generation process, ForkSim simulates all six
of the development activities from the forking taxonomy
(Table I). The following subsections describe how the code
injection scenarios performed during the generation process
can be interpreted as the six development activities.

DA1. Any of the code injections can be interpreted as the
addition of new code to a fork.

DA2. Code injected into a proper subset of the forks can
be interpreted as existing code (pre-fork) which was deleted
from the forks it was not injected into.

DA3. Code injected into the forks, with at least one
instance mutated, can be interpreted as existing code which
was modified/evolved in one or more of the forks, perhaps
inconsistently. The code needs not be injected into all of the
forks to simulate DA3, as the forks missing the code can be
interpreted as having lost this shared code due to DA2.

DA4. Code injected into the forks, with variation in injec-
tion location, can be interpreted as existing code being moved.
When the code is not injected into all the forks, the forks
missing this existing code can be interpreted as instances of
DA2.

DA5. Code injected into multiple forks can be interpreted
as code implemented in one fork and copied into others. Non-
uniform injection, source mutation and renaming simulate that
the code may be copied into a different location than in the
source, and continued development may occur independently
of the source.

DA6. While the generation process creates all of the forks
from the same forking point (the base system), the resulting
dataset can be interpreted as originating from multiple forking
points. Code shared due to injection amongst a subset of the
variants can be interpreted as development before a shared
forking point, which may not be shared across all the forks.
This activity can also be simulated by using the forks as the
base system for additional executions of ForkSim.

VI. DISCUSSION

Advantages. The primary advantage of ForkSim is that
the user can precisely control the amount and type of similar-
ities and differences among the generated forks. This allows
for well-controlled evaluation of tools which analyse forks.
Moreover, as the fork generation process is known and logged,

the correct and complete information on the actual code
similarities and differences between the forks is available. This
is not the case when real-world forks are analysed.

Disadvantages. One of the limitations of ForkSim is that
the generated variants may have properties that differ from real
forks, particularity if aggressive injection settings are used. As
injection is a random process, the code-level properties do not
represent meaningful development. Also, the distribution of the
similar and dissimilar code might differ from real-world forks.
However, to the best of our knowledge, there are no systematic
studies on the amount and distribution of code similarities and
differences in real-world forks. Therefore we are not able to
tune our generation algorithm and its parameters to produce
very realistic forks. However, as fork analysis tools likely
do not behave differently for less realistic software variants,
it is unlikely that this will have a significant effect on tool
evaluations using ForkSim-generated fork datasets.

Unknown Similarities. The similarities and differences
between the forks inherited from the subject system and
intentionally created by injection are exactly known. However,
there will be some additional similarities between the forks
which are unknown. These include: (1) clones within the
original subject system which become similar code within and
between the generated forks, (2) unexpected similarity between
the functions, files, and directories randomly chosen from the
source repository, and (3) unexpected similarity between these
chosen source artefacts and the subject system.

Since these similarities are unknown, they are not included
in the measurement of a tool’s recall for the dataset. However,
this is not a disadvantage as we are not interested in evaluating
the tools for intra-project similarities. The known similarities
are sufficient for measuring cross-project similarities. These
similarities, however, must be considered in the measure of a
tool’s precision.

VII. USE CASES

Cross-Project Similarity Tool Performance Evaluation.
ForkSim datasets can be used to measure the recall and
precision of tools which detect similarity between software
projects. It is especially attuned for tools which focus on
similarity detection between software variants (e.g. forks).
ForkSim datasets are ideal for this usage scenario as similar-
ities and differences between the generated forks are known.
Recall can then be measured automatically, and precision semi-
automatically. Recall is evaluated by measuring the ratio of
the similar code between the forks, and their relationships, the
tool is able to detect and report. The recall measure considers
both the similarities created by injection, and the similarities
between each of the forks due to the duplication of the base
system during the generation process.

How tools report similar code is likely to differ. Therefore,
to evaluate recall the dataset’s generation log must be mined
and converted into the detection tool’s output format. This pro-
cess creates the tool’s gold standard, i.e., its ideal and perfect
output for the dataset. Recall is then the ratio of the gold
standard the tool was able to produce. By building the gold
standard procedurally, recall evaluation becomes automatic.
The conversion procedure needs only to be written once, and
reused for various datasets.

Precision can be evaluated semi-automatically. Any de-
tected similar code which is in the gold standard can be
automatically labelled as true positive. Any reported simi-
larities which match known differences in the dataset can
be labelled as false positives. The remaining output requires
manual validation to complete the measure of precision. It
is sufficient to validate a random subset (large enough to be
statistically significant) of the remaining output and to estimate
precision from these results.

Tool Usability Study. ForkSim-generated datasets are
valuable for performing controlled experiments involving tools
which analyse and/or visualize similarities and differences
between software variants. The goal of such an experiment
can be to measure the level of support for software similarity
comprehension the tools provide to their users. The experiment
would have the following procedure: first, a dataset of forks
with known similarities is generated using ForkSim. Then, the
study participants, divided into a few groups, use the tools to
analyse the dataset and report their findings. Each user group
uses a different tool to solve the same tasks. For example, the
participants can be asked a set of questions related to the sim-
ilarity of the analysed variants, which they should answer by
discovering and understanding the similarities using the given
tool. The tasks should be designed to evaluate a specific aspect
of the tools, e.g. their usability or the appropriateness of the
used similarity visualizations. By checking the correctness of
the answers and recording the amount of needed effort and/or
time, user group performance is quantitatively measured. In
this way, the effect of using the different tools is quantified,
and the tools can be compared regarding the properties targeted
by the tasks, such as tool usability. As discussed in Section VI,
ForkSim-generated datasets have both advantages (e.g. precise
control of similarity) and disadvantages (e.g. injection of non-
related code) as compared to real datasets. Hence, the use of
generated datasets is suitable in situations where the stated
disadvantages do not influence the experiment goal.

Adaptations. For the purpose of clone management, de-
tecting and studying clone genealogies is another important
research topic, and there have been a few genealogy detectors
(e.g., [13]). The technology used in ForkSim can easily be
adapted to generate software versions rather than software
variants for evaluating genealogy detector performance. Such
an adaptation could also be used to evaluate clone ranking
algorithms [14], which use multiple versions of a software
system to produce a clone ranking.

VIII. EVALUATION

As a demonstration of ForkSim’s primary use case, tool
evaluation, we evaluated NiCad’s performance for similarity
detection between software variants. NiCad [15], [16] is one
of the state of the art near-miss software clone [1] detectors.
While it is designed for single systems, it can be used to detect
similarity between forks by executing it for the entire dataset
and trimming the intra-project clone results from its output.
To evaluate NiCad, we generated a ForkSim dataset of five
Java forks. We used JHotDraw54b1 as the subject system and
Java6 as the source repository. The generation parameters used
are listed in Table IV. The NiCad clone detector is capable of
detecting function and block granularity near-miss clones. It
uses TXL to parse source elements of these granularities from

an input system, and uses a diff-like algorithm to detect clones
after these source elements have been normalized to remove
irrelevant differences (e.g., formatting, comments, whitespace,
identifier names, and more). For use in this experiment, we
extended NiCad to support the detection of clones at the file
granularity.

Using NiCad, we detected the file and function clones
in the dataset. NiCad was set to detect clones 3-5000 lines
long, with at most 30% difference. It was configured to pretty
print the source, blind rename the identifiers, and normalize
the literal values in the dataset before detection. The clones
were collected both in clone pair (pairs of similar files or
functions) and clone class (set of similar files or functions)
format. Overall, NiCad found 363 file clone classes (16,553
pairs) and 1831 function clone classes (2,198,636 pairs).

To evaluate NiCad’s recall, we converted the known simi-
larities between the forks into file and function clone classes.
Each file injected into multiple forks was converted into a file
clone class, as were the files contained in directories injected
into multiple forks. File clone classes were created for each
of the files the forks inherited from the subject system, with
the files modified due to function injection trimmed from
these classes. Each function injected into multiple forks was
converted into a function clone class. Lastly, a function clone
class was created for each function the forks inherited from
the subject system. These clone classes were also converted to
clone pair format.

NiCad’s recall performance is summarized in Table V.
Recall was measured per clone granularity (file or function),
and per origin of similarity (file/directory/function injection
or original subject system files). As can be seen, NiCad had
100% recall for all sources of file clone classes, and 98-99%
for function clone classes. If we consider clone pairs instead
of clone classes, we see that the function clone detection is
marginally better (+0.1%). These are very promising results
for NiCad as a fork similarity analysis tool. These results are
specific to the dataset’s generation parameters. In future we
plan to evaluate NiCad’s recall performance for many datasets
with varied parameters; for example, with larger and smaller
max mutation values.

Due to time constraints, we did not perform a full precision

TABLE IV
FORKSIM GENERATION PARAMETERS: NICAD CASE STUDY

Parameter Value
Subject System JHotDraw54b1

Source Repository Java6

Language Java

Forks 5

Files 100

Directories 25

Functions 100

Function Size 20-100 lines

Max Injections 5

Uniform Injection Rate 50%

Mutation Rate files: 50%, directories(files): 50%, functions: 50%

Rename Rate files: 50%, directories: 50%

Max Mutations 15% of size in lines

TABLE V
NICAD CASE STUDY RECALL RESULTS

Type File
Injections

Directory
Injections

Function
Injections

Original
Files

File Clone
Class

100%
(41/41)

100%
(117/117) - 100%

(260/260)

Function
Clone Class - - 98.7%

(75/76)
99.4%

(2869/2886)

Function
Clone Pair - - 98.8%

(332/336)
99.5%

(28708/28860)

analysis for this experiment. However, NiCad is known to have
high precision [16]. Using known similarities, we were able to
validate 20.7% of NiCad’s reported file clone pairs, but only
1.46% of its reported function clone pairs. NiCad is reporting
a large amount of cloned code beyond that of the known
similarities. Part of this is due to unknown similarities arising
from clones within the original subject system. However, a
large fraction of this is due to the NiCad clone size settings
used. A minimum clone size of 3 lines was required to
ensure that all cloned functions were detected. However, small
standard functions such as getters and setters are very similar
after normalization, which was a source of a large number of
these clone pairs. Likewise, interfaces and simple classes are
likely to be detected as similar after identifier normalization.
For practical usage, these small similarities would likely be
filtered out in preference of the larger similarities. In summary,
NiCad has very good detection performance of similarities
between forks, but the quantity of output would make its
usage difficult. A post-processing step needs to be added to
extract the most useful and important similarity features from
its output.

IX. FUTURE EXPERIMENTS

We plan to use ForkSim to evaluate our tools for sim-
ilarity detection between software variants. We will use a
variety ForkSim datasets to evaluate the Fraunhofer Variant
Analysis [5] tool’s recall and precision. This tool locates and
visualizes similarities between software variants with the aim
of supporting software product line adoption. We also plan to
perform a more in-depth analysis of NiCad’s, SimCad’s [17],
another state of the art near-miss clone detector, and other
clone detectors’ performance in this domain. These experi-
ments are prime examples of ForkSim’s featured use cases,
and demonstrate how other researchers and practitioners might
utilize ForkSim.

X. FUTURE WORK

The following are additional features we plan to add in
future work: (1) The option to allow the mixing of mutation
operators during file and function mutation. (2) Expand direc-
tory injection beyond leaf directories, with optional constraints
on hierarchy size (breadth and depth) of the injected directory.
(3) The splitting of files or directories before injection, given a
defined probability. (4) An alternative mode, in which ForkSim
injects into a set of disparate systems rather than duplicating
(forking) a single system. This would allow the generation
of systems with shared code which were not the result of
forking, but of large scale code re-use by copy and paste.
(5) Using tools we have tested and evaluated with ForkSim

datasets, we plan to study the similarity patterns found in real
forked systems. We will use our findings to enhance ForkSim
and tune its parameters to produce datasets which better mimic
real-world forks.

XI. CONCLUSION

In this paper we have introduced ForkSim, a tool for
generating customizable datasets of synthetic forks with known
similarities and differences. These datasets can be used in any
research on the detection, visualization, and comprehension of
code similarity amongst software variants. ForkSim datasets
allow similarity detection tools to be evaluated in terms of
recall (automatically) and precision (semi-automatically), and
can be useful in experiments aiming at evaluating the usability
and visualization of similarity tools. We demonstrated ForkSim
using a case study evaluating NiCad’s cross-project similarity
detection for a set of five ForkSim-generated Java forks.

REFERENCES

[1] C. K. Roy, “Detection and analysis of near-miss software clones,” in
Proc. ICSM, 2009, pp. 447–450.

[2] P. Clements and L. Northrop, Software product lines: practices and
patterns. Addison-Wesley Longman Publishing Co., Inc., 2001.

[3] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial software
product lines,” Proc. CSMR, pp. 25–34, 2013.

[4] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A survey of variability modeling in industrial
practice,” in Proc. VaMoS, 2013, pp. 7:1–7:8.

[5] S. Duszynski, J. Knodel, and M. Becker, “Analyzing the source code of
multiple software variants for reuse potential,” in Proc. WCRE, 2011,
pp. 303–307.

[6] T. Mende, R. Koschke, and F. Beckwermert, “An evaluation of code
similarity identification for the grow-and-prune model,” Journal of
Software Maintenance and Evolution, vol. 21, no. 2, pp. 143–169, Mar.
2009.

[7] D. Lo and S.-C. Khoo, “Quark: Empirical assessment of automaton-
based specification miners,” in Proc. WCRE, 2006, pp. 51–60.

[8] J. Svajlenko, C. Roy, and J. Cordy, “A mutation analysis based bench-
marking framework for clone detectors,” in Proc. IWSC, May 2013, pp.
8–9.

[9] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” in Proc. ICSTW,
2009, pp. 157–166.

[10] ——, “Towards a mutation-based automatic framework for evaluating
code clone detection tools,” in Proc. C3S2E, 2008, pp. 137–140.

[11] J. R. Cordy, “The txl source transformation language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, Aug. 2006.

[12] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection, techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, pp. 470–495, 2009.

[13] R. Saha, C. Roy, and K. Schneider, “An automatic framework for
extracting and classifying near-miss clone genealogies,” in Proc. ICSM,
2011, pp. 293–302.

[14] M. F. Zibran and C. K. Roy, “A constraint programming approach to
conflict-aware optimal scheduling of prioritized code clone refactoring,”
in Proc. SCAM, 2011, pp. 105–114.

[15] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Proc. ICPC, 2008, pp. 172–181.

[16] J. Cordy and C. Roy, “The nicad clone detector,” in Proc. ICPC, 2011,
pp. 219–220.

[17] M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle, “On the
effectiveness of simhash for detecting near-miss clones in large scale
software systems,” in Proc. WCRE, 2011, pp. 13–22.

