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Abstract—Code Completion helps developers learn APIs and

frees them from remembering every detail. In this paper, we

describe a novel technique called CSCC (Context Sensitive Code

Completion) for improving the performance of API method

call completion. CSCC is context sensitive in that it uses new

sources of information as the context of a target method call.

CSCC indexes method calls in code examples by their contexts.

To recommend completion proposals, CSCC ranks candidate

methods by the similarities between their contexts and the

context of the target call. Evaluation using a set of subject

systems and five popular state-of-the-art techniques suggests

that CSCC performs better than existing type or example-based

code completion systems. We also investigate how the different

contextual elements of the target call benefit CSCC.

I. INTRODUCTION

Developers rely on frameworks and libraries of APIs to
ease application development. While these APIs provide ready
made solutions to complex problems, developers need to
learn to use them effectively. The problem is that due to the
large volume of APIs, it is practically impossible to learn
and remember them completely. To avoid developers having
to remember every detail, modern integrated development
environments provide a feature called Code Completion, which
displays a sorted list of completion proposals in a popup menu
for a developer to navigate and select. In a study on the
Eclipse IDE, Murphy et al. [1] find that code completion is
one of the top ten commands used by developers, indicating
that the feature is crucial for today’s development. In this
paper, we focus our attention to method call completion since
it is the most frequently used form of code completion [11]
(other forms of code completion include word completion,
method parameter completion, and statement completion). In
the remaining paper, we use the term Code Completion to
refer to method call completion unless otherwise stated.

Existing code completion techniques can be divided into two
broad categories. The first category uses mainly static type
information, combined with various heuristics, to determine
the target method call, but does not consider previous code
examples or context of a method call. A popular example
is the default code completion system available in Eclipse,
which utilizes a static type system to recommend method calls.
It sorts the completion proposals either alphabetically or by
relevance before displaying them to users in a popup menu.
Hou and Pletcher [13] develop another technique, called Better
Code Completion (BCC), that uses a combination of sorting,

String line;
StringBuilder sb = new StringBuilder();
br= new BufferedReader(new 
             FileReader("file.txt"));
try{
while ((line = br.readLine()) != null){  

sb . append ( l i n e ) ;
      sb . append ( ’\n ’ ) ; 
}
}finally {br . close ();}

Fig. 1. An example of reading a file

filtering and grouping of APIs to improve the performance of
the default type-based code completion system of Eclipse.

The second category of techniques takes into account previ-
ous code examples and uses context matching to recommend
target method calls. For example, to make recommendations,
the Best Matching Neighbor (BMN) [12] code completion
system matches the current code completion context to pre-
vious code examples using the k-Nearest Neighbour (kNN)
algorithm.

BMN has successfully demonstrated that the performance
of method call completion can be improved by utilizing the
context of a target API method call. BMN focuses on using
a special kind of context for a given call site, i.e., the list of
methods that have been invoked on the same receiver variable
plus the enclosing method of the call site. But there are
many other possible forms of context to be considered. As an
example of other forms of context, consider the code shown
in Figure I, where a file is read via the BufferedReader
object br in a while loop. In fact, the readLine method
is commonly called as part of a while loop’s condition
located inside a try-catch block. Within a few lines of dis-
tance of the readLine method, developers usually create
various objects related with that method call. For example,
developers typically create a BufferedReader object from
an instance of FileReader and later use that object to
call the readLine method. Therefore, in addition to the
methods that were previously called on the receiver object br,
keywords (such as while, try, new), other methods (such
as FileReader, BufferedReader constructor name) can
be considered as part of the context of readLine as well.
Adding these extra pieces of information can enrich the
context of the targeted call to help recommend methods that
are more relevant (readLine, in this case).



In this paper, we further explore the performance implica-
tions of these additional forms of context for code completion.
To this end, we first propose a context sensitive code comple-
tion technique, called CSCC, that leverages code examples
collected from repositories to extract method contexts to
support code completion. Given a method call, we capture
as its context any method names, Java keywords, class or
interface names that appear within four lines of code. In this
way, we build a database of context-method pairs as potential
matching candidates. We use tokenization rather than parsing
and advanced analysis to collect the context data, so our
technique is simple. When completing code, given the receiver
object, we use its type name and context to search for method
calls whose contexts match with that of the receiver object. To
scale up the search, we use simhash technique [28] to quickly
eliminate the majority of non-matching candidates. This allows
us to further refine the remaining much smaller set of match-
ing candidates using more computationally expensive textual
distance measures. This also makes our technique efficient
and scalable. We sort the matching candidates using similarity
scores, and recommend the top candidates to complete the
method call.

We compare our technique with five other state-of-the-
art techniques using eight open source software systems.
Results from the evaluation suggest that our proposed tech-
nique performs better than any state-of-the-art static type or
example-based systems that we have compared. Moreover, to
understand how exactly the context of a method call affects
code completion, we propose a taxonomy for the contex-
tual elements of a method call and compare how different
techniques perform for each category of contextual elements.
This experiment helps us clearly understand the strengths and
limitations of CSCC and other existing techniques.

This paper makes the following contributions:
1) A technique called CSCC to support code completion

using a new kind of context and previous code examples
as a knowledge-base.

2) A quantitative comparison of the proposed technique
CSCC with five existing state-of-the-art tools that shows
the effectiveness of our proposed technique.

3) A taxonomy of method call context elements and an ex-
periment that helps to identify strengths and limitations
of CSCC and other existing techniques.

The remainder of the paper is organized as follows. Sec-
tion II briefly describes related work. Section III describes our
proposed technique CSCC. Section IV compares CSCC with
various code completion techniques. We discuss several key
issues in our study in Section V. Section VI summarizes the
threats to validity. Finally, Section VII concludes the paper.

II. RELATED WORK

The study most relevant to ours is that of Bruch et al. [12].
They propose the Best Matching Neighbours (BMN) com-
pletion system that uses the k-nearest neighbour algorithm
to recommend method calls for a particular receiver object.
The most fundamental difference between BMN and CSCC

lies in their definition of context. Our definition of a method
call context includes any method names, keywords, class or
interface names within the top four lines of a method call,
whereas BMN’s context is made of the set of methods that
have been called on the receiver variable plus the enclosing
method. Due to this difference, BMN and CSCC use different
techniques to calculate similarities and distances. Lastly, BMN
uses frequency of method calls to rank completion proposals,
whereas CSCC ranks them based on distance measures.

Hou and Pletcher [3], [13] propose a code completion
technique that uses a combination of sorting, filtering and
grouping of APIs. They implement the technique in a research
prototype called Better Code Completion (BCC). BCC can sort
completion proposals based on the type-hierarchy or frequency
count of method calls. It can filter non-API public methods.
However, BCC does not leverage previous code examples.
Moreover, BCC requires the filters to be manually specified
which can only be performed by expert users of code libraries
and frameworks. However, because CSCC considers the usage
context of method calls to recommend completion proposals,
methods that are not appropriate to call in a particular context
would be automatically filtered out. So CSCC would require
less effort to use than BCC.

Nguyen et al. [9], [10] use a graph-based algorithm to
develop a context sensitive code completion technique, called
GrePacc. The technique mines API usage patterns in open
source code bases to create an API usage database. During
the development phase, the technique extracts context sen-
sitive features and matches them with usage patterns in the
database. It then recommends a list of matched patterns to
complete the remaining code. Although both GrePacc and
CSCC utilize code context to make recommendations, the
goals and approaches are different. GrePacc recommends
multiple statements at a time, but CSCC completes a single
method call.

Robbes and Lanza [11] propose a set of approaches to sup-
port code completion that use program history to recommend
completion proposals. The program change history can be
considered the temporal context for a method call, whereas
ours is the spatial context. While their technique requires a
change-based software repository to collect program history,
our technique can work with any repository.

There are also a number of other techniques or tools that
make use of previous code examples, but their goals are
different than ours. For example, Mooty et al. [7] developed
an Eclipse plugin, called Calcite, that helps developers to
correctly instantiate a class or interface using existing code
examples. While Calcite helps instantiate a class, we help
developers complete method calls. Precise [5] mines existing
code bases to recommend appropriate parameters for method
calls. Hill and Rideout [4] focus on automatic completion of
a method body by searching similar code fragments or code
clones in a code-base.

Keyword programming [2] is also related to our study, but
it defines a completely different way of user interaction for
code completion. Instead of typing a method name, users type
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Fig. 2. Overview of CSCC’s entire process of making recommendation
starting from code completion request.

some keywords that give hints about the method the user is
trying to call. The algorithm then automatically completes the
method call or makes appropriate suggestions to complete the
remaining part. Han and Miller [8] later introduce abbreviation
completion that uses a non-predefined set of inputs to complete
the target method call.

III. PROPOSED ALGORITHM

In this section, we describe our algorithm for finding method
calls to recommend for a target object. Figure 2 presents an
overview of the process. Our example-based, context-sensitive
code completion system works in three steps:

• Collect the usage context of API method calls from code
examples and index them by their contexts to support
quick access. We model the context of an API method
call by method calls, Java keywords and type names
that appear within the four lines prior to the receiver
object that called the method. We hypothesize that these
elements around the target method call can provide a
better, fuller context than other approaches.

• Search for method calls whose context matches with that
of the target object. One approach would be to directly
measure the similarity between the context of the target
object and that of each method call in the example
code base using string edit-distances. However, string
edit-distance operations are computationally expensive.
To speed up the search, we instead use the Hamming
distance over the simhash values as similarity measures.
We determine a smaller list of method names that are the
more likely candidates for code completion, which we
refer to as the candidate list.

• The final step synthesizes the method calls from the
candidate list. For each method name in the candidate
list, we use a combination of token-based Longest Com-
mon Subsequence (LCS) and Levenshtein distance to
determine a similarity value of its context with that of
the receiver object. We then sort the method names in
descending order of similarity value and recommend the
top three names to complete the method call.

We describe the three steps in detail as follows.

A. Collect usage context of method calls
In this step, CSCC mines code examples to find the usage

context of API method calls. To capture a method call context,

…
10. getButton.setEnabled(false);}
11. protected Control createContents(Composite parent){
12.    Text text = new Text(parent, SWT.MULTI|SWT.READ_ONLY  
                        | SWT.WRAP)
13.     text.setForeground(
                        JFaceColors.getErrorText(text.getDisplay());
...

Our algorithm determines the following 
context of getDisplay method

1. getErrorText   
2. setForeground      
3. Text                     
4. new                     
5. Text                     
6. Composite            
7. createContents     
8. Control

13         
13      
12                     
12                    
12                     
11            
11     
11

Overall Context
Elements

Line
Number

1. getErrorText   
2. setForeground      

13         
13      

Line Context
Elements

Line
Number

Method Name
getDisplay
Receiver object type 
org.eclipse.swt.widgets.Text

Fig. 3. Overall context and line context for getDisplay.
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Fig. 4. Database of method call contexts are grouped by receiver types using
inverted index structure.

we consider the content of the n lines prior to it, including
the line where the target method call appears. In this study,
we use n = 4 and we validate this decision in Section V.

We collect the following three kinds of information from the
four lines of context, which we refer to as the overall context
of the method call:

1) Any method names.
2) Any Java keywords except access specifiers.
3) Any class or interface names.

When extracting the overall context, we ignore blank lines,
comment lines, or lines containing only curly braces. We also
remove any duplicate tokens from the overall context.

In addition, we separately collect a line context for the target
method, which includes any method names, keywords (except
access specifiers), class or interface names and assignment
operators that appear on the same line but before the target
method call. When the overall contexts are completely differ-
ent and fail to match, line contexts act as a secondary criterion
for matching.



To further explain the construction of both overall and line
context, consider the method call at line number 13 as shown
in Figure 3. The contents of both contexts include tokens
and their locations. Note that although line number 10 is
within four lines of our target method call getDisplay, it is not
considered part of the context as it is located outside of the
createContents method containing the target call getDisplay.

We use a two-level indexing scheme to organize the col-
lected usage contexts of method calls (see Figure 4 for an
example of it). We use the type name of a receiver object to
group all method calls that have been invoked on the type. We
use an inverted index structure [21] to organize such a group
of method calls. More specifically, an inverted index is a data
structure that maps each term to its location in a document. We
represent each overall context of a method call as a document,
and use tokens from the context to index the set of documents
where they appear.

B. Determine candidates for code completion
When a user requests a method call completion (for exam-

ple, in Eclipse typing a dot (.) after an object name initiates
such a request), our algorithm first extracts both overall and
line contexts for the receiver object. To find candidate methods
for code completion, we match the current context to those
extracted from the example code base. Specifically, we use
the type name of the receiver object as an index to determine
the related inverted index structure, which contains all method
calls made on the receiver type (Figure 4). We then use tokens
from the overall context as keys to the inverted index structure
to collect all those method calls in the code examples that
have the same type as the receiver object. We refer to these
matching method calls as the base candidate list.

The base candidate list often contains thousands of method
calls, so we need to reduce them to a small number of most
likely candidates in order to recommend. We follow a two-
step process to search for the most likely candidates. We
first use the simhash technique to determine a shorter list of
method names (currently the top 200 that are deemed most
similar to the target context) that are more likely candidates
to complete the current method call and quickly eliminate
the majority of others. To calculate string similarity metrics,
we concatenate all the tokens of each context and generate
a simhash value for the concatenated string (see Figure 5
for an example). We use the simhash technique to eliminate
most of the irrelevant matching candidates because it is both
fast and scalable. Second, we use the normalized Longest
Common Subsequence (LCS) and Levenshtein distances to
measure the fine-grained similarity between the target context
and the context of each likely matching candidate to obtain
a refined candidate list. Calculating LCS and Levenshtein
distances are both time consuming operations. Although they
provide fine-grained similarity measures, due to the near real-
time constraint on code completion, we cannot apply them
directly on the base candidate list.

We use the simhash technique [28] to identify the most
likely method call candidates. Simhash uses a cryptographic
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hash function to generate binary hash keys, also known as
simhash values. An important property of simhash is that
strings that are similar to each other have either identical
or very similar simhash values. Therefore, we determine the
similarity between each pair of contexts using the Hamming
distance of their corresponding simhash values. We use the
Hamming distance of the overall context to sort the matching
candidates unless the Hamming distance of the line context
exceeds a predefined threshold value, in which case we use
the Hamming distance of the line context as the distance
measure. After sorting by similarity, we take the top k method
contexts as the likely matching candidates of the target context.
After experimentation with different values of k, we found that
k = 200 is a good choice to work with and we use that value
in our study. We refer to this list as the refined candidate list.

To recommend method calls, we further sort the method
names in the refined candidate list by combining both overall
and line context similarities as follows. We use the normalized
Longest Common Subsequence (LCS) distance to measure the
similarity of the token sequences from the overall context.
We use Levenshtein distance to measure the similarity of the
token sequences from the line context. We sort matching can-
didates in descending order of their overall context similarity.
However, in case of a tie for the overall context similarity,
we use the line context similarity. We ignore all matching
candidates whose similarity value drop to a certain threshold.
We empirically found that 0.30 is a good choice to work with.

The simhash technique has been found effective for detect-
ing similar pages in a large collection of web documents [27]
and also has been used successfully in detecting similar code
fragments in code clone detection [26]. Although various hash
functions are available, we use the Jenkin hash function since it



has been found effective in a previous study [26]. We generate
a 64 bit simhash value for both overall and line contexts of the
target object. To save computation time, we precompute the
simhash values. We determine the similarity between each pair
of contexts using the Hamming distance of the corresponding
simhash values.

C. Recommend top-3 method calls

The objective of this step is to recommend a list of comple-
tion proposals (i.e., method names). Since there are many code
examples associated with the same method call, the sorted list
of method names obtained from the previous step may contain
many duplicates. After eliminating duplicates, we present the
top three method names to the users.

IV. EVALUATION

We evaluate our technique and compare CSCC with five
state-of-the-art code completion systems using eight open-
source systems (Table I). For a given subject system, we deter-
mine all locations where methods from a target API have been
called. This set of method calls constitutes our data set. We
then apply the ten-fold cross validation technique to measure
the performance of each algorithm. This is a popular way of
measuring performance of information retrieval systems [14]
and has been used previously in many research projects. First,
we divide the entire data set into ten different folds, each
containing an equal number of method calls. Next, for each
fold, we use code examples from the nine other folds to train
the technique for method call completion. The remaining fold
is used to test the performance of the technique.

We use precision, recall, and F-measure to measure the
performance of an algorithm. If a target method call is in the
top-three completion proposals made by a completion system,
we consider the recommendation relevant. The precision,
recall, and F-measure are defined as follows:

Precision =
recommendations made \ relevant

recommendations made

(1)

Recall =
recommendations made

recommendations requested

(2)

F -measure =
2 · Precision · Recall
Precision + Recall

(3)

where recommendations requested is the number of method
calls in our test data for which we will make a code completion
request. Recommendations made is the number of times
where a code completion system makes a recommendation.

A. Test Systems

We chose to focus on two API’s, SWT and Swing/AWT, as
the target for our evaluation. These are popular libraries exten-
sively used for developping GUI applications. We selected four
systems that used SWT. The largest one is Eclipse 3.5.2 [19], a
popular open source IDE. Vuze [16] is a P2P file sharing client
using the bittorrent protocol. Subversive [17] provides support

to work with Subversion directly from Eclipse. RSSOwl [18]
is an RSS newsreader.

We also chose four open source software systems for
AWT/Swing. NetBeans 7.3.1 [20], the largest, is an IDE;
jEdit [22] is a text editor; ArgoUML [23] is a UML modeling
tool; and JFreeChart [24] is a Java charting library.

B. Evaluation Results
In this section, we discuss the results of evaluating and

comparing CSCC with five other code completion systems
(ECCAlpha, ECCRelevance, FCC (Frequency-based Code
Completion), BCC, and BMN) using the eight test systems.
We have introduced BCC and BMN earlier. ECCAlpha and
ECCRelevance are two default Eclipse code completion sys-
tems that leverage the static type system. ECCAlpha sorts the
completion proposals in alphabetical order, and ECCRelevance
uses a positive integer value, called relevance, to sort them.
The value is calculated based on the expected type of the
expression as well as the types in the code context (such as
return types, cast types, variable types etc.). The Frequency-
based code completion system (FCC) considers the frequency
of method calls in a model to make recommendations. The
more frequent a method occurs, the higher its position is in
the completion proposals.

Table I shows the precision, recall, and F-measure values for
the six code completion systems. The top four rows are results
collected for SWT, and the bottom four rows for AWT/Swing.
Overall, CSCC achieves higher precision and recall values
than any of the other techniques for both single and top
three completion proposals. For the top three proposals, it
has precision of 73-86% and recall of 97-99%. The recalls
for ECCAlpha, ECCRelevance and BCC are all one. But both
ECCAlpha and ECCRelevance performed poorly, and BCC
outperformed both of them. Except in a few cases, BCC also
outperforms FCC. Furthermore, the performance of FCC is not
great, while its recall is close to 100%, its precision is only
49-62% for the top three proposals. Interestingly, BMN did
not perform well either. Although its precision is better than
both BCC and FCC for the single and top-3 suggestions, its
recall is poorer in both cases. This is due to the fact that BMN
targets local variable method calls but there are many places
in source code where methods are called on fields, parameters,
chained expressions, or even static types. We performed further
experiments to elaborate on this issue in Section IV-C1.

The results for AWT/Swing shown in the bottom four rows
of Table I are consistent with those of SWT. For example, for
the top three proposals and for the largest subject system (Net-
Beans), the F-measure of CSCC is higher by 15% compared
to the closest performing technique.

To test whether CSCC performed significantly better than
other techniques, we also performed directional Wilcoxon
Signed Rank Tests for the top three completion proposals.
CSCC is significantly better than all other techniques eval-
uated. For example, CSCC performs statistically significantly
better than BMN in terms of both precision and recall values
(W=13, N=8, ↵=0.05 in both cases).



TABLE I
EVALUATION RESULTS OF CODE COMPLETION SYSTEMS. Delta SHOWS THE IMPROVEMENT OF CSCC OVER BMN.
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Eclipse
Top-1 0.006 0.01 0.24 0.31 0.36 0.60 24 1 1 1 1 0.77 0.99 22 0.008 0.020 0.39 0.47 0.49 0.75 26
Top-3 0.052 0.20 0.52 0.49 0.63 0.80 17 1 1 1 1 0.77 0.99 22 0.10 0.34 0.68 0.66 0.69 0.88 19
Top-10 0.14 0.34 0.80 0.73 0.69 0.90 21 1 1 1 1 0.77 0.99 22 0.25 0.51 0.89 0.84 0.73 0.94 21

Vuze
Top-1 0.005 0.10 0.23 0.33 0.35 0.56 21 1 1 1 1 0.76 0.98 22 0.009 0.18 0.37 0.50 0.48 0.71 23
Top-3 0.03 0.16 0.49 0.49 0.59 0.73 14 1 1 1 1 0.76 0.98 22 0.06 0.28 0.66 0.66 0.66 0.84 18
Top-10 0.20 0.36 0.94 0.71 0.61 0.83 22 1 1 1 1 0.76 0.98 22 0.33 0.53 0.97 0.83 0.68 0.90 22

Subversive
Top-1 0.01 0.03 0.30 0.36 0.58 0.68 10 1 1 1 1 0.38 0.97 60 0.02 0.058 0.46 0.53 0.46 0.80 34
Top-3 0.02 0.07 0.63 0.62 0.77 0.86 9 1 1 1 1 0.38 0.97 60 0.04 0.13 0.77 0.77 0.51 0.91 40
Top-10 0.07 0.20 0.96 0.88 0.79 0.91 12 1 1 1 1 0.38 0.97 60 0.13 0.34 0.98 0.94 0.51 0.94 43

Rsowl
Top-1 0.01 0.078 0.25 0.32 0.48 0.65 17 1 1 1 1 0.72 0.98 26 0.20 0.14 0.40 0.48 0.58 0.78 20
Top-3 0.024 0.16 0.58 0.51 0.74 0.84 10 1 1 1 1 0.72 0.98 26 0.046 0.28 0.73 0.68 0.73 0.90 17
Top-10 0.077 0.29 0.85 0.74 0.80 0.90 10 1 1 1 1 0.72 0.98 26 0.14 0.45 0.92 0.85 0.76 0.94 18

NetBeans
Top-1 0.12 0.13 0.34 0.29 0.43 0.66 23 1 1 1 1 0.67 0.98 31 0.21 0.23 0.51 0.45 0.52 0.79 27
Top-3 0.18 0.25 0.62 0.53 0.67 0.86 19 1 1 1 1 0.67 0.98 31 0.31 0.40 0.77 0.69 0.67 0.92 25
Top-10 0.36 0.48 0.86 0.73 0.70 0.92 22 1 1 1 1 0.67 0.98 31 0.70 0.65 0.92 0.84 0.68 0.95 27

JEdit
Top-1 0.009 0.12 0.41 0.35 0.52 0.62 10 1 1 1 0.98 0.70 0.94 24 0.02 0.21 0.58 0.52 0.60 0.75 15
Top-3 0.14 0.29 0.62 0.53 0.74 0.79 5 1 1 1 0.98 0.70 0.94 24 0.25 0.45 0.77 0.69 0.72 0.86 14
Top-10 0.32 0.49 0.83 0.74 0.79 0.85 6 1 1 1 0.98 0.70 0.94 24 0.48 0.66 0.91 0.84 0.74 0.89 15

ArgoUML
Top-1 0.03 0.13 0.40 0.32 0.46 0.58 12 1 1 1 0.99 0.68 0.95 27 0.058 0.23 0.57 0.48 0.55 0.72 17
Top-3 0.12 0.27 0.65 0.53 0.68 0.74 6 1 1 1 0.99 0.68 0.95 27 0.21 0.43 0.79 0.69 0.68 0.83 15
Top-10 0.27 0.47 0.83 0.78 0.74 0.81 7 1 1 1 0.99 0.68 0.95 27 0.43 0.64 0.91 0.87 0.71 0.87 16

JFreeChart
Top-1 0.02 0.08 0.35 0.32 0.42 0.63 21 1 1 1 1 0.75 0.98 23 0.040 0.15 0.52 0.48 0.54 0.77 23
Top-3 0.05 0.19 0.52 0.63 0.76 0.85 9 1 1 1 1 0.75 0.98 23 0.10 0.32 0.68 0.77 0.75 0.91 16
Top-10 0.27 0.58 0.63 0.92 0.84 0.94 10 1 1 1 1 0.75 0.98 23 0.43 0.73 0.77 0.96 0.79 0.96 17

AST Node Types for 
Receiver Expression Example

Array Access
Field Access

Simple Name*

Class instance creation
Method invocation

Qualified Name

array[0].getText()
foo().button.get.Text()

button.getText()
javax.swing.JButton.getText()

obj.getPanel().setSize(100,100)
new JLabel().setText("Label");

Method argument

Super constructor 
argument

Assignment statement 

Return statement

If statement (in the 
condition part)

Variable declaration 
fragment

For statement

Constructor argument

Class instance creation

While statement

Do while statement

label.setFont(cmp.getFont())

super(Display.getCurrent())

Container c = 
frame.getContentPane()

return folder.getItemCount()

fileName = dialog.open()

new JFrame (tf.getText())

while (iterator.hasNext()){
… }

do{ ...
}while(iterator.hasNext())

for(..; iterator.hasNext() ;…) { 
… }

this(img.getImageData)

if(frame.isVisible()){ ...
}

AST Node Types of 
Parent Node Example

javax.swing.Spring contains a method called 
getMinimumValue() and FractionSpring class overrides 
that method.
class FractionSpring extends Spring{ ….  
    public int getMinimumValue(){
       return parent.getMinimumValue()*fraction;}
} 
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Fig. 6. Taxonomy of method calls

C. Evaluation Using a Taxonomy of Method Calls

While the evaluation in Section IV-B provides a ranking of
the six techniques in terms of their performance, it does not
reveal what factors contribute to CSCC’s better performance.
We hypothesize that it is due to CSCC’s ability to capture
a fuller context for method calls. To further shed light on
this hypothesis, we propose a taxonomy for the characteristics
of a method context, and compare the techniques using each
category of method call characteristics within the taxonomy.

Our taxonomy (Figure 6) includes three categories of char-

acteristics for the context of a target method call: the AST
node types for its receiver expression, the AST node types
for its parent node, and the enclosing overridden method that
contains the target method call. Although we cannot guarantee
that the taxonomy covers every possible aspect of method
call completions, it can provide insights into code completion
techniques and can also help us to decide where more effort
is needed.

We use the following procedure for our evaluation. For
each category of method calls within each test fold, we count



TABLE II
CATEGORIZATION OF METHOD CALLS FOR DIFFERENT AST NODE TYPES

FOR RECEIVER EXPRESSIONS (FOR THE TOP-3 PROPOSALS)
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Array
Access

0.54 0 54.16 1.65 0 79.73

Class
Instance
Creation

0.18 0 100 0.11 0 100

Field Access 0.60 0 80.77 0.49 0 77.27
Method
Invocation

21.66 0 94 11.88 0 75.42

Si
m

pl
e

N
am

e Type 5.48 79.21 92.13 3.02 96.26 98.26
Local
Vari-
able

32.13 68.26 84.85 41.86 0.64 83.14

Field 51.94 52.07 79.95 46.92 50 75.46
Parameter 10.44 52.80 79.35 9.47 46.81 79.50
Total 74.08 58.84 82.13 85.02 56.86 79.65

Qualified
Name 2.94 57.36 82.17 0.85 60.53 71.05

how many of them are correctly predicted by code completion
techniques. We present the final result after summing up the
results for all ten test folds.

1) AST Node Type for Receiver Expression: We categorize
the receiver expressions of the test method calls according
to their AST node types. We count the number of test
method calls that each code completion technique correctly
recommends for each kind of AST node. Table II shows the
results for the top three proposals from the two largest test
systems, Eclipse and NetBeans.

Table II suggests that the majority of receiver expressions
fall in the simple name category. A simple name can be
a variable name (declared as a method parameter, a local
variable, or a field) or a type name (static method calls).
The original BMN technique considers only local variables
and their types to compute completion proposals. However,
Table II shows that many receiver expressions of method calls
are not local variables, and thus for which BMN produces
no recommendations. This explains why we did not receive
good results for BMN (Table I). The way BMN collects usage
context is quite limited. In contrast, CSCC can identify usage
context even when the receiver is not a local variable and thus
can recommend method names for those cases too.

We performed another experiment where we train and test
both BMN and CSCC using only those method calls where the
receiver is a local variable. For the top three proposals, BMN
achieves 68% recall and 77% precision for the Eclipse system,
both of which are higher than those of any other techniques
except CSCC. The recall and precision for CSCC are 84% and
86%, respectively, indicating that CSCC performs better than
BMN even when the receivers are local variables.

TABLE III
CORRECTLY PREDICTED METHOD CALLS WHERE THE PARENT

EXPRESSION EXPECTS A PARTICULAR TYPE OF VALUE (FOR THE TOP-3
PROPOSALS AND FOR THE ECLIPSE SYSTEM)

AST Node Types of
Parent Node
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Method Argument 696 6 441 527 378 336 553
Assignment 429 3 282 338 144 184 305
If Statement 526 36 47 225 217 214 373
While Statement 8 0 0 4 0 2 4
Return 99 1 56 62 38 32 65
Variable
Declaration
Fragment

1388 10 738 1018 498 515 1084

For Statement 5 0 3 3 0 0 4
Class Instance Cre-
ation

126 3 76 95 46 54 98

Prefix Expression 425 30 75 396 282 228 346
Total 3702 89 1718 2668 1603 1565 2832

2.4% 46.4% 72% 44.5% 42.27% 76.5%

2) AST Node Types of Parent Node: We consider those
method call expressions where a particular type of object or
value is expected. For example, a framework method call can
be located in the condition part of an if statement that expects
a boolean value. A method call can be located in the right
hand side of an assignment expression. If the left hand side of
that assignment expression is of Container type, the right hand
side should return an object of type Container or a sub-type
of it. The goal is to identify how well techniques that consider
type information as context perform in these cases compared
to others. To make the result comparable with the BMN code
completion system, we consider those method calls where the
receiver is a local variable.

Table III shows the results of top three proposals for the
Eclipse system. We can see that considering the expected type
as contextual information can help improve code completion
techniques. That is why the accuracy of BCC becomes close to
that of CSCC, which achieves the highest accuracy for all but
one category of AST node. Other code completion systems,
such as BMN, FCC and default code completion systems of
Eclipse, did not perform well in this experiment.

3) Method Calls inside Overridden Methods: The objective
is to verify whether target methods called from within over-
ridden methods impose any challenge to the code completion
techniques. Our informal observation is that it may be difficult
to identify usage context for method calls within overridden
methods. Similar to the previous experiment, we again test
only those method calls where the receiver is a local variable.
Although CSCC performs better than any other techniques on
previous experiments, it performs poorly in this experiment.
When we manually analyze some of the code examples, we
notice that method calls within overridden methods contain
very limited contextual information. For example, a large
number of methods in Java Swing applications result from



TABLE IV
PERCENTAGE OF CORRECTLY PREDICTED METHOD CALLS THAT ARE

CALLED IN THE OVERRIDDEN METHODS (FOR THE TOP-3 PROPOSALS)

Subject
Systems

Percentage of correctly predicted method calls by
Code Completion Systems (%)
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Eclipse 6.15 16.73 47.40 24.62 23.56 17.60
NetBeans 5.60 25.06 52.80 17.45 15.44 19.69

implementing the ActionListener interface and those methods
contain only a few method calls or method calls that are not
related with each other, which possibly contributed to such
poor results and thus requires further investigation. However,
static type based system BCC in such case performs better than
other techniques. For example, BCC can correctly recommend
method calls in 47.40% for Eclipse (52.80% for NetBeans) of
the total methods that are called in overridden methods.

D. Comparison With Code Recommenders
Code Recommenders is a more advanced Eclipse plugin

evolved from BMN. It utilizes a model trained using a set
of code examples to provide intelligent code completion.
When a developer invokes code completion in the IDE, Code
Recommenders collects the current usage context and then
looks in its model for possible matches to complete the code.
Because the model is proprietary, we cannot train it with
new code examples. Furthermore, because we did not have
access to its internal API to obtain completion proposals
automatically, we could only perform a manual comparison
instead. Our comparison indicates that CSCC performed better
than Code Recommenders. Our comparison is limited in scale
due to its manual nature. Extensive evaluation may be possible
in future if Code Recommenders becomes more open.

From the code examples in a book on the Java Swing frame-
work [25], we randomly selected 309 Swing/AWT method
calls as our test cases. We enabled the Code Recommenders
intelligent call completion in an Eclipse IDE. Then for each
test case, we manually opened the corresponding file in the
IDE, removed any code after the target object and tried to
complete the method call by typing a dot (.) after the object
name. We recorded the list of completion proposals suggested
by Code Recommenders and determined the rank of the target
method name in that list. To obtain the performance result for
CSCC, we trained CSCC with the remaining examples and
tested CSCC against the 309 selected method calls. CSCC
achieves better result than Code Recommenders. The precison,
recall and F-measure for Code Recommenders are 62%, 76%
and 68%, and for CSCC 92%, 82% and 87% respectively.

E. Runtime Performance
To be useful, code completion must be done at near real-

time in order to not interrupt a developer’s flow of coding.
Thus, to study the time required to suggest completion pro-
posals, we measured the runtime of the first and last two

TABLE V
RUNTIME PERFORMANCE OF CSCC GENERATING A DATABASE OF 40,863

METHOD CALLS (COLUMN 2) AND PERFORMING 4,540 CODE
COMPLETION (COLUMN 3) FOR THE ECLIPSE SYSTEM.

Setup Used Database

Generation

Time

Code Completion Time

CSCC (with inverted index) 8,066 ms 8,998 ms (Avg.1.94 ms)

Without inverted index 8,000 ms 12,888 ms (Avg.2.77 ms)

steps of CSCC. The first step is responsible for building a
candidate method call database and the last two steps are
about recommending completion proposals. All experiments
were performed on a computer running Ubuntu Linux with a
3.40 GHz Intel Core i7 processor and 10 GB of memory.

As shown in Table V, we provide runtime data for the
Eclipse subject system where the model is built using 40,863
method calls (column two) and the running time is the time
required to test all 4,540 queries (column three). As expected,
the first step takes the most time but the database needs to be
built only once. On average, it takes 1.94 ms (milliseconds)
to compute the completion proposals for each method call,
which is negligible.

To understand the benefits of using the inverted index
structure, we also developed a variant of our algorithm without
using the inverted index structure and measured the runtime
again. The result is summarized in the second row of Table V.
While the model generation time reduces slightly, the code
completion running time increases considerably. Using the
inverted index structure not only reduces the runtime of the
algorithm, but also improves the result slightly by eliminating
many irrelevant mapping candidates.

V. DISCUSSION

A. Why does CSCC consider four lines as context?

For an API method call, we use four lines prior to the
method call to determine the overall context. The number four
is determined experimentally as follows. For this experiment,
Eclipse is used as a subject system. We collect all SWT method
calls and randomly select 10% for testing. The remaining 90%
of calls are used to train CSCC. Next, we run the algorithm 10
times by varying context line numbers from one to ten. The
higher the context line number, the larger the context size,
which results in an increase in computation time. We need to
keep the number of context lines as low as possible without
impacting performance. Figure 7 shows the accuracy of CSCC
at various context line numbers. From Figure 7, we can see
that at the beginning, the number of correctly predicted method
calls drops when we increase the context size from one to two
lines. However, we observe a sharp increase from that point
for increasing the context size. When the context size increases
to more than four lines there is no significant change in the
number of correct predictions. Therefore, we set the context
size to four lines.
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Fig. 7. The number of correct predictions at different context size

B. What is the impact of different context information?

We evaluate the impact of CSCC’s various context informa-
tion on the performance of method call prediction. We run an
experiment on NetBeans, our largest Swing/AWT system.

Table VI shows the percentage of correctly predicted
method calls for different combinations of context information.
In the first row, we model the overall context considering those
methods that were previously called on the receiver object.
but without the enclosing method name. Next, we consider
a variation of the previous model that takes into account
enclosing method name. For the above two models we neither
consider any line context nor put any limit on context size. But
all the models in the following five rows use overall context to
recommend completion proposals. The third row corresponds
to a model that only considers those method names that were
previously called within four lines of distance on the same
receiver object of the target method call. The fourth row
represents a model that in addition to the above information,
also considers the line context. The fifth row corresponds to
another model that in addition to the previous information, also
considers any other method names located within four lines of
distance. The model in the sixth row takes into account any
type names (class or interface names) appearing as part of class
instance creation plus the previous information. Finally, the
last row implements the complete CSCC, which also includes
any Java keywords except access specifiers.

According to the results, CSCC in the last row achieves
the highest accuracy. It is also clear from the table that the
performance of CSCC is increasing with the addition of addi-
tional context information. Since adding the enclosing method
name does not improve performance significantly (compare
the first two rows), we did not include enclosing method
name in CSCC. Among various additional information we
considered, method names and the type names (appears in the
class instance expression) contributed the most. Although the
addition of the line context improves the overall performance
by only around 1%, during our manual investigation we found
that in those small number of cases, overall context differs
considerably, so line context complements the overall context
in this case. Surprisingly, adding keyword names did not
improve the performance significantly. We analyzed some

TABLE VI
SENSITIVITY OF PERFORMANCE TO DIFFERENT CONTEXT INFORMATION

Model Correctly predicted method calls(%)
Top-1 Top-3 Top-5 Top-10

Rec. method calls 46.5 69.5 77.5 82.5
Rec. method calls + en-
closing method

46.6 68.7 76.9 81.8

Rec. method calls (within
four lines)

33 60.20 76 84.80

Rec. method calls (within
four lines)+line context

34.8 61.62 76.26 84.89

Previous factors + Other
method calls

58 78 83 87

Previous factors + Type
name

62 82 86 89

Previous factors + key-
word (CSCC)

64 84 88 90

TABLE VII
CROSS-PROJECT PREDICTION RESULTS. P, R, AND F REFER TO PRECISION,

RECALL, AND F-MEASURE, RESPECTIVELY.

Subject Systems FCC (%) BMN (%) CSCC (%)

NetBeans

Top-1 P 39 46 69
R 100 90 98
F 56 61 81

Top-3 P 64 77 84
R 100 90 99
F 78 83 91

JEdit

Top-1 P 57 70 66
R 100 84 98
F 73 76 79

Top-3 P 69 85 83
R 100 84 98
F 82 84 90

ArgoUML

Top-1 P 48 48 54
R 100 85 100
F 65 61 70

Top-3 P 65 68 77
R 100 85 100
F 79 76 87

JFreeChart

Top-1 P 43 44 68
R 100 89 100
F 60 59 81

Top-3 P 74 85 88
R 100 89 100
F 85 87 94

cases manually and found that while they are effective, their
effect diminishes in the matching process because of the
presence of a large number of methods, and class/interface
names in the context.

C. How effective is the technique in cross-project prediction?
We performed another experiment to evaluate the effective-

ness of CSCC in cross project prediction. We followed the
approach described by Nguyen et al. [29] by using ten-fold
cross validation. For each fold, we trained with nine other folds
of the same system plus code examples from all other systems.
To make the results comparable with BMN, we only provide
prediction results for local variable method calls. Table VII
shows the results of our method call prediction.

CSCC once again performs better than other techniques.
There are two important lessons to be learned from the
result. First, both precision and recall of CSCC either slightly
increase or are consistent with those of Table I, indicating



that CSCC can recommend correct completion proposals even
when the training model contains examples from different
systems. As long as we have relevant usage contexts, CSCC
can find them and can recommend completion proposals.
Second, despite the considerable increase in the size of the
training model, we did not notice significant improvement in
performance. This seems to be consistent with Hindle et al.’s
finding that the degree of regularity across project is similar
to that in a single project [30].

VI. THREATS TO VALIDITY

There are a number of threats to the validity of this study.
First, we considered only two APIs. One can argue that the

result may be different for a different framework or library.
While it can be beneficial to test with additional libraries for
other reasons, given that CSCC does not directly rely on these
libraries, we believe that this is highly unlikely and that the
results we obtain in this paper should largely carry over.

Second, we re-implement the BMN system since both the
data and implementation of the technique are not available.
Although we cannot guarantee that our replication of the tech-
nique does not contain any error, we’ve spent a considerable
amount of time implementing and testing the technique to
minimize the possibility of introducing error.

Third, in this study we only consider top four lines to
determine the context of a method call because we assume
a developer is typing code in a top-down manner, which
is consistent with previous studies [12]. However, it is also
possible that a developer can edit existing code, in which case
we can use both top and bottom lines of a method call to create
context. Supporting such alternative manners of developing
code remains as future work.

VII. CONCLUSION

In this paper, we present a simple, efficient, scalable, context
sensitive code completion technique, called CSCC. CSCC
mines previous code examples to recommend completion
proposals. CSCC is simple because it is based on tokenization,
instead of parsing or other more advanced analysis. It is
efficient and scalable due to its ways of measuring context
similarity: using simhash first as a coarse-grained but efficient
filter, and LCS/Levenshtein distance second as a refined, more
accurate similarity metrics. We’ve compared CSCC with other
state-of-the-art code completion systems using eight open
source software systems that use two popular libraries. CSCC
performed better than state-of-the-art static type or context-
sensitive, example-based systems considered in our study. We
also propose a taxonomy of method calls to identify the effect
of different context elements on code completion techniques.

We envisage extending CSCC by incorporating knowledge
captured by our taxonomy. Moreover, code completion
operations are inherently repetitive and developers often
insert the same text within a short period of time [31].
Although we did not consider method call repetitiveness
in our taxonomy, we believe that this could be a
potential additional information to further improve the

result. Lastly, we would like to conduct a user study
to evaluate the effectiveness of code completion systems.
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