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Abstract� 
Successful collaboration among developers is 
crucial to the completion of software projects in a 
Distributed Software System Development 
(DSSD) environment. We have developed an Ex-
pert Recommender System Framework (ERSF) 
that assists a developer (called  the  “Active  Devel-­
oper”)  to find other developers who can help them 
to fix code with which they are having difficulty. 
The ERSF first looks for other developers with 
similar technical expertise, as measured by their 
prior work on code fragments that are similar to 
(clones of) the code that the Active Developer is 
working on (the  “code  at hand”). As well, it ana-
lyzes the   other   developers’ social relationships 
with the Active Developer (available from the 
DSSD environment) and their social activities 
within the ERSF (information which helps to 
maintain developer profiles used in this analysis). 
This information is then combined to provide a 
ranked list of potential helpers based on both 
technical and social measures. A proof of concept 
experiment shows that the ERSF can recommend 
experts with good to excellent accuracy, when 
compared with human rankings of appropriate 
experts in the same scenarios 

1 Introduction 
A software system is a composite of dependent 
components that make the software complicated 
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especially if the system has a large number of 
such components; a single developer may have 
limited knowledge, and s/he is unable to work on 
all the components [5]. Therefore, developers 
need to cooperate and coordinate to manage sys-
tem dependencies and build a successful software 
system. However, this coordination will not be 
successful if a developer or a team manager does 
not have good experience in identifying and se-
lecting helpers or teammates who have good 
knowledge to accomplish a task at hand. Begel et 
al. [1] found that most Microsoft software engi-
neers need on occasion to find relevant engineers 
to help them accomplish tasks at hand. 

Some organizations assign this responsibility 
to team managers, which might work with a small 
team. However, with a large team it is difficult to 
identify   each   developer’s   knowledge   and   keep  
such knowledge up-to-date. In short, identifying 
and allocating an expert is a difficult problem to 
deal with [15]. 

There have been a great many studies in find-
ing expert developers as well [7,12,21] (for details 
see Section 2).  Among different metrics for rec-
ommending experts, the most important are the 
technical expertise of the potential helpers on the 
code fragment the Active Developer is working 
on and the social relationships among the Active 
Developer and the other developers. However, 
most previous techniques to recommend experts 
are based only on their technical expertise. Such 
techniques have a potential danger: if developers 
are not very skilled at collaboration and/or are not 
willing to help, these developers will not be suita-
ble experts to be recommended even if they have 
high knowledge and expertise about the code. On 
the other hand, recommending experts based only 
on social relationships, such as is done in Ensem-
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ble [19], will be useless if the recommended de-
velopers do not have adequate knowledge of the 
code even if they have strong social relationships. 
Although there is at least one expert recommender 
system that exploits both the technical expertise 
and social relationships of the developers 
(STeP_IN [21]), our approach breaks new ground 
both in how we measure technical expertise and 
how we track social relationships.  

We developed an Expert Recommender Sys-
tem Framework (ERSF) to identify and allocate a 
ranked list of expert helpers who can help an Ac-
tive Developer who is looking for assistance in 
completing or fixing a buggy code fragment. The 
system considers both technical expertise and 
social relationships of developers in recommend-
ing those experts. The technical expertise is con-
cerned with finding people who have worked on 
code fragments in the past that are similar to the 
code being developed by the Active Developer. 
These are called clones in the Software Engineer-
ing area [14]. In detecting clones we use a state of 
the art clone detector, SimCad [17] that detects 
both exact and near-miss code-fragments (similar 
fragments where there could be differences 
among them in terms of number of statements, 
identifiers, comments and formatting). This pro-
vides a much larger range of potential helpers 
with appropriate expertise than in previous sys-
tems that mostly determine the technical expertise 
of the other developers based on selecting devel-
opers who have worked on exactly the same code 
for which the Active Developer is seeking help. 

The social relationships are concerned with 
the social activities between the Active Developer 
and other developers during Distributed Software 
System Development (DSSD). We developed 
further measures of ability, trust, and reputation 
by analyzing developer communications within 
the Expert Recommender System Framework 
(ERSF). This allows the ERSF to create profiles 
of each developer that, over time, can be main-
tained and updated. This is an improvement over 
other methods (e.g., [15]) that base social meas-
urements on data in a repository or API library. 

Our method has other advantages, too. It can 
still provide recommendations, even if the code at 
hand has no authors other than the Active Devel-
oper himself/herself and even if there are no 
clones. It does this by using the social part of the 
system. On the other hand, developers with no or 
little history in the DSSD or ERSF can also get 
recommendations since our approach can use in-

formation about clones and/or general sociality 
within the DSSD and the ERSF. Further, develop-
ers can also get help from expert developers, even 
when completing code in new files using infor-
mation about clones from other parts. 
        We have evaluated our approach with a 
proof of concept experiment with three different 
scenarios, 10 human judges and three machine 
learning algorithms [18]. Our experiment shows 
that the approach can recommend experts with 
comparable accuracy to the human judges. 

The paper is organized as follows: Section 2 
shows related work in recommender systems. 
Section 3 explains in detail the method we devel-
oped to recommend experts. Section 4 describes 
our experiment and the evaluation details. Section 
5 points out some potential threats and then dis-
cusses how we mitigate them, and finally Section 
6 concludes with our future plan. 

2 Related  Work 
Recommending experts in software development 
is not new and there have been a great many stud-
ies. Expertise in recommender systems is usually 
judged using five different techniques. Time-
based techniques [9,10] rank as highest those de-
velopers who worked most recently on a code 
fragment since they have the freshest code in 
mind. Modification-based techniques analyze 
added, removed, or edited lines of code to identify 
expertise [12,6,21]. Moreover, some systems ben-
efit from commits on code besides the lines of 
code themselves to identify expertise [1], or 
sometimes they limit the identification based on 
the checked-in commits on code [3]. Developer 
expertise is measured based on the size of these 
modifications or commits. Code usage-based 
techniques, on the other hand, do not analyze the 
implementation of code to identify expertise; in-
stead, they identify this expertise based on their 
knowledge about calling or using methods [15]. 
Dependency-based techniques [12,19] consider 
developers who have worked on the same or de-
pendent artifacts to the artifact at hand who have 
knowledge about these artifacts and can help on 
the current artifact. Also, these techniques suggest 
that developers who have cooperated on the same 
or dependent artifacts should communicate with 
each other. Finally, similarity-based techniques 
find context similarity between artifacts and iden-
tify experts as those who have cooperated on 
those similar artifacts [13]. 



Most of the previous techniques recommend 
experts based only on their technical expertise as 
exhibited by the code they have developed. This 
could be problematical, as some of these experts 
might not be willing to help. Similarly, just con-
sidering the social relationships (e.g., as in En-
semble [19]) might not be useful if they do not 
have technical expertise on the target code frag-
ment. 

In order to address these problems, both 
technical expertise and social relationships should 
be considered when designing recommender sys-
tems. STeP_IN [21] has considered both the tech-
nical and social aspects of a recommendation. 
However, in term of sociality, STeP_IN looks at 
the willingness of the helpers to help but not their 
ability to help. In addition, STeP_IN only consid-
ers  the  helpers’  side,  i.e.,  whether  they  are  willing  
to help or not, but it does not give any attention to 
the Active Developer’s   side,   i.e.,   if   the   Active  
Developer is also willing to contact the helpers for 
assistance, if they trust the helpers, or if the help-
ers have good reputations within the organization. 
In other words, since both parties, helpers and 
Active Developers, need to communicate and 
work together, it is crucial to ensure that they both 
are comfortable contacting each other and work-
ing with the other party and that their communica-
tions will not cause any failure during project 
development.  
       Our work is different from the above re-
search in the sense that we use a hybrid method 
where we use both the technical and social heuris-
tics in innovative ways. In particular, for gather-
ing a large group of technical experts, we not only 
gather the developers who worked on the code 
fragment being developed by the Active Develop-
er, but also all the developers who contributed 
cloned fragments that are similar to the one being 
worked on.  We determine similarity using a state 
of the art clone detection tool that takes into con-
sideration all three types of clones. Similarly, for 
the social heuristics, we also use new measures 
gathered from the version control systems of both 
the DSSD and ERSF. Furthermore, our approach 
can recommend experts even for new code under 
development by using the cloning technology and 
social heuristics, thus helping with cold start prob-
lems. 

3 Developed  Architecture  
and  Methodology 

In this section, we give a detailed explanation of 
how each technical and social heuristic is de-
signed to measure the expertise and sociality of 
each developer within the DSSD and the ERSF. 
After that, we explain how we combine them to 
measure the likelihood of a developer to be the 
right expert to help the Active Developer. We 
conclude by describing the overall design and 
architecture of the ERSF. 

3.1 Identifying Experts 
An expert is defined relative to the purpose of a 
study or a developed system. In our work, we 
define an expert as a developer, other than the 
Active Developer, who has knowledge of the code 
at hand and/or of clones of that code, has good 
social collaboration with the Active Developer 
and/or within the organization, or has both the 
knowledge and the sociality.  

3.1.1 Technical Heuristics 

We assume in the technical part of the ERSF that 
developers who have worked on cloned fragments 
might understand the current code better and can 
help complete it. Also, we assume that if the cur-
rent code is written or modified by developers 
other than the Active Developer himself/herself, 
these developers might be good helpers as well. 
However, these experts might have different de-
grees of expertise, which is determined and meas-
ured using the following heuristics:  

x Degree of Code Similarity (Clone Type): de-
tecting only exact clones does not always help, as 
the Active Developer may have an incomplete 
code fragment or the target code fragment may 
have significant dissimilarity with the existing 
code in the system. This is why we look for 
clones of type 1, 2, and 3 that allow for increas-
ingly diverse expressions of the same functionali-
ty (for details, see Section 3.3.). Therefore, this 
measure is based on which type of clone a devel-
oper has worked on. 
x Number of Fragments: this heuristic is meas-
ured based on the number of clone fragments a 
developer has worked on. 



x Number of Lines: this heuristic assumes that as 
the number of lines a developer has modified in-
creases, the developer gains more expertise. 
x Most Recent Modifications: McDonald and 
Ackerman [9] identify expertise as belonging to 
the person who has modified a piece of code most 
recently since s/he is the one with the freshest 
code in mind. We use this heuristic as one of the 
measurements in our work. 

3.1.2 Social Heuristics  

The social heuristics analyze the relationships of 
the developers to the Active Developer and their 
social activities within the DSSD and the ERSF as 
follows: 

a) Social Heuristics within the DSSD: A reposi-
tory has a great deal of valuable information about 
the developers from which we can benefit. In our 
approach, we analyze the developer activities in 
the Git repository and construct the social rela-
tionships between developers within the DSSD. 
These relationships are then used to recommend 
suitable experts to the Active Developer to help 
him/her. However, the Active Developer might 
have relationships with more than one developers, 
and more than one developers might be socially 
active (have relationships with other developers 
other than the Active Developer) within the 
DSSD. Therefore, we design the following heuris-
tics to measure various aspects of the relation-
ships between the Active Developer and other 
developers within the DSSD, as well as the degree 
of their social activity: 
 
x Number of Shared Files with the Active De-
veloper: a developer is considered closer to the 
Active Developer as the number of files they have 
shared increases. 
x Number of Shared Commits with the Active 
Developer: a developer is closer to the Active 
Developer as the number of commits they have 
shared increases. 
x Number of Shared Files within the DSSD: a 
developer gains more sociality within the whole 
DSSD as the number of files s/he shared with 
others increases. 
x Number of Shared Commits within the DSSD: 
a developer gains more sociality within the whole 
DSSD as the number of commits s/he shared with 
others increases. 

b) Social Heuristics within the ERSF: We are 
interested in further improving our recommenda-
tions to the developers by using information gath-
ered as they use our ERSF. This is done by 
tracking the developer communications when they 
use the ERSF and keeping their profiles up-to-
date. Moreover, we also design other social heu-
ristics to improve the system performance and 
apply them to the developer profiles to measure 
their sociality. Below we provide the details: 
 
x Trust of the Active Developer in Others: the 
number of times the Active Developer has trusted 
a developer determines how close this developer 
is to the Active Developer. The trust is deter-
mined by capturing who the Active Developer 
chose to get help from in the past; we assume that 
the developer that the Active Developer has cho-
sen is trusted by the Active Developer.   
x Response to the Active Developer: a developer 
is closer to the Active Developer as the number of 
his/her responses to the Active Developer increas-
es. 
x Developers who Have Helped the Active De-
veloper: the more times a developer helps the 
Active Developer the closer this developer is to 
the Active Developer. 
x Recommended Developer to the Active De-
veloper: Begel et al. [1] found that most develop-
ers ask their colleagues to recommend others who 
might help if they do not know the answers.  
Therefore, the system also provides to the rec-
ommended developers the ability to recommend 
others if they are not able to help the Active De-
veloper on his/her request. The system uses this 
heuristic as one measurement of the developer 
closeness to the Active Developer.  
x Developer Trust within the ERSF: a develop-
er gains in their sociality to the extent that s/he 
was trusted by others. 
x Developer Response within the ERSF: a de-
veloper’s   response   to   others   gives   her/him more 
sociality. 
x Developer Helpfulness within the ERSF: the 
number of times a developer has successfully 
helped other developers (not just the Active De-
veloper) in the past determines how active this 
developer is. 
x How Often Developers are Recommended 
within the ERSF: the recommendations of de-
velopers as experts by others identifies the overall 
reputations of those developers within the ERSF. 



A developer gains more reputation insomuch as 
s/he was recommended by others. 

3.2 Measuring a Developer’s 
Likelihood to be an Expert  

Each developer's likelihood to be a suitable expert 
is measured using a combination of all the heuris-
tics   explained   in   the   “Identifying   Experts”   sub-
section using the following formula (1): 

 
𝐷௘ =෍ 𝑤௚(௛) ቆ

𝐷(௘/௦)
𝑇(௘/௦)

  ×   𝑤௛ቇ
௡

௛ୀଵ
 

 

0  ≤  De ≤  1 (1) 

where De is the current developer for whom we 
are computing his/her likelihood to be an expert, h 
is the current heuristic the ratio is computed under, 
n is the total number of heuristics, wg(h) is the 
group weight where this heuristic is classified 
under (technical heuristic, social heuristic within 
the DSSD, or social heuristic within the ERSF), 
D(e/s) is the current developer expertise/sociality 
under this heuristic, T(e/s) is the total exper-
tise/sociality under this heuristic, and wh is the 
heuristic weight. We will explain how we assign 
each heuristic and each group weight in Section 4. 

The algorithm will be explained first by look-
ing at one technical/social heuristic. To find the 
developer expertise/sociality under this heuristic, 
we compute the ratio of his/her expertise/sociality 
relative   to   other   developers’   expertise/sociality  
under this heuristic using formula (2): 

  
 

𝐷௘ =   
𝐷(௘/௦)
𝑇(௘/௦)

 

 

 (2)  

For example, consider the Number of Lines heu-
ristic, and assume that we have a piece of code 
with 15 lines (Te). Three developers D1, D2, and 
D3 have collaborated on the modification of this 
code as follows: D1 has written 4 lines, D2 has 
written 8 lines, and D3 has written 3 lines out of 
15. We then would like to compute the likelihood 
of each of the three developers to be an expert 
using the Number of Lines heuristic, so we will 
apply the above formula (2) on each developer as 
shown in Table 1.  
 
 

Developers 
 
 

Heuristics 

D
1 

D
2 

D
3 

T (
e)

  

Number of 
Lines 4 8 3 15 

De 4/15 = 0.27 8/15 = 0.53 3/15 = 0.2 - 

Table 1: Developer Likelihood to be an Expert 
Example (Formula 2) 

 
However, since we have more than one heuristics 
that need to be considered in computing the like-
lihood of a developer to be an expert, we combine 
these heuristics in the algorithm by finding the 
sum of their ratios for this particular developer 
with formula (3).  
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𝑇(௘/௦)

௡
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 (3) 

Further, assume that we have a Trust heuristic 
between the above developers (D1, D2, and D3), 
besides the Number of Lines heuristic. Table 2 
shows the expertise and sociality of the three de-
velopers and the two heuristics (Number of Lines 
and Trust) that are considered to compute the like-
lihood of each of the three developers to be an 
expert; the last row shows how we apply formula 
(3) for each developer. 

 
    Developers 

 
Heuristics D

1 

D
2 

D
3 T h
 

Number of 
Lines 4 8 3 15 

Trust 5 2 3 10 

De 
4/15 + 5/10 

= 0.77 
8/15 + 2/10 

= 0.73 
3/15 + 3/10 = 

0.5 - 

Table 2: Developer Likelihood to be an Expert 
Example (Formula 3) 

Another important aspect of having more 
than one heuristics in the algorithm is that not all 
the heuristics within a group (technical heuristics, 
social heuristics within the DSSD, and social heu-
ristics within the ERSF) have the same weights 
since not all of them have the same priorities and 
importance in recommending experts. Therefore, 
we have worked on determining those priorities 
based on the decisions of human judges. We have 
conducted an experiment to extract these priorities. 
In the experiment, we gave the judges a list of 
developers with their expertise and sociality that 
are represented by the technical and social heuris-



tics, and we asked them to rank the first three de-
velopers and select the heuristics they considered 
while they were ranking the developers. After that, 
we used the Weka tool [20], which is a collection 
of machine learning algorithms for data mining 
task. These algorithms are applied to a dataset to 
analyze its structural patterns, and make some 
predictions [4]. Weka is used in our work to ana-
lyze the judge rankings and come up with the heu-
ristic weights within a particular group (this is 
explained in detail in Section 4). Based on this, 
we developed our algorithm to consider the heu-
ristic weights (wh) as in formula (4):   
 
𝐷௘ =෍ ቆ𝐷(௘/௦)𝑇(௘/௦)

  ×   𝑤௛ቇ
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Moreover, since we have three groups, it is also 
desired to analyze the priorities and importance of 
each group overall, when compared to one anoth-
er.   Thus,   we   used   both   the   judges’   rankings   and  
the Weka tool as well to determine the group 
weights (wg(h)) based on their importance. As a 
result, we improved our algorithm in formula (1). 
The full experiment with the human judge rank-
ings and the resulting weights of the heuristics 
and the groups that we used in designing our algo-
rithm is explained in Section 4. 

3.3 Experts Recommender Sys-
tem Architecture 

Our ERSF approach is designed on top of the 
SimCad Clone Detection tool to extract the clones. 
Software clones or duplicated fragments of code 
in a software system are one of the important as-
pects of software systems as software developers 
often reuse code fragments by copying and past-
ing with or without minor adaptations [14]. Re-
search shows that a significant fraction of code in 
software systems is cloned code [14,16]. Consid-
ering the fact that there are lots of clones in soft-
ware systems and that multiple authors could be 
involved in those cloned fragments, in this paper, 
we used cloning in an innovative way, finding the 
authors who worked on similar fragments and 
then infer the experts for such similar fragments. 
However, in our case, detecting only exact clones 
does not address the problem at hand, as the ac-
tive developer may have an incomplete code 
fragment or the target code fragment may have 
significant dissimilarity with the existing ones in 

the systems. We thus adapted a state of the art 
clone detection tool, SimCad that finds three dif-
ferent types of clones as follows: 
x Type-1 Clones:  Identical code fragments except 
for variations in white spaces and comments. 
x Type-2 Clones: Structurally/syntactically identi-
cal fragments except for variations in the names 
of identifiers, literals, types, layout and com-
ments. 
x Type-3 Clones: Code fragments that exhibit 
similarity as do Type-2 clones and also allow fur-
ther differences such as additions, deletions or 
modifications of statements. 

     Another tool we used in designing the recom-
mender system is the Eclipse Communication 
Framework/DocShare plug-in (ECF/DocShare) [2] 
to provide a channel to the developers to com-
municate with the recommended experts. The 
plug-in allows two developers in a distributed 
location to share their editors in order to collabo-
rate to write or modify the shared code. At the 
same time, both of these developers can have a 
conversation through the provided chat. Figure 1 
shows the architecture of the ERSF, what the 
main components of the system are, and how they 
are connected to each other and to the SimCad 
tool and the ECF/DocShare plug-in. When the 
Active Developer asks for help, his/her name and 
the code fragment in question are captured as in-
put to the system. The system first identifies the 
expertise and sociality of each developer within 
the organization using the technical and social 
heuristics. Then, it finds who might be suitable 
experts to recommend by ranking them according 
to their likelihood to be good helpers, following 
the heuristics discussed in the last section. Finally, 
it recommends this ranked list of developers as 
experts to the Active Developer. Below we ex-
plain the main components that implement these 
functions. 

3.3.1 Identifying Expertise and Sociality 
Since experts in our system are identified using 
three different groups of heuristics (technical heu-
ristics, social heuristics within the DSSD, and 
social heuristics within the ERSF), the identifica-
tion in the system architecture is divided into 
three different components as well. Each of these 
components is responsible for one of these groups 
as explained below. 



a) Technical Expertise Identification: The 
technical expertise identification component sends 
the source code input (the code at hand on which 
the Active Developer is working) to the SimCad 
tool, which finds the clone fragments and saves 
them in an XML file. This file is then updated in 
the "XML Updating" component to include in-
formation about developers who have worked on 
those cloned fragments, which is extracted from 
the Git repository. The technical identification 
component uses the updated XML file to analyze 
the developer expertise on the similar fragments 
(including the input code fragment if that is not a 
new fragment) and measures their expertise using 
the technical heuristics. 
  
b) Social Ability Identification within the 
DSSD: Identifying social ability within the DSSD 
component takes the Active Developer’s name 
and extracts his/her communications with other 
developers. It also extracts the developers' com-
munications with each other. These data are ex-
tracted from the Git Repository used to design the 
social heuristics in order to measure the develop-
ers’ relationships to the Active Developer and 
their overall sociality within the DSSD. 
 
 

c) Social Ability Identification within the 
ERSF: As with the previous component, this 
component   takes   the   Active   Developer’s   name  
and extracts his/her communications with other 
developers, as well as the developers' communica-
tions with each other. This component extracts the 
data from the RS MySql database, which has the 
tracked communications within the ERSF. The 
purpose for this component is to measure the de-
velopers’  relationships  with  the  Active  Developer  
and their overall sociality as in the previous com-
ponent but using the social heuristics that are 
measured when they were helping (or being 
helped) through our ERSF. 

3.3.2 Finding Experts  

After the system measures the developer expertise 
in the cloned fragments using the technical heuris-
tics, the developer relationships to the Active De-
veloper, their sociality within the DSSD and the 
ERSF using the social heuristics, the system takes 
these measurements to find the developers who 
might be suitable experts to recommend to help 
the Active Developer to complete the code at 
hand. Then, using the equations in Section 3.2, we 
compute their likelihood to be suitable experts to 
help the Active Developer. 
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Figure 1: ERSF Architecture 



3.3.3 Ranking Developers  
The main goal of this system is to recommend a 
ranked list of developers. Therefore, this compo-
nent reorders the given list of developers in the 
ECF/DocShare to display them in a ranked list 
according to their likelihoods, from the previous 
component, to be suitable experts to help the Ac-
tive Developer.  

3.3.4 Updating Profiles      

Through the ECF/DocShare plug-in and the ERSF, 
the Active Developer can contact a developer s/he 
would like to get help from. We have developed 
our ERSF to track this communication and save it 
in the RS MySql database in order to keep the 
developer information up-to-date and use it to 
measure the social heuristics in the "Social Identi-
fication within the ERSF" component when any 
developer needs experts to contact. 

4 Experiment  and  Evalua-­
tion 

In our work we came up with 16 heuristics to 
measure the developer technical expertise and/or 
sociality, as we explained in Section 3. However, 
not all of these heuristics and the groups have the 
same degrees of importance in measuring exper-
tise and/or sociality. To determine what the 
weights should be on the 16 factors we carried out 
an experiment in which we created three scenarios 
in which software engineers needed help. We 
asked 10 human judges who they thought would 
be the best people to recommend in each scenario.  
We then used machine learning algorithms (from 
the Weka toolkit) in two ways: to find appropriate 
weights for each factor and to determine how ac-
curate we were in making recommendations that 
were comparable to the human judgments.  The 
experimental process is summarized below.  More 
details can be found elsewhere [4]. 

4.1 Experimental Methodology 

Our experiment went through four phases. The 
first phase was concerned with collecting the hu-
man rankings. The second phase analyzed these 
rankings in order to determine the weights of both 
the heuristics and the groups. The third phase 
used these weights in order to design the recom-
mendation algorithm. The last phase was con-

cerned with evaluating the accuracy of the algo-
rithm in recommending the experts.  

4.1.1 Collecting Human Rankings 
Phase 

Our experiment was built based on human judg-
ments. We ran the experiment using 10 judges 
who were graduate students from the University 
of Saskatchewan. 

We provided the judges with a list of devel-
opers and some data representing their expertise 
and/or sociality. However, since we have a large 
number of heuristics in our algorithm, we com-
posed three scenarios, each concerned primarily 
with one group of heuristics (technical heuristics, 
social heuristics within the DSSD, and social heu-
ristics within the ERSF). We wanted the judges to 
go through the scenarios in order, considering the 
heuristic group of the previous scenario while 
they were making their decision in the next sce-
nario. Thus, we included the data from the previ-
ous scenario to be considered in the current 
scenario. For instance, if the judges were working 
on Scenario-2, which is mainly concerned with 
judging sociality within the DSSD, we still want-
ed them to consider factors about developer ex-
pertise from the technical judgments, which are 
the main concern of Scenario-1; therefore, we also 
included the data describing the technical exper-
tise of a developer in Scenario-2.  

While the study was running, we asked each 
of our judges to assume that they were the Active 
Developer who is looking for experts for help. 
Then, we started each scenario with a brief expla-
nation of what it was about, and we gave the 
judges a list of developers with some data repre-
senting the developers' characteristics depending 
on the scenario they were working on. After that, 
we asked the judges to rank the developers they 
thought were the best experts to contact and get 
help from (choosing a first, second, and third can-
didate). Also, we asked them to indicate the rea-
sons for their selections; the reasons they could 
select from were the same heuristics we suggested 
for our algorithm.  

At the end, the human rankings consisted of 
three elements: the developers chosen by the 
judges, the heuristics that the judges felt they had 
used in making these choices, and the rankings 
(i.e. 1, 2, or 3) of these developers. These ele-
ments were then used as follows: 1) Both the heu-
ristics and the given rankings were analyzed to 



find out the heuristics and group weights to tune 
the recommender system algorithm, and 2) the 
three elements together (the developers chosen by 
the judges, the heuristics they used, and the rank-
ings of these developers) were used to evaluate 
the accuracy of the recommender system algo-
rithm once tuned. 

4.1.2 Determining Heuristic and 
Group Weights Phase 

In this phase, we used the selection attributes 
technique, which analyzes the dataset and predicts 
values of attributes within that set. We used this 
technique in order to analyze the heuristics that 
the human rankers considered and assign them a 
weight reflecting their degrees of importance. We 
applied the Filtered Attribute Evaluation method 
from the Weka Toolkit, which is a specific attrib-
ute selection technique, to the selected technical 
heuristics of Scenario-1, to the selected DSSD 
social heuristics of Scenario-2, and to the selected 
ERSF social heuristics of Scenario-3 to find out 
their weights. After this, we applied the same 
method to all 16 heuristics combined  (technical 
group, social group within the DSSD, and social 
group within the ERSF) from Scenario-3 since it 
combined all of the 16 heuristics, to determine the 
relative weight and importance of each group. 

Our analysis in this phase was done on the 
rankings of each scenario as follows: First, for 
each judge and for each of his/her rankings, we 
extracted the heuristics s/he considered while 
ranking a particular developer. For example, Ta-
ble 3 shows the rankings by Judge-5. Second, we 
replaced those heuristics with the corresponding 
values   that   represent   the   ranked   developers’   ex-­
pertise/sociality, depending on the scenario being 
worked on. For instance, "Charles Chan" was 
ranked second by Judge-5 because of his sharing 
in the files and the commits with the Active De-
veloper as shown in Table 3, so we replaced these 
two heuristics with the number of files (i.e. 10) 
and the number of commits (i.e., 23), that 
"Charles Chan" has shared with the Active Devel-
oper. We also extracted the ranking the judge 
gave to the developer in order to analyze the im-
portance of these heuristics   from  the  judge’s  per-­
spective. 
      The above data were then used to create an 
instance   representing   the   judge’s   decisions   to   be  
used as input to the Weka tool. Table 4 represents 
a Weka input instance, which includes the values  
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Judge-5 

1 Scott Hernandez 

Sociality with the Ac-
tive Developer: 

... 

2 Charles Chan 

Sociality with the Ac-
tive Developer: 

x Number of shared files 

x Number of shared 
commits 

3 Drieseng 

Sociality with the Ac-
tive Developer: 

... 

Sociality within the 
DSSD: 

... 

... 

Table 3: Scenario-2 ( Judge-5 Ranking`s) 
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<instance>  

<value>10</value>  
Number of shared files with the 

Active Developer 

<value>23</value> 
Number of shared commits with 

the Active Developer 

<value>0</value>  
Number of shared files within the 

DSSD 

<value>0</value>  
Number of shared commits with-

in the DSSD 

<value>2</value>  Ranking 

</instance>     

Table 4: Social Heuristics within the DSSD (the 
Filtered Attribute Evaluation Method Input 

Example) 



 
of the heuristics that were selected by Judge-5 in 
making "Charles Chan" the second ranked devel-
oper. 
 
Finally, after all the instances were created, we 
applied the Filtered Attribute Evaluation method 
on these instances. Weka then analyzed them in 
order to determine the weight of each heuristic as 
to its level of importance relative to the values 
returned by the other heuristics. 

4.1.3 Designing the Recommender Sys-
tem Algorithm 

In this section, we provide an example to show 
how we used the weights that resulted from the 
Weka analysis (to prioritize the heuristics and 
groups) to actually compute the developer likeli-
hoods to be experts who could also be socially 
able to help the Active Developer. This is the ba-
sis of the ERSF. 

Lets say we have two developers “Dguder”  
and  “Dmitry  Jemerov”.  “Dguder”  has  2 out of 151 
shared files and 6 out of 425 shared commits 
within   the   DSSD;;   on   the   other   hand,   “Dmitry 
Jemerov”  has  21  out  of  164   trusts, 18 out of 128 
responses, 14 out of 84 helpfulness, and 21 out of 
126 recommended within ERSF. From the Weka 
analysis, we came up with the weights in Table 5.  
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Sociality with-
in the DSSD 

Number of 
Shared Files 0.25 

0.152 Number of 
Shared Commits 0.215 

Sociality with-
in the ERSF 

Trust 0.421 

0.522 Response 0.42 
Helpfulness 0.324 

Recommended 0.309 

Table 5: Heuristic and Group Weights by Weka 
Example 

We then applied our algorithm using formula 
(1) to each of the two developer characteristics to 
compute their likelihood to be an expert as fol-
lows: 

Dguder = [0.152 ((2/151) * 0.25 + (6/425) * 
0.215)] = 0.001 

Dmitry Jemerov = [0.522 ((21/164) * 0.421+ 
(18/128) * 0.42 + (14/84) * 0.324+ (21/126) * 
0.309)] = 0.11 
 
The  calculation  shows  that  “Dmitry  Jemerov”  has  
a   higher   result   than   “Dguder”.   Thus,   “Dmitry  
Jemerov”   has  more   likelihood   to   be   an   expert   to  
help   the   Active   Developer   than   “Dguder”   and  
should be ranked as the first developer to contact. 

4.1.4 Evaluating the Accuracy of the 
Algorithm Phase 

Another major goal in our experiment was to 
evaluate the accuracy of our algorithm in recom-
mending suitable experts to assist the Active De-
veloper in completing the code at hand. We did 
this for each scenario by comparing our algo-
rithm’s rankings  to  the  judges’  rankings  using the 
NaiveBayes, NaiveNet, and J48 classifiers in We-
ka. We used these three classifiers in our experi-
ment since we needed algorithms that predict 
rankings based on independent numeric attributes. 
In this phase we were not concerned with tuning 
the weights of our algorithm, as in our first phase, 
but were concerned only with the accuracy of our 
tuned algorithm and its various components, thus 
the need for different tools from Weka. Our eval-
uation in this phase was done as follows: 
        First, from the "Human Rankings Collection" 
phase, for each judge and for each of his/her rank-
ings, we extracted the identity of the ranked de-
veloper, the heuristics considered by the judge, 
and the judge’s ranking of this developer. 

Next, these data were used to design the input 
for both our proposed algorithm as well as the 
NaiveBayes, NaïveNet, and J48 machine learning 
algorithms. Thus, for each judge and each of 
his/her rankings, we created an instance. The in-
stance   includes   the   judge’s   ID,   the   ranked  devel-­
oper’s   ID,   and   the   values   that   represent   the 
developer’s   expertise/sociality,   depending   on   the  
scenario being worked on. Since we have 10 
judges and each of them has ranked the top three 
experts in this scenario, we have 30 instances in 
total for each scenario. Table 6 shows the instance 
for Charles Chan whose ID is "16" and was de-
termined by Judge-5 to be the second ranked ex-
pert.  
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<instance>  

<value>J5</value> Judge’s  ID 

<value>D16</value> Ranked  Developer’s  ID 

<value>10</value> 
Number of shared files 

with the Active Developer 

<value>23</value> 
Number of shared 

commits with the Active 
Developer 

<value>0</value> 
Number of shared files 

within the DSSD 

<value>0</value> 
Number of shared commits 

within the DSSD 

<value>2</value> Ranking 

</instance>  

Table 6: Scenario-2 Rankings (RS Algorithm and 
NaiveBayes Input Example) 

After we created all the judge instances, we 
applied our algorithm to the heuristic values in 
these instances in order to generate the algo-
rithm’s  ranking  of  the  developers in the instances. 
Then,  we  compared  for  each   instance   the  judge’s  
ranking   and   our   algorithm’s   ranking   in   order   to  
evaluate its performance.  
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13 

5 

Scott  
Her-

nandez 
1 2 3 

14 Charles  
Chan 2 3 2 

15 Drie-
seng 3 1 1 

... 

Table 7: Scenario-2 Judges, NaiveBayes, and RS 
Algorithm Rankings Comparisons 

We also applied the NaiveBayes, NaiveNet, 
and J48 machine leaning algorithms to the heuris-

tic values in the instances in order to learn from 
and predict the developer rankings in the instanc-
es. Then, we compared for each instance our algo-
rithm’s  ranking  to  the  predicted  rankings  by  each  
of the machine learning algorithms, as shown in 
Table 7, in order to evaluate its performance.  

In the following section, we show the results 
from our analysis for each scenario and groups as 
well. We will limit our explanation in this section 
to the rankings by NaiveBayes. Then, in the Dis-
cussion we will also look at the results of the Na-
iveNet and J48 machine learning algorithms. 

4.2 RESULTS 
In this section, we first represent the weights re-
flecting the importance and priority of the heuris-
tics and groups. After that, we show how accurate 
our algorithm is in recommending the experts. 

4.2.1 Heuristic and Group Weights 
Figure 2 shows the weights of each technical heu-
ristic. As mentioned in the "Identifying Experts" 
section, Type-1, Type-2, and Type-3 clones are 
considered to be one heuristic, but we separated 
them in the analysis here since we were also con-
cerned with studying which of the developers who 
worked on those types might have better expertise 
and can better understand the code at hand. We 
found that the developers who worked on Type-3 
clones might have the best expertise since their 
changes to a code fragment show that they might 
have good understanding of the logic of that code. 
However, we see in the figure that Type-1 and 
Type-2 clones have higher weights, but these 
weights do not arise due to the importance of the 
types themselves but because some developers 
worked on both types. In our analyses of other 
technical heuristics using the overall type heuris-
tic (i.e., ignoring the three subtypes), we found 
that judges think that the developers who have 
modified a large number of lines in the fragments 
that are clones of the current code might be the 
ones who have good expertise. Moreover, among 
those developers if some of them have modified 
code more recently or have worked on more than 
one fragment, then these developers are more 
likely to have better expertise than others. The 
type heuristic received less importance than other 
heuristics since from a human perspective finding 
developers who have worked on clone fragments 
might be enough to consider them as experts 



without considering which types they have coop-
erated on. 

 

Figure 2: Technical Heuristics Weights  

Regarding the four heuristics under sociality 
within the DSSD (see Figure 3 below), we see 
from the figure that the social relationship with 
the Active Developer is considered slightly more 
important to consider than the sociality within the 
DSSD. Judges, on the other hand, did not seem to 
pay attention to the basis of these relationships 
(counting number of shared files and commits) 
while they were ranking the experts. 

 

 

Figure 3: Social Heuristics Weights within DSSD 

Figure 4 shows the weights of the heuristics 
for sociality within the ERSF. This figure shows 
that Trust in the relationship with the Active De-
veloper is given higher weight, followed by Re-
sponse, and then Help with the lowest weight. The 

reason behind this pattern is the dependency of 
Help on Response and the dependency of Re-
sponse on Trust that caused the variation in 
weights between these three heuristics (and not 
their importance). The same thing happened with 
sociality within the ERSF. However, the high 
value for Response within the ERSF shows that 
the Response heuristic has higher importance than 
the others. 

Regarding the low value of Recommendation 
with the Active Developer in Figure 4, its value is 
not dependent on any other heuristic; thus, to have 
the lowest weight means that it has the lowest 
importance compared to other heuristics with the 
Active Developer. On the other hand, Recommen-
dation within the ERSF has similar weight to the 
Helpfulness heuristic, which means it has similar 
importance as the Helpfulness heuristic. 
 

 

Figure 4: Social Heuristics Weights within ERSF 

After we analyzed the importance of the heu-
ristics compared to each other within each group, 
we also studied the importance of the groups 
themselves compared to each other. Figure 5(a) 
shows that human judges prefer to get help from 
socially capable developers more so than getting 
help from the developers who just have technical 
expertise. We also see in Figure 5(b) that the so-
cial heuristic within the DSSD lost its importance 
when the ERSF was used. This shows that judges 
prefer to get assistance from the developers who 
have demonstrated their ability to help more than 
getting help from the developers with whom they 
have worked within the DSSD but who have not 
demonstrated helping ability before. 
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Figure 5-a: Group Weights (Before Using the 
Recommender System) 

 

Figure 8-a: Group Weights (Before Using the 
Recommender System) 

4.2.2 Algorithm Accuracy 
A recommender  system’s  performance  is  evaluat-­
ed by the accuracy of its recommendations. We 
have done this by calculating the precision (repre-
senting the percentage of recommendations that 
are correct) and the recall (representing the per-
centage of correct experts recommended) of our 
recommender system algorithm against the human 
judges as well as NaiveBayes, J48, and NaiveNet 
machine learning algorithms in each group (tech-
nical heuristics, social heuristics within the 
DSSD, and social heuristics within the ERSF) and 
the groups themselves. 

The precision and the recall measures are de-
signed based on three measurements: (1) False 
Positive contains the experts recommended by our 
algorithm but not by the judges, (2) False Nega-

tive contains the experts recommended by the 
judges but not by our algorithm, and (3) True Pos-
itive contains the intersection of the algorithm 
recommendations and the rankings by the judges 
as of McDonald [10]. 

We first compared our algorithm rankings to 
the rankings by each judge using NaiveBayes in 
order to measure the True Positive of the compar-
ison with this judge. Then, we calculated the 
summation of the True Positive values of each 
comparison to find the Total True Positive that 
were then used to find the precision and the recall. 

The False Negative values for both the preci-
sion and the recall were  always  “30”  since  we  had  
10 judges and each judge ranked the top three 
experts,   which   in   total   are   “30”   rankings   by   the  
human judges. In addition, since the predictions 
of the NaiveBayes, NaiveNet, and J48 machine 
learning  algorithms  were  based  on  the  “30”  judge  
rankings (represented as “30”   instances,   as de-
scribed) we   also   had   “30”   rankings   by   the   ma-­
chine learning algorithms. The rankings by our 
algorithm   were   “30”   rankings   since   they   were  
identified  based  on  the  “30”  rankings  by  the  judg-­
es,  which  were  also  restructured  to  “30”  instances  
to   be   our   algorithm’s   input,   and   this   is   what  
caused   the  False  Positive   to  be  “30”  as  well.  For  
these two reasons, we got the same precision and 
the recall in each scenario since the False Positive 
(the Precision denominator) and the False Nega-
tive  (the  Recall  denominator)  were  both  “30”.   

Table 8 shows the comparison between our 
algorithm rankings and the judge rankings as well 
as the comparison between our algorithm rankings 
and the NaiveBayes rankings. Our algorithm 
shows good to excellent precision and recall in its 
performance in Social Heuristics within the 
DSSD, Social Heuristics within ERSF, and the 
combined Groups ranking comparison as repre-
sented in Table 8. It also shows that the precision 
and recall values of the 3-Heuristics Groups 
Combination are greater than the values of the 
Technical Heuristics and the Sociality within the 
DSSD in both comparisons, against human judg-
ments and machine learning algorithms. The 
technical heuristics do not come out so well, but 
could prove very useful for new developers whose 
sociality   isn’t   known,   thus   helping   overcome   a  
cold start problem. But, the key result of this sec-
tion is the importance of the social heuristics, both 
within the DSSD and the ERSF. 
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Technical Heuristics 40% 40% 23% 23% 

Social Heuristics 
within DSSD 63% 63% 60% 60% 

Social Heuristics 
within ERSF 100% 100% 70% 70% 

3-heuristics Groups 
Combination 70% 70% 63% 63% 

Table 8: Precision and Recall 

The NaiveNet and J48 algorithms show simi-
lar precision and recall values in the Social Heu-
ristics within the DSSD, Social Heuristics within 
the ERSF, and the Group ranking comparison as 
NaiveBayes. However, they were different than 
NaiveBayes in the Technical Heuristics. First, for 
NaiveNet, the precision and the recall were 33%; 
second, for J48, the precision and the recall were 
30% for the Technical Heuristics. Our explanation 
of   these  differences   is   the  effect  of   the  “Most   re-­
cent modifications”  heuristic  since  this  is  the  only  
heuristic that explicitly uses temporal information, 
unlike other scenarios that were just concerned 
with heuristics that measured non-temporal char-
acteristics. 

Overall, the good to excellent precision and 
recall compared to both the human judges as well 
the NaiveBayes, NaiveNet, and J48 algorithm 
indicates that our algorithm, which considers both 
the technical expertise and sociality as well as 
being concerned with improving its performance 
during the use of the system, could be useful for 
organizations doing software system development 
to help their developers find suitable experts who 
can help in the code at hand. 

5 Threats to the Validity 
While the work presented in this paper is original 
and the proof of concept experiment shows that it 
is promising, there are some threats as well. First, 
to judge technical expertise, we exploit a clone 
detection tool, SimCad for detecting exact and 
near-miss clones of the code fragment the Active 
Developer is working on. Depending on the accu-
racy and thresholds of the tool, the recommenda-
tions might vary. However, SimCad has been 
shown to be a state of the art scalable clone detec-

tors that detects both exact and near-miss clones 
with high accuracy [16]. Second, while we evalu-
ated the approach with a proof of concept experi-
ment, a real software development environment 
would be necessary to accurately and fully meas-
ure the performance of the system. However, it 
was impossible for us to test the system in a real 
environment, as the system needed to be running 
for a while in the development environment to get 
all the required historical data. We mitigated this 
threat by carefully designing three scenarios cap-
turing different technical and social heuristics and 
then using ten users/judges and machine learning 
algorithms both to learn and then evaluate the 
approach. While more judges certainly would 
have allowed better evaluation of the system, the 
judges we did select had a software development 
background that allowed them to understand the 
three scenarios well. Thus, while preliminary, 
these results clearly show the promise of the pro-
posed approach. 

6 Conclusion 
Our research is a proof of concept experiment 
demonstrating a recommender system that uses 
heuristics measuring both technical expertise and 
social ability to find appropriate developers to 
help software engineers over impasses as they 
develop code. The approach is innovative in using 
clones to find a much wider range of developers 
with appropriate technical expertise and that is 
helpful in overcoming cold start problems. It also 
uses a number of novel heuristics to measure so-
cial aspects of developers, including notions of 
trust, reputation, and helpfulness. The heuristics 
are computed based on data collected in the code 
repository, by the software development environ-
ment, and by the recommender system itself. This 
allows profiles of the developers to be automati-
cally kept up to date over time as they use these 
sub-components, which in turn allows recommen-
dations to be continuously adjusted to the evolv-
ing expertise of the developers. 

We plan to provide our tool as an Eclipse 
plug-in to the public so that developers can use it 
to find experts to help them. This would be the 
ultimate test of the effectiveness of the system 
since real developers would be using it to get real 
help when confronted with actual impasses.  The 
data collected in such a real world environment, 
over time (probably years!), would be invaluable 
in allowing the discovery of a much finer grained 



and genuine set of weights not subject to the arti-
fice necessary in the experiments done to date.  
Nevertheless, we feel that the current weights 
would be a useful initial tuning for such a system 
that would make it much more effective than us-
ing random weights. Further details on this re-
search can be found elsewhere [4]. 
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