
Recommending Software Experts Using Code Similarity and
Social Heuristics

 Ghadeer A. Kintab+ Chanchal K. Roy Gordon I. McCalla
 +Ministry of Higher Education, Saudi Arabia
 Department of Computer Science, University of Saskatchewan, Canada

 gh_kintab@yahoo.com, {croy, mccalla}@cs.usask.ca

Abstract�
Successful collaboration among developers is
crucial to the completion of software projects in a
Distributed Software System Development
(DSSD) environment. We have developed an Ex-
pert Recommender System Framework (ERSF)
that assists a developer (called the “Active Devel-­
oper”) to find other developers who can help them
to fix code with which they are having difficulty.
The ERSF first looks for other developers with
similar technical expertise, as measured by their
prior work on code fragments that are similar to
(clones of) the code that the Active Developer is
working on (the “code at hand”). As well, it ana-
lyzes the other developers’ social relationships
with the Active Developer (available from the
DSSD environment) and their social activities
within the ERSF (information which helps to
maintain developer profiles used in this analysis).
This information is then combined to provide a
ranked list of potential helpers based on both
technical and social measures. A proof of concept
experiment shows that the ERSF can recommend
experts with good to excellent accuracy, when
compared with human rankings of appropriate
experts in the same scenarios

1 Introduction
A software system is a composite of dependent
components that make the software complicated

Copyright � 2014 Ghadeer Kintab, Chanchal K. Roy,
and Gordon I. McCalla. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

especially if the system has a large number of
such components; a single developer may have
limited knowledge, and s/he is unable to work on
all the components [5]. Therefore, developers
need to cooperate and coordinate to manage sys-
tem dependencies and build a successful software
system. However, this coordination will not be
successful if a developer or a team manager does
not have good experience in identifying and se-
lecting helpers or teammates who have good
knowledge to accomplish a task at hand. Begel et
al. [1] found that most Microsoft software engi-
neers need on occasion to find relevant engineers
to help them accomplish tasks at hand.

Some organizations assign this responsibility
to team managers, which might work with a small
team. However, with a large team it is difficult to
identify each developer’s knowledge and keep
such knowledge up-to-date. In short, identifying
and allocating an expert is a difficult problem to
deal with [15].

There have been a great many studies in find-
ing expert developers as well [7,12,21] (for details
see Section 2). Among different metrics for rec-
ommending experts, the most important are the
technical expertise of the potential helpers on the
code fragment the Active Developer is working
on and the social relationships among the Active
Developer and the other developers. However,
most previous techniques to recommend experts
are based only on their technical expertise. Such
techniques have a potential danger: if developers
are not very skilled at collaboration and/or are not
willing to help, these developers will not be suita-
ble experts to be recommended even if they have
high knowledge and expertise about the code. On
the other hand, recommending experts based only
on social relationships, such as is done in Ensem-

mailto:mccalla%7d@cs.usask.ca

ble [19], will be useless if the recommended de-
velopers do not have adequate knowledge of the
code even if they have strong social relationships.
Although there is at least one expert recommender
system that exploits both the technical expertise
and social relationships of the developers
(STeP_IN [21]), our approach breaks new ground
both in how we measure technical expertise and
how we track social relationships.

We developed an Expert Recommender Sys-
tem Framework (ERSF) to identify and allocate a
ranked list of expert helpers who can help an Ac-
tive Developer who is looking for assistance in
completing or fixing a buggy code fragment. The
system considers both technical expertise and
social relationships of developers in recommend-
ing those experts. The technical expertise is con-
cerned with finding people who have worked on
code fragments in the past that are similar to the
code being developed by the Active Developer.
These are called clones in the Software Engineer-
ing area [14]. In detecting clones we use a state of
the art clone detector, SimCad [17] that detects
both exact and near-miss code-fragments (similar
fragments where there could be differences
among them in terms of number of statements,
identifiers, comments and formatting). This pro-
vides a much larger range of potential helpers
with appropriate expertise than in previous sys-
tems that mostly determine the technical expertise
of the other developers based on selecting devel-
opers who have worked on exactly the same code
for which the Active Developer is seeking help.

The social relationships are concerned with
the social activities between the Active Developer
and other developers during Distributed Software
System Development (DSSD). We developed
further measures of ability, trust, and reputation
by analyzing developer communications within
the Expert Recommender System Framework
(ERSF). This allows the ERSF to create profiles
of each developer that, over time, can be main-
tained and updated. This is an improvement over
other methods (e.g., [15]) that base social meas-
urements on data in a repository or API library.

Our method has other advantages, too. It can
still provide recommendations, even if the code at
hand has no authors other than the Active Devel-
oper himself/herself and even if there are no
clones. It does this by using the social part of the
system. On the other hand, developers with no or
little history in the DSSD or ERSF can also get
recommendations since our approach can use in-

formation about clones and/or general sociality
within the DSSD and the ERSF. Further, develop-
ers can also get help from expert developers, even
when completing code in new files using infor-
mation about clones from other parts.
 We have evaluated our approach with a
proof of concept experiment with three different
scenarios, 10 human judges and three machine
learning algorithms [18]. Our experiment shows
that the approach can recommend experts with
comparable accuracy to the human judges.

The paper is organized as follows: Section 2
shows related work in recommender systems.
Section 3 explains in detail the method we devel-
oped to recommend experts. Section 4 describes
our experiment and the evaluation details. Section
5 points out some potential threats and then dis-
cusses how we mitigate them, and finally Section
6 concludes with our future plan.

2 Related Work
Recommending experts in software development
is not new and there have been a great many stud-
ies. Expertise in recommender systems is usually
judged using five different techniques. Time-
based techniques [9,10] rank as highest those de-
velopers who worked most recently on a code
fragment since they have the freshest code in
mind. Modification-based techniques analyze
added, removed, or edited lines of code to identify
expertise [12,6,21]. Moreover, some systems ben-
efit from commits on code besides the lines of
code themselves to identify expertise [1], or
sometimes they limit the identification based on
the checked-in commits on code [3]. Developer
expertise is measured based on the size of these
modifications or commits. Code usage-based
techniques, on the other hand, do not analyze the
implementation of code to identify expertise; in-
stead, they identify this expertise based on their
knowledge about calling or using methods [15].
Dependency-based techniques [12,19] consider
developers who have worked on the same or de-
pendent artifacts to the artifact at hand who have
knowledge about these artifacts and can help on
the current artifact. Also, these techniques suggest
that developers who have cooperated on the same
or dependent artifacts should communicate with
each other. Finally, similarity-based techniques
find context similarity between artifacts and iden-
tify experts as those who have cooperated on
those similar artifacts [13].

Most of the previous techniques recommend
experts based only on their technical expertise as
exhibited by the code they have developed. This
could be problematical, as some of these experts
might not be willing to help. Similarly, just con-
sidering the social relationships (e.g., as in En-
semble [19]) might not be useful if they do not
have technical expertise on the target code frag-
ment.

In order to address these problems, both
technical expertise and social relationships should
be considered when designing recommender sys-
tems. STeP_IN [21] has considered both the tech-
nical and social aspects of a recommendation.
However, in term of sociality, STeP_IN looks at
the willingness of the helpers to help but not their
ability to help. In addition, STeP_IN only consid-
ers the helpers’ side, i.e., whether they are willing
to help or not, but it does not give any attention to
the Active Developer’s side, i.e., if the Active
Developer is also willing to contact the helpers for
assistance, if they trust the helpers, or if the help-
ers have good reputations within the organization.
In other words, since both parties, helpers and
Active Developers, need to communicate and
work together, it is crucial to ensure that they both
are comfortable contacting each other and work-
ing with the other party and that their communica-
tions will not cause any failure during project
development.
 Our work is different from the above re-
search in the sense that we use a hybrid method
where we use both the technical and social heuris-
tics in innovative ways. In particular, for gather-
ing a large group of technical experts, we not only
gather the developers who worked on the code
fragment being developed by the Active Develop-
er, but also all the developers who contributed
cloned fragments that are similar to the one being
worked on. We determine similarity using a state
of the art clone detection tool that takes into con-
sideration all three types of clones. Similarly, for
the social heuristics, we also use new measures
gathered from the version control systems of both
the DSSD and ERSF. Furthermore, our approach
can recommend experts even for new code under
development by using the cloning technology and
social heuristics, thus helping with cold start prob-
lems.

3 Developed Architecture
and Methodology

In this section, we give a detailed explanation of
how each technical and social heuristic is de-
signed to measure the expertise and sociality of
each developer within the DSSD and the ERSF.
After that, we explain how we combine them to
measure the likelihood of a developer to be the
right expert to help the Active Developer. We
conclude by describing the overall design and
architecture of the ERSF.

3.1 Identifying Experts
An expert is defined relative to the purpose of a
study or a developed system. In our work, we
define an expert as a developer, other than the
Active Developer, who has knowledge of the code
at hand and/or of clones of that code, has good
social collaboration with the Active Developer
and/or within the organization, or has both the
knowledge and the sociality.

3.1.1 Technical Heuristics

We assume in the technical part of the ERSF that
developers who have worked on cloned fragments
might understand the current code better and can
help complete it. Also, we assume that if the cur-
rent code is written or modified by developers
other than the Active Developer himself/herself,
these developers might be good helpers as well.
However, these experts might have different de-
grees of expertise, which is determined and meas-
ured using the following heuristics:

x Degree of Code Similarity (Clone Type): de-
tecting only exact clones does not always help, as
the Active Developer may have an incomplete
code fragment or the target code fragment may
have significant dissimilarity with the existing
code in the system. This is why we look for
clones of type 1, 2, and 3 that allow for increas-
ingly diverse expressions of the same functionali-
ty (for details, see Section 3.3.). Therefore, this
measure is based on which type of clone a devel-
oper has worked on.
x Number of Fragments: this heuristic is meas-
ured based on the number of clone fragments a
developer has worked on.

x Number of Lines: this heuristic assumes that as
the number of lines a developer has modified in-
creases, the developer gains more expertise.
x Most Recent Modifications: McDonald and
Ackerman [9] identify expertise as belonging to
the person who has modified a piece of code most
recently since s/he is the one with the freshest
code in mind. We use this heuristic as one of the
measurements in our work.

3.1.2 Social Heuristics

The social heuristics analyze the relationships of
the developers to the Active Developer and their
social activities within the DSSD and the ERSF as
follows:

a) Social Heuristics within the DSSD: A reposi-
tory has a great deal of valuable information about
the developers from which we can benefit. In our
approach, we analyze the developer activities in
the Git repository and construct the social rela-
tionships between developers within the DSSD.
These relationships are then used to recommend
suitable experts to the Active Developer to help
him/her. However, the Active Developer might
have relationships with more than one developers,
and more than one developers might be socially
active (have relationships with other developers
other than the Active Developer) within the
DSSD. Therefore, we design the following heuris-
tics to measure various aspects of the relation-
ships between the Active Developer and other
developers within the DSSD, as well as the degree
of their social activity:

x Number of Shared Files with the Active De-
veloper: a developer is considered closer to the
Active Developer as the number of files they have
shared increases.
x Number of Shared Commits with the Active
Developer: a developer is closer to the Active
Developer as the number of commits they have
shared increases.
x Number of Shared Files within the DSSD: a
developer gains more sociality within the whole
DSSD as the number of files s/he shared with
others increases.
x Number of Shared Commits within the DSSD:
a developer gains more sociality within the whole
DSSD as the number of commits s/he shared with
others increases.

b) Social Heuristics within the ERSF: We are
interested in further improving our recommenda-
tions to the developers by using information gath-
ered as they use our ERSF. This is done by
tracking the developer communications when they
use the ERSF and keeping their profiles up-to-
date. Moreover, we also design other social heu-
ristics to improve the system performance and
apply them to the developer profiles to measure
their sociality. Below we provide the details:

x Trust of the Active Developer in Others: the
number of times the Active Developer has trusted
a developer determines how close this developer
is to the Active Developer. The trust is deter-
mined by capturing who the Active Developer
chose to get help from in the past; we assume that
the developer that the Active Developer has cho-
sen is trusted by the Active Developer.
x Response to the Active Developer: a developer
is closer to the Active Developer as the number of
his/her responses to the Active Developer increas-
es.
x Developers who Have Helped the Active De-
veloper: the more times a developer helps the
Active Developer the closer this developer is to
the Active Developer.
x Recommended Developer to the Active De-
veloper: Begel et al. [1] found that most develop-
ers ask their colleagues to recommend others who
might help if they do not know the answers.
Therefore, the system also provides to the rec-
ommended developers the ability to recommend
others if they are not able to help the Active De-
veloper on his/her request. The system uses this
heuristic as one measurement of the developer
closeness to the Active Developer.
x Developer Trust within the ERSF: a develop-
er gains in their sociality to the extent that s/he
was trusted by others.
x Developer Response within the ERSF: a de-
veloper’s response to others gives her/him more
sociality.
x Developer Helpfulness within the ERSF: the
number of times a developer has successfully
helped other developers (not just the Active De-
veloper) in the past determines how active this
developer is.
x How Often Developers are Recommended
within the ERSF: the recommendations of de-
velopers as experts by others identifies the overall
reputations of those developers within the ERSF.

A developer gains more reputation insomuch as
s/he was recommended by others.

3.2 Measuring a Developer’s
Likelihood to be an Expert

Each developer's likelihood to be a suitable expert
is measured using a combination of all the heuris-
tics explained in the “Identifying Experts” sub-
section using the following formula (1):

𝐷௘ =෍ 𝑤௚(௛) ቆ

𝐷(௘/௦)
𝑇(௘/௦)

 × 𝑤௛ቇ
௡

௛ୀଵ

0 ≤ De ≤ 1 (1)

where De is the current developer for whom we
are computing his/her likelihood to be an expert, h
is the current heuristic the ratio is computed under,
n is the total number of heuristics, wg(h) is the
group weight where this heuristic is classified
under (technical heuristic, social heuristic within
the DSSD, or social heuristic within the ERSF),
D(e/s) is the current developer expertise/sociality
under this heuristic, T(e/s) is the total exper-
tise/sociality under this heuristic, and wh is the
heuristic weight. We will explain how we assign
each heuristic and each group weight in Section 4.

The algorithm will be explained first by look-
ing at one technical/social heuristic. To find the
developer expertise/sociality under this heuristic,
we compute the ratio of his/her expertise/sociality
relative to other developers’ expertise/sociality
under this heuristic using formula (2):

𝐷௘ =
𝐷(௘/௦)
𝑇(௘/௦)

 (2)

For example, consider the Number of Lines heu-
ristic, and assume that we have a piece of code
with 15 lines (Te). Three developers D1, D2, and
D3 have collaborated on the modification of this
code as follows: D1 has written 4 lines, D2 has
written 8 lines, and D3 has written 3 lines out of
15. We then would like to compute the likelihood
of each of the three developers to be an expert
using the Number of Lines heuristic, so we will
apply the above formula (2) on each developer as
shown in Table 1.

Developers

Heuristics

D
1

D
2

D
3

T (
e)

Number of
Lines 4 8 3 15

De 4/15 = 0.27 8/15 = 0.53 3/15 = 0.2 -

Table 1: Developer Likelihood to be an Expert
Example (Formula 2)

However, since we have more than one heuristics
that need to be considered in computing the like-
lihood of a developer to be an expert, we combine
these heuristics in the algorithm by finding the
sum of their ratios for this particular developer
with formula (3).

𝐷௘ =෍ 𝐷(௘/௦)
𝑇(௘/௦)

௡

௛ୀଵ

 (3)

Further, assume that we have a Trust heuristic
between the above developers (D1, D2, and D3),
besides the Number of Lines heuristic. Table 2
shows the expertise and sociality of the three de-
velopers and the two heuristics (Number of Lines
and Trust) that are considered to compute the like-
lihood of each of the three developers to be an
expert; the last row shows how we apply formula
(3) for each developer.

 Developers

Heuristics D

1

D
2

D
3 T h

Number of
Lines 4 8 3 15

Trust 5 2 3 10

De
4/15 + 5/10

= 0.77
8/15 + 2/10

= 0.73
3/15 + 3/10 =

0.5 -

Table 2: Developer Likelihood to be an Expert
Example (Formula 3)

Another important aspect of having more
than one heuristics in the algorithm is that not all
the heuristics within a group (technical heuristics,
social heuristics within the DSSD, and social heu-
ristics within the ERSF) have the same weights
since not all of them have the same priorities and
importance in recommending experts. Therefore,
we have worked on determining those priorities
based on the decisions of human judges. We have
conducted an experiment to extract these priorities.
In the experiment, we gave the judges a list of
developers with their expertise and sociality that
are represented by the technical and social heuris-

tics, and we asked them to rank the first three de-
velopers and select the heuristics they considered
while they were ranking the developers. After that,
we used the Weka tool [20], which is a collection
of machine learning algorithms for data mining
task. These algorithms are applied to a dataset to
analyze its structural patterns, and make some
predictions [4]. Weka is used in our work to ana-
lyze the judge rankings and come up with the heu-
ristic weights within a particular group (this is
explained in detail in Section 4). Based on this,
we developed our algorithm to consider the heu-
ristic weights (wh) as in formula (4):

𝐷௘ =෍ ቆ𝐷(௘/௦)𝑇(௘/௦)

 × 𝑤௛ቇ
௡

௛ୀଵ

 (4)

Moreover, since we have three groups, it is also
desired to analyze the priorities and importance of
each group overall, when compared to one anoth-
er. Thus, we used both the judges’ rankings and
the Weka tool as well to determine the group
weights (wg(h)) based on their importance. As a
result, we improved our algorithm in formula (1).
The full experiment with the human judge rank-
ings and the resulting weights of the heuristics
and the groups that we used in designing our algo-
rithm is explained in Section 4.

3.3 Experts Recommender Sys-
tem Architecture

Our ERSF approach is designed on top of the
SimCad Clone Detection tool to extract the clones.
Software clones or duplicated fragments of code
in a software system are one of the important as-
pects of software systems as software developers
often reuse code fragments by copying and past-
ing with or without minor adaptations [14]. Re-
search shows that a significant fraction of code in
software systems is cloned code [14,16]. Consid-
ering the fact that there are lots of clones in soft-
ware systems and that multiple authors could be
involved in those cloned fragments, in this paper,
we used cloning in an innovative way, finding the
authors who worked on similar fragments and
then infer the experts for such similar fragments.
However, in our case, detecting only exact clones
does not address the problem at hand, as the ac-
tive developer may have an incomplete code
fragment or the target code fragment may have
significant dissimilarity with the existing ones in

the systems. We thus adapted a state of the art
clone detection tool, SimCad that finds three dif-
ferent types of clones as follows:
x Type-1 Clones: Identical code fragments except
for variations in white spaces and comments.
x Type-2 Clones: Structurally/syntactically identi-
cal fragments except for variations in the names
of identifiers, literals, types, layout and com-
ments.
x Type-3 Clones: Code fragments that exhibit
similarity as do Type-2 clones and also allow fur-
ther differences such as additions, deletions or
modifications of statements.

 Another tool we used in designing the recom-
mender system is the Eclipse Communication
Framework/DocShare plug-in (ECF/DocShare) [2]
to provide a channel to the developers to com-
municate with the recommended experts. The
plug-in allows two developers in a distributed
location to share their editors in order to collabo-
rate to write or modify the shared code. At the
same time, both of these developers can have a
conversation through the provided chat. Figure 1
shows the architecture of the ERSF, what the
main components of the system are, and how they
are connected to each other and to the SimCad
tool and the ECF/DocShare plug-in. When the
Active Developer asks for help, his/her name and
the code fragment in question are captured as in-
put to the system. The system first identifies the
expertise and sociality of each developer within
the organization using the technical and social
heuristics. Then, it finds who might be suitable
experts to recommend by ranking them according
to their likelihood to be good helpers, following
the heuristics discussed in the last section. Finally,
it recommends this ranked list of developers as
experts to the Active Developer. Below we ex-
plain the main components that implement these
functions.

3.3.1 Identifying Expertise and Sociality
Since experts in our system are identified using
three different groups of heuristics (technical heu-
ristics, social heuristics within the DSSD, and
social heuristics within the ERSF), the identifica-
tion in the system architecture is divided into
three different components as well. Each of these
components is responsible for one of these groups
as explained below.

a) Technical Expertise Identification: The
technical expertise identification component sends
the source code input (the code at hand on which
the Active Developer is working) to the SimCad
tool, which finds the clone fragments and saves
them in an XML file. This file is then updated in
the "XML Updating" component to include in-
formation about developers who have worked on
those cloned fragments, which is extracted from
the Git repository. The technical identification
component uses the updated XML file to analyze
the developer expertise on the similar fragments
(including the input code fragment if that is not a
new fragment) and measures their expertise using
the technical heuristics.

b) Social Ability Identification within the
DSSD: Identifying social ability within the DSSD
component takes the Active Developer’s name
and extracts his/her communications with other
developers. It also extracts the developers' com-
munications with each other. These data are ex-
tracted from the Git Repository used to design the
social heuristics in order to measure the develop-
ers’ relationships to the Active Developer and
their overall sociality within the DSSD.

c) Social Ability Identification within the
ERSF: As with the previous component, this
component takes the Active Developer’s name
and extracts his/her communications with other
developers, as well as the developers' communica-
tions with each other. This component extracts the
data from the RS MySql database, which has the
tracked communications within the ERSF. The
purpose for this component is to measure the de-
velopers’ relationships with the Active Developer
and their overall sociality as in the previous com-
ponent but using the social heuristics that are
measured when they were helping (or being
helped) through our ERSF.

3.3.2 Finding Experts

After the system measures the developer expertise
in the cloned fragments using the technical heuris-
tics, the developer relationships to the Active De-
veloper, their sociality within the DSSD and the
ERSF using the social heuristics, the system takes
these measurements to find the developers who
might be suitable experts to recommend to help
the Active Developer to complete the code at
hand. Then, using the equations in Section 3.2, we
compute their likelihood to be suitable experts to
help the Active Developer.

XML
Updating

IDENTIFYING
EXPERTISE & SOCIALITY

Social Identification
within DSSD

Social Identification
within ERSF

SimCad XML GIT MySql

Input

Current
Code

Clone
Fragments

Clones
Fragments

Developers’
Information

Clones
Frag-
ments

Clone Fragment
&

Developers'
Information

Developers
Measurements

Active
Developer

Name

Developers’
Information

Developers
Finding

Developers
Ranking

Developers
Similarities

ECF/
DocShare

Reorder
Developers

Profiles
Updating

Developers’
Communications

Developers’
Information

Active
Developer

Name
Developers’
Information

Technical
Identification

INPUT

int sum(m,
n){
 sum = m + n;
 return sum;
}

Figure 1: ERSF Architecture

3.3.3 Ranking Developers
The main goal of this system is to recommend a
ranked list of developers. Therefore, this compo-
nent reorders the given list of developers in the
ECF/DocShare to display them in a ranked list
according to their likelihoods, from the previous
component, to be suitable experts to help the Ac-
tive Developer.

3.3.4 Updating Profiles

Through the ECF/DocShare plug-in and the ERSF,
the Active Developer can contact a developer s/he
would like to get help from. We have developed
our ERSF to track this communication and save it
in the RS MySql database in order to keep the
developer information up-to-date and use it to
measure the social heuristics in the "Social Identi-
fication within the ERSF" component when any
developer needs experts to contact.

4 Experiment and Evalua-­
tion

In our work we came up with 16 heuristics to
measure the developer technical expertise and/or
sociality, as we explained in Section 3. However,
not all of these heuristics and the groups have the
same degrees of importance in measuring exper-
tise and/or sociality. To determine what the
weights should be on the 16 factors we carried out
an experiment in which we created three scenarios
in which software engineers needed help. We
asked 10 human judges who they thought would
be the best people to recommend in each scenario.
We then used machine learning algorithms (from
the Weka toolkit) in two ways: to find appropriate
weights for each factor and to determine how ac-
curate we were in making recommendations that
were comparable to the human judgments. The
experimental process is summarized below. More
details can be found elsewhere [4].

4.1 Experimental Methodology

Our experiment went through four phases. The
first phase was concerned with collecting the hu-
man rankings. The second phase analyzed these
rankings in order to determine the weights of both
the heuristics and the groups. The third phase
used these weights in order to design the recom-
mendation algorithm. The last phase was con-

cerned with evaluating the accuracy of the algo-
rithm in recommending the experts.

4.1.1 Collecting Human Rankings
Phase

Our experiment was built based on human judg-
ments. We ran the experiment using 10 judges
who were graduate students from the University
of Saskatchewan.

We provided the judges with a list of devel-
opers and some data representing their expertise
and/or sociality. However, since we have a large
number of heuristics in our algorithm, we com-
posed three scenarios, each concerned primarily
with one group of heuristics (technical heuristics,
social heuristics within the DSSD, and social heu-
ristics within the ERSF). We wanted the judges to
go through the scenarios in order, considering the
heuristic group of the previous scenario while
they were making their decision in the next sce-
nario. Thus, we included the data from the previ-
ous scenario to be considered in the current
scenario. For instance, if the judges were working
on Scenario-2, which is mainly concerned with
judging sociality within the DSSD, we still want-
ed them to consider factors about developer ex-
pertise from the technical judgments, which are
the main concern of Scenario-1; therefore, we also
included the data describing the technical exper-
tise of a developer in Scenario-2.

While the study was running, we asked each
of our judges to assume that they were the Active
Developer who is looking for experts for help.
Then, we started each scenario with a brief expla-
nation of what it was about, and we gave the
judges a list of developers with some data repre-
senting the developers' characteristics depending
on the scenario they were working on. After that,
we asked the judges to rank the developers they
thought were the best experts to contact and get
help from (choosing a first, second, and third can-
didate). Also, we asked them to indicate the rea-
sons for their selections; the reasons they could
select from were the same heuristics we suggested
for our algorithm.

At the end, the human rankings consisted of
three elements: the developers chosen by the
judges, the heuristics that the judges felt they had
used in making these choices, and the rankings
(i.e. 1, 2, or 3) of these developers. These ele-
ments were then used as follows: 1) Both the heu-
ristics and the given rankings were analyzed to

find out the heuristics and group weights to tune
the recommender system algorithm, and 2) the
three elements together (the developers chosen by
the judges, the heuristics they used, and the rank-
ings of these developers) were used to evaluate
the accuracy of the recommender system algo-
rithm once tuned.

4.1.2 Determining Heuristic and
Group Weights Phase

In this phase, we used the selection attributes
technique, which analyzes the dataset and predicts
values of attributes within that set. We used this
technique in order to analyze the heuristics that
the human rankers considered and assign them a
weight reflecting their degrees of importance. We
applied the Filtered Attribute Evaluation method
from the Weka Toolkit, which is a specific attrib-
ute selection technique, to the selected technical
heuristics of Scenario-1, to the selected DSSD
social heuristics of Scenario-2, and to the selected
ERSF social heuristics of Scenario-3 to find out
their weights. After this, we applied the same
method to all 16 heuristics combined (technical
group, social group within the DSSD, and social
group within the ERSF) from Scenario-3 since it
combined all of the 16 heuristics, to determine the
relative weight and importance of each group.

Our analysis in this phase was done on the
rankings of each scenario as follows: First, for
each judge and for each of his/her rankings, we
extracted the heuristics s/he considered while
ranking a particular developer. For example, Ta-
ble 3 shows the rankings by Judge-5. Second, we
replaced those heuristics with the corresponding
values that represent the ranked developers’ ex-­
pertise/sociality, depending on the scenario being
worked on. For instance, "Charles Chan" was
ranked second by Judge-5 because of his sharing
in the files and the commits with the Active De-
veloper as shown in Table 3, so we replaced these
two heuristics with the number of files (i.e. 10)
and the number of commits (i.e., 23), that
"Charles Chan" has shared with the Active Devel-
oper. We also extracted the ranking the judge
gave to the developer in order to analyze the im-
portance of these heuristics from the judge’s per-­
spective.
 The above data were then used to create an
instance representing the judge’s decisions to be
used as input to the Weka tool. Table 4 represents
a Weka input instance, which includes the values

Ju
dg

es

R
an

ki
ng

s

D
ev

el
op

er
s

C
on

sid
er

ed

Te
ch

ni
ca

l
H

eu
ri

st
ic

s

...

Judge-5

1 Scott Hernandez

Sociality with the Ac-
tive Developer:

...

2 Charles Chan

Sociality with the Ac-
tive Developer:

x Number of shared files

x Number of shared
commits

3 Drieseng

Sociality with the Ac-
tive Developer:

...

Sociality within the
DSSD:

...

...

Table 3: Scenario-2 (Judge-5 Ranking`s)

V
al

ue
s

So
ci

al

H
eu

ri
st

ic
s

w
ith

in
 th

e
D

SS
D

<instance>

<value>10</value>
Number of shared files with the

Active Developer

<value>23</value>
Number of shared commits with

the Active Developer

<value>0</value>
Number of shared files within the

DSSD

<value>0</value>
Number of shared commits with-

in the DSSD

<value>2</value> Ranking

</instance>

Table 4: Social Heuristics within the DSSD (the
Filtered Attribute Evaluation Method Input

Example)

of the heuristics that were selected by Judge-5 in
making "Charles Chan" the second ranked devel-
oper.

Finally, after all the instances were created, we
applied the Filtered Attribute Evaluation method
on these instances. Weka then analyzed them in
order to determine the weight of each heuristic as
to its level of importance relative to the values
returned by the other heuristics.

4.1.3 Designing the Recommender Sys-
tem Algorithm

In this section, we provide an example to show
how we used the weights that resulted from the
Weka analysis (to prioritize the heuristics and
groups) to actually compute the developer likeli-
hoods to be experts who could also be socially
able to help the Active Developer. This is the ba-
sis of the ERSF.

Lets say we have two developers “Dguder”
and “Dmitry Jemerov”. “Dguder” has 2 out of 151
shared files and 6 out of 425 shared commits
within the DSSD;; on the other hand, “Dmitry
Jemerov” has 21 out of 164 trusts, 18 out of 128
responses, 14 out of 84 helpfulness, and 21 out of
126 recommended within ERSF. From the Weka
analysis, we came up with the weights in Table 5.

G
ro

up
s

H
eu

ri
st

ic
s

H
eu

ri
st

ic

W
ei

gh
ts

(w
h)

G
ro

up
 W

ei
gh

ts

(w
g(
h)

)

Sociality with-
in the DSSD

Number of
Shared Files 0.25

0.152 Number of
Shared Commits 0.215

Sociality with-
in the ERSF

Trust 0.421

0.522 Response 0.42
Helpfulness 0.324

Recommended 0.309

Table 5: Heuristic and Group Weights by Weka
Example

We then applied our algorithm using formula
(1) to each of the two developer characteristics to
compute their likelihood to be an expert as fol-
lows:

Dguder = [0.152 ((2/151) * 0.25 + (6/425) *
0.215)] = 0.001

Dmitry Jemerov = [0.522 ((21/164) * 0.421+
(18/128) * 0.42 + (14/84) * 0.324+ (21/126) *
0.309)] = 0.11

The calculation shows that “Dmitry Jemerov” has
a higher result than “Dguder”. Thus, “Dmitry
Jemerov” has more likelihood to be an expert to
help the Active Developer than “Dguder” and
should be ranked as the first developer to contact.

4.1.4 Evaluating the Accuracy of the
Algorithm Phase

Another major goal in our experiment was to
evaluate the accuracy of our algorithm in recom-
mending suitable experts to assist the Active De-
veloper in completing the code at hand. We did
this for each scenario by comparing our algo-
rithm’s rankings to the judges’ rankings using the
NaiveBayes, NaiveNet, and J48 classifiers in We-
ka. We used these three classifiers in our experi-
ment since we needed algorithms that predict
rankings based on independent numeric attributes.
In this phase we were not concerned with tuning
the weights of our algorithm, as in our first phase,
but were concerned only with the accuracy of our
tuned algorithm and its various components, thus
the need for different tools from Weka. Our eval-
uation in this phase was done as follows:
 First, from the "Human Rankings Collection"
phase, for each judge and for each of his/her rank-
ings, we extracted the identity of the ranked de-
veloper, the heuristics considered by the judge,
and the judge’s ranking of this developer.

Next, these data were used to design the input
for both our proposed algorithm as well as the
NaiveBayes, NaïveNet, and J48 machine learning
algorithms. Thus, for each judge and each of
his/her rankings, we created an instance. The in-
stance includes the judge’s ID, the ranked devel-­
oper’s ID, and the values that represent the
developer’s expertise/sociality, depending on the
scenario being worked on. Since we have 10
judges and each of them has ranked the top three
experts in this scenario, we have 30 instances in
total for each scenario. Table 6 shows the instance
for Charles Chan whose ID is "16" and was de-
termined by Judge-5 to be the second ranked ex-
pert.

V
al

ue
s

So
ci

al

H
eu

ri
s-

tic
s w

ith
in

th

e
D

SS
D

<instance>

<value>J5</value> Judge’s ID

<value>D16</value> Ranked Developer’s ID

<value>10</value>
Number of shared files

with the Active Developer

<value>23</value>
Number of shared

commits with the Active
Developer

<value>0</value>
Number of shared files

within the DSSD

<value>0</value>
Number of shared commits

within the DSSD

<value>2</value> Ranking

</instance>

Table 6: Scenario-2 Rankings (RS Algorithm and
NaiveBayes Input Example)

After we created all the judge instances, we
applied our algorithm to the heuristic values in
these instances in order to generate the algo-
rithm’s ranking of the developers in the instances.
Then, we compared for each instance the judge’s
ranking and our algorithm’s ranking in order to
evaluate its performance.

In
st

an
ce

s

Ju
dg

es

R
an

ke
d

D
ev

el
op

er
s

Ju
dg

e
R

an
ki

ng
s

N
ai

ve
-B

ay
es

R

an
ki

ng
s

R
ec

om
m

en
de

r S
ys

te
m

A

lg
or

ith
m

 R
an

ki
ng

s

...

13

5

Scott
Her-

nandez
1 2 3

14 Charles
Chan 2 3 2

15 Drie-
seng 3 1 1

...

Table 7: Scenario-2 Judges, NaiveBayes, and RS
Algorithm Rankings Comparisons

We also applied the NaiveBayes, NaiveNet,
and J48 machine leaning algorithms to the heuris-

tic values in the instances in order to learn from
and predict the developer rankings in the instanc-
es. Then, we compared for each instance our algo-
rithm’s ranking to the predicted rankings by each
of the machine learning algorithms, as shown in
Table 7, in order to evaluate its performance.

In the following section, we show the results
from our analysis for each scenario and groups as
well. We will limit our explanation in this section
to the rankings by NaiveBayes. Then, in the Dis-
cussion we will also look at the results of the Na-
iveNet and J48 machine learning algorithms.

4.2 RESULTS
In this section, we first represent the weights re-
flecting the importance and priority of the heuris-
tics and groups. After that, we show how accurate
our algorithm is in recommending the experts.

4.2.1 Heuristic and Group Weights
Figure 2 shows the weights of each technical heu-
ristic. As mentioned in the "Identifying Experts"
section, Type-1, Type-2, and Type-3 clones are
considered to be one heuristic, but we separated
them in the analysis here since we were also con-
cerned with studying which of the developers who
worked on those types might have better expertise
and can better understand the code at hand. We
found that the developers who worked on Type-3
clones might have the best expertise since their
changes to a code fragment show that they might
have good understanding of the logic of that code.
However, we see in the figure that Type-1 and
Type-2 clones have higher weights, but these
weights do not arise due to the importance of the
types themselves but because some developers
worked on both types. In our analyses of other
technical heuristics using the overall type heuris-
tic (i.e., ignoring the three subtypes), we found
that judges think that the developers who have
modified a large number of lines in the fragments
that are clones of the current code might be the
ones who have good expertise. Moreover, among
those developers if some of them have modified
code more recently or have worked on more than
one fragment, then these developers are more
likely to have better expertise than others. The
type heuristic received less importance than other
heuristics since from a human perspective finding
developers who have worked on clone fragments
might be enough to consider them as experts

without considering which types they have coop-
erated on.

Figure 2: Technical Heuristics Weights

Regarding the four heuristics under sociality
within the DSSD (see Figure 3 below), we see
from the figure that the social relationship with
the Active Developer is considered slightly more
important to consider than the sociality within the
DSSD. Judges, on the other hand, did not seem to
pay attention to the basis of these relationships
(counting number of shared files and commits)
while they were ranking the experts.

Figure 3: Social Heuristics Weights within DSSD

Figure 4 shows the weights of the heuristics
for sociality within the ERSF. This figure shows
that Trust in the relationship with the Active De-
veloper is given higher weight, followed by Re-
sponse, and then Help with the lowest weight. The

reason behind this pattern is the dependency of
Help on Response and the dependency of Re-
sponse on Trust that caused the variation in
weights between these three heuristics (and not
their importance). The same thing happened with
sociality within the ERSF. However, the high
value for Response within the ERSF shows that
the Response heuristic has higher importance than
the others.

Regarding the low value of Recommendation
with the Active Developer in Figure 4, its value is
not dependent on any other heuristic; thus, to have
the lowest weight means that it has the lowest
importance compared to other heuristics with the
Active Developer. On the other hand, Recommen-
dation within the ERSF has similar weight to the
Helpfulness heuristic, which means it has similar
importance as the Helpfulness heuristic.

Figure 4: Social Heuristics Weights within ERSF

After we analyzed the importance of the heu-
ristics compared to each other within each group,
we also studied the importance of the groups
themselves compared to each other. Figure 5(a)
shows that human judges prefer to get help from
socially capable developers more so than getting
help from the developers who just have technical
expertise. We also see in Figure 5(b) that the so-
cial heuristic within the DSSD lost its importance
when the ERSF was used. This shows that judges
prefer to get assistance from the developers who
have demonstrated their ability to help more than
getting help from the developers with whom they
have worked within the DSSD but who have not
demonstrated helping ability before.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Shared
Files

Number of Shared
Commits

Number of Shared
Files

Number of Shared
Commits

Sociality with the Active Developer Sociality within DSSD

W
ei

gh
ts

 by
 W

ek
a

Social Heuristics within DSSD

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Tr
us

t

R
es

po
nd

H
el

p

R
ec

om
m

en
da

tio
n

Tr
us

t

R
es

po
nd

H
el

p

R
ec

om
m

en
da

tio
n

Sociality with the Active Developer Sociality within ERSF

W
ei

gh
ts

 by
 W

ek
a

Social Heuristics within ERSF

Figure 5-a: Group Weights (Before Using the
Recommender System)

Figure 8-a: Group Weights (Before Using the
Recommender System)

4.2.2 Algorithm Accuracy
A recommender system’s performance is evaluat-­
ed by the accuracy of its recommendations. We
have done this by calculating the precision (repre-
senting the percentage of recommendations that
are correct) and the recall (representing the per-
centage of correct experts recommended) of our
recommender system algorithm against the human
judges as well as NaiveBayes, J48, and NaiveNet
machine learning algorithms in each group (tech-
nical heuristics, social heuristics within the
DSSD, and social heuristics within the ERSF) and
the groups themselves.

The precision and the recall measures are de-
signed based on three measurements: (1) False
Positive contains the experts recommended by our
algorithm but not by the judges, (2) False Nega-

tive contains the experts recommended by the
judges but not by our algorithm, and (3) True Pos-
itive contains the intersection of the algorithm
recommendations and the rankings by the judges
as of McDonald [10].

We first compared our algorithm rankings to
the rankings by each judge using NaiveBayes in
order to measure the True Positive of the compar-
ison with this judge. Then, we calculated the
summation of the True Positive values of each
comparison to find the Total True Positive that
were then used to find the precision and the recall.

The False Negative values for both the preci-
sion and the recall were always “30” since we had
10 judges and each judge ranked the top three
experts, which in total are “30” rankings by the
human judges. In addition, since the predictions
of the NaiveBayes, NaiveNet, and J48 machine
learning algorithms were based on the “30” judge
rankings (represented as “30” instances, as de-
scribed) we also had “30” rankings by the ma-­
chine learning algorithms. The rankings by our
algorithm were “30” rankings since they were
identified based on the “30” rankings by the judg-­
es, which were also restructured to “30” instances
to be our algorithm’s input, and this is what
caused the False Positive to be “30” as well. For
these two reasons, we got the same precision and
the recall in each scenario since the False Positive
(the Precision denominator) and the False Nega-
tive (the Recall denominator) were both “30”.

Table 8 shows the comparison between our
algorithm rankings and the judge rankings as well
as the comparison between our algorithm rankings
and the NaiveBayes rankings. Our algorithm
shows good to excellent precision and recall in its
performance in Social Heuristics within the
DSSD, Social Heuristics within ERSF, and the
combined Groups ranking comparison as repre-
sented in Table 8. It also shows that the precision
and recall values of the 3-Heuristics Groups
Combination are greater than the values of the
Technical Heuristics and the Sociality within the
DSSD in both comparisons, against human judg-
ments and machine learning algorithms. The
technical heuristics do not come out so well, but
could prove very useful for new developers whose
sociality isn’t known, thus helping overcome a
cold start problem. But, the key result of this sec-
tion is the importance of the social heuristics, both
within the DSSD and the ERSF.

0

0.1

0.2

0.3

0.4

0.5

0.6

Technical Heuristics
Group

Social Heuristics within
DSSD Group

Social Heuristics within
ERSF Group

W
ei

gh
ts

 b
y

W
ek

a

Heuristics Groups (after using the ERSF)

Metric

Comparison

Judge
Rankings

NaiveBayes
Rankings

Pr
ec

isi
on

R
ec

al
l

Pr
ec

isi
on

R
ec

al
l

Technical Heuristics 40% 40% 23% 23%

Social Heuristics
within DSSD 63% 63% 60% 60%

Social Heuristics
within ERSF 100% 100% 70% 70%

3-heuristics Groups
Combination 70% 70% 63% 63%

Table 8: Precision and Recall

The NaiveNet and J48 algorithms show simi-
lar precision and recall values in the Social Heu-
ristics within the DSSD, Social Heuristics within
the ERSF, and the Group ranking comparison as
NaiveBayes. However, they were different than
NaiveBayes in the Technical Heuristics. First, for
NaiveNet, the precision and the recall were 33%;
second, for J48, the precision and the recall were
30% for the Technical Heuristics. Our explanation
of these differences is the effect of the “Most re-­
cent modifications” heuristic since this is the only
heuristic that explicitly uses temporal information,
unlike other scenarios that were just concerned
with heuristics that measured non-temporal char-
acteristics.

Overall, the good to excellent precision and
recall compared to both the human judges as well
the NaiveBayes, NaiveNet, and J48 algorithm
indicates that our algorithm, which considers both
the technical expertise and sociality as well as
being concerned with improving its performance
during the use of the system, could be useful for
organizations doing software system development
to help their developers find suitable experts who
can help in the code at hand.

5 Threats to the Validity
While the work presented in this paper is original
and the proof of concept experiment shows that it
is promising, there are some threats as well. First,
to judge technical expertise, we exploit a clone
detection tool, SimCad for detecting exact and
near-miss clones of the code fragment the Active
Developer is working on. Depending on the accu-
racy and thresholds of the tool, the recommenda-
tions might vary. However, SimCad has been
shown to be a state of the art scalable clone detec-

tors that detects both exact and near-miss clones
with high accuracy [16]. Second, while we evalu-
ated the approach with a proof of concept experi-
ment, a real software development environment
would be necessary to accurately and fully meas-
ure the performance of the system. However, it
was impossible for us to test the system in a real
environment, as the system needed to be running
for a while in the development environment to get
all the required historical data. We mitigated this
threat by carefully designing three scenarios cap-
turing different technical and social heuristics and
then using ten users/judges and machine learning
algorithms both to learn and then evaluate the
approach. While more judges certainly would
have allowed better evaluation of the system, the
judges we did select had a software development
background that allowed them to understand the
three scenarios well. Thus, while preliminary,
these results clearly show the promise of the pro-
posed approach.

6 Conclusion
Our research is a proof of concept experiment
demonstrating a recommender system that uses
heuristics measuring both technical expertise and
social ability to find appropriate developers to
help software engineers over impasses as they
develop code. The approach is innovative in using
clones to find a much wider range of developers
with appropriate technical expertise and that is
helpful in overcoming cold start problems. It also
uses a number of novel heuristics to measure so-
cial aspects of developers, including notions of
trust, reputation, and helpfulness. The heuristics
are computed based on data collected in the code
repository, by the software development environ-
ment, and by the recommender system itself. This
allows profiles of the developers to be automati-
cally kept up to date over time as they use these
sub-components, which in turn allows recommen-
dations to be continuously adjusted to the evolv-
ing expertise of the developers.

We plan to provide our tool as an Eclipse
plug-in to the public so that developers can use it
to find experts to help them. This would be the
ultimate test of the effectiveness of the system
since real developers would be using it to get real
help when confronted with actual impasses. The
data collected in such a real world environment,
over time (probably years!), would be invaluable
in allowing the discovery of a much finer grained

and genuine set of weights not subject to the arti-
fice necessary in the experiments done to date.
Nevertheless, we feel that the current weights
would be a useful initial tuning for such a system
that would make it much more effective than us-
ing random weights. Further details on this re-
search can be found elsewhere [4].

Authors Biographies
 Ghadeer Kintab was a M.Sc. student in Com-
puter Science at the University of Saskatchewan.
She is currently living in Jeddah – Saudi Arabia.
 Chanchal Roy is Associate Professor of Com-
puter Science at the U. of Saskatchewan. His ex-
pertise is in software engineering, particularly
software maintenance and evolution.
 Gord McCalla is Professor Emeritus of Com-
puter Science at the U. of Saskatchewan. His ex-
pertise is in the areas of artificial intelligence in
education, user modelling, and personalization.

References

[1] A. Begel, Y. P. Khoo, and T. Zimmerman,
“Codebook: Discovering and exploiting rela-
tionships in software repositories,” Proc.
ICSE, 2010, pp. 125–134.

[2] The DocShare Plugin:
http://wiki.eclipse.org/DocShare_Plugin

[3] A. Guzzi, A. Begel, J. K. Miller, and K.
Nareddy. “Facilitating enterprise software
developer communication with CARES,”
Proc. ICSM, 2012, pp. 527–536.

[4] G. Kintab, “Experts Recommender System
Using Technical and Social Heuristics”, M.Sc.
Thesis, University of Saskatchewan, 148 pp.
2013. Available at: http://goo.gl/960aOt

[5] I. Kwan, A. Schroter, and D. Damian, “Does
socio-technical congruence have an effect on
software build success? A study of coordina-
tion in a software project,” Trans. Softw. Eng.,
vol. 37, no. 3, pp. 307–324, 2011.

[6] B. Macek, M. Atzmueller, and G. Stumme,
“Profile mining in CVS-logs and face-to-face
contacts for recommending software devel-
opers,” Proc. SocialCom/PASSAT, 2011, pp.
250–257.

[7] D. Ma, D. Schuler, T. Zimmermann, and J.
Sillito, “Expert recommendation with usage
expertise,” Proc. ICSM, 2009, pp. 535–538.

[8] D. W. McDonald and M. S. Ackerman, “Just
talk to me: A field study of expertise location,”
Proc. CSCW, 1998, pp. 315–324.

[9] D. W. McDonald and M. S. Ackerman, “Ex-­
pertise recommender: A flexible recommen-
dation system and architecture,” Proc. CSCW,
2000, pp. 231–40.

[10] D. W. McDonald, “Evaluating expertise rec-­
ommendations,” Proc. CSCW, 2001, pp.
214–23.

[11] S. Minto and G. C. Murphy, “Recommending
emergent teams,” Proc. MSR, 2007, pp. 12–
13.

[12] A. Mockus and J. D. Herbsleb, “Expertise
browser: A quantitative approach to identify-
ing expertise,” Proc. ICSE, 2002, pp. 503–
512.

[13] A. Moraes, E. Silva, C. da Trindade, Y. Bar-
bosa, and S. Meira, “Recommending experts
using communication history,” Proc. ICSE,
2010, pp. 41–45.

[14] C. K. Roy, J. R. Cordy, and R. Koschke,
“Comparison and evaluation of code clone
detection techniques and tools: A qualitative
approach,” Sci. Comput. Program. 74(7):
470-495 (2009).

[15] D. Schuler and T. Zimmermann, “Mining
usage expertise from version archives,” Proc.
MSR, 2008, pp. 121–124.

[16] J. Svajlenko and C. K. Roy, "Evaluating
Modern Clone Detection Tools", Proc.
ICSME, 2014, 10 pp. (to appear).

[17] S. Uddin, and C.K. Roy, K.A. Schneider and
A. Hindle, "On the Effectiveness of Simhash
for Detecting Near-Miss Clones in Large
Scale Software Systems," Proc. WCRE,
2011, pp. 13-22.

[18] I. H. Witten, E. Frank, and M. A. Hall, “Data
Mining: Practical Machine Learning Tools
and Techniques, Boston”, Elsevier, 2011.

[19] P. F. Xiang, A. T. T. Ying, P. Cheng, Y. B.
Dang, K. Ehrlich, M. E. Helander, P. M.
Matchen, A. Empere, P. L. Tarr, C. Williams,
S. X. Yang, “Ensemble: A recommendation
tool for promoting communication in soft-
ware teams," Proc. RSSE, 2008, 2pp.

[20] Weka: http://www.cs.waikato.ac.nz/ml/weka
[21] Y. Ye, Y. Yamamoto, and K. Nakakoji, “A

socio-technical framework for supporting
programmers,” Proc. FSE, 2007, pp. 351–
360.

