
On the Use of Context in Recommending Exception
Handling Code Examples
Mohammad Masudur Rahman Chanchal K. Roy

Department of Computer Science, University of Saskatchewan, Canada
{masud.rahman, chanchal.roy}@usask.ca

Abstract—Studies show that software developers often either
misuse exception handling features or use them inefficiently, and
such a practice may lead an undergoing software project to a
fragile, insecure and non-robust application system. In this paper,
we propose a context-aware code recommendation approach that
recommends exception handling code examples from a number
of popular open source code repositories hosted at GitHub. It
collects the code examples exploiting GitHub code search API,
and then analyzes, filters and ranks them against the code under
development in the IDE by leveraging not only the structural (i.e.,
graph-based) and lexical features but also the heuristic quality
measures of exception handlers in the examples. Experiments
with 4,400 code examples and 65 exception handling scenarios
as well as comparisons with four existing approaches show that
the proposed approach is highly promising.

Index Terms—Exception handler; context-relevance; lexical
similarity; structural similarity;

I. INTRODUCTION

Exception handling is one of the most important tasks that
software developers undertake during software development
and maintenance. However, studies show that developers ei-
ther use the exception-handling features ineffectively [15] or
misuse them in the real life software development [26]. Cabral
and Marques [15] conduct a study with 32 applications from
Java and .NET frameworks, and report that about 40%-70%
exception handling actions are overly simplified or ineffective.
The actions either log error messages and print stack traces
or simply do nothing. According to their findings, developing
effective exception handlers is a daunting task. One way to
benefit both the developers’ productivity and the quality of
the exception handlers is to recommend readily available and
relevant exception handling code examples to the developers
within the scope of their working environment (e.g., IDE),
which can be leveraged in handling exceptions by them.

A number of existing studies on exception handling attempt
to support the developers through useful insights from static
analysis of the exception control flows and handling structures
[16, 18, 24] or comparative field studies [15, 17], visualization
[26], and recommendation of code examples [13]. Barbosa
et al. [13] propose an approach to recommend exception
handling code examples exploiting the structural facts of the
code under development and the candidate examples. Although
the approach performs considerably well on their carefully
constructed dataset, it suffers from several limitations. First,
the approach considers only the usage of certain API classes
and API methods, and captures neither static relationships

(i.e., method belongs to which class) nor the dependencies
among different API objects used in the code. These static
or dependency relationships can be considered as an impor-
tant structural component of a code example. Second, the
constructed dataset is static and cannot be easily updated. It
also requires significant amount of manual preprocessing to
be useful in the recommendation for exception handling.

In this paper, we propose a context-aware recommenda-
tion approach for exception handling code examples, which
leverages not only both the structural and lexical features
but also the quality of the exception handlers in the code
examples. The approach exploits the GitHub Code Search API
[2], and collects about 60-70 code examples from GitHub code
repositories against a search query representing the context
code (i.e., code under development) in the IDE and the
exception a developer attempts to handle. It then analyzes,
filters and ranks the examples based on their relevance against
the context code and the quality of their exception handlers.

The proposed approach also overcomes certain limitations
of the existing techniques. First, it adopts a graph-based
technique for structural relevance estimation, where the ap-
proach identifies all the API objects along with their static
relationships and data dependencies in the code to develop
an API usage graph. We believe that two code fragments
having similar usage graphs (i.e., similar set of API objects
with similar static or dependency relationships) are likely
to accomplish similar programming tasks. The usage graph
captures more useful and more in-depth structural features of
the code compared to existing structural heuristics [13, 19].
We thus exploit the usage graph matching idea for structural
relevance estimation (i.e., novelty of our approach), and it
helps to overcome the limitations of the heuristic-based tech-
niques. Second, it applies a state-of-the-art lexical feature-
based code cloning technique [25] in order to determine
the lexical similarity between context code in the IDE and
the candidate examples, which was completely ignored by
the existing studies. The idea is to recommend the code
examples which are not only structurally relevant but also
lexically similar (i.e., easy to work with) to the context code.
Third, the approach integrates one of the largest and the most
popular online code bases, GitHub, into the IDE, which can
provide readily available exception handling code examples
from the top ranked repositories. This integration makes the
corpus for recommendation dynamic, constantly evolving, and
synchronized with a number of mature and popular projects.

//more code ...
try {

URL url=new URL(WEB_SERVICE_URL_WITH_PARAMS);
HttpURLConnection conn=(HttpURLConnection)url.

openConnection();
//more code goes here ...

} catch (Exception e) { }// generic exception handler

Listing 1. Code under Development

We conduct experiments on the proposed approach using
4,400 GitHub code examples and 65 exception handling
scenarios (i.e., each scenario consists of an exception and a
code segment). The exceptions and associated context code are
collected from different online sources such as StackOverflow
Q & A site and Pastebin [8]. First, we perform an extensive
search into GitHub code repositories using the code search
feature, and develop an oracle by collecting the most rele-
vant exception handling code examples for each case (i.e.,
scenario). We then use the oracle in order to evaluate the
proposed approach, where our approach recommends relevant
code examples with a maximum of 41.92% mean average
precision, 31.07% mean precision, 76.70% recall and 86.15%
recommendation accuracy. These results are found promising
according to the existing relevant studies [20, 23, 28]. We also
compare with four popular existing approaches– Barbosa et al.
[13], Holmes and Murphy [19], Takuya and Masuhara [27] and
Bajracharya et al. [12], for the same dataset, and find that our
approach outperforms them in all corresponding performance
metrics. Thus we make the following technical contributions
in this paper.

• We propose a graph-based approach in order to estimate
the structural relevance between two code segments.

• In the ranking of exception handling code examples,
we not only combine structural relevance and lexical
relevance but also consider the quality of the exception
handlers in the examples.

• We package our solution into a tool, SurfExample [9], that
captures the context code in the IDE, and recommends
relevant exception handling code examples collecting
from a remote web service [9], and the service can be
leveraged by any IDE.

II. MOTIVATING EXAMPLE

Let us consider a problem solving scenario, where a de-
veloper implements a client module of an Eclipse plugin that
accesses a remote web service. Like many other developers,
she is concerned about the functional requirements, and uses
only a generic handler for exception handling (e.g., high-
lighted in Listing 1). The implementation serves the primary
purpose (e.g., accessing information) of the client module;
however, it also poses several threats to future maintenance and
evolution of the plugin. First, the generic handler catches all
exceptions triggered from within the try block and suppresses
each of them, which clearly violates the second accepted
principle [5] of exception handling–if you catch an excep-
tion, do not swallow it. The suppression conceals important
information of the occurred exceptions, and identification or
fixation of a bug in a multilayer application with such poorly

BufferedReader breader=null;
try {

URL url = new URL(this.web_service_url);
HttpURLConnection httpconn = (HttpURLConnection) url

.openConnection();
httpconn.setRequestMethod("GET");
if (httpconn.getResponseCode() == HttpURLConnection.

HTTP_OK) {
breader = new BufferedReader(new

InputStreamReader(
httpconn.getInputStream()));

String line = null;
while ((line = breader.readLine()) != null)

{
//more code goes here ...

}
}

} catch (MalformedURLException mue) {
Log.warn("Invalid URL " + this.web_service_url, mue);
MessageDialog.openError(Display.getDefault().

getShells()[0],
"Invalid URL " + this.web_service_url, mue.

getMessage());
} catch (ProtocolException pe) {
Log.warn("Protocol Exception " +

this.web_service_url, pe);
MessageDialog.openError(Display.getDefault().

getShells()[0],
"Invalid Protocol " + this.web_service_url,

pe.getMessage());
} catch (IOException ioe) {
Log.warn("Failed to access the data " +

this.web_service_url, ioe);
} finally {
breader.close();

}
}

Listing 2. Recommended Code Example

designed handlers is highly error-prone and time-consuming.
Second, exceptions are generally associated with different API
methods (according to API design specifications), and several
exceptions can occur from a programming context. Each of
those exceptions (especially checked exceptions) deserves a
specific treatment (e.g., handle or rethrow) based on the
application context or abstraction. The generic handler without
any cleanup operations fails to meet the individual exception-
specific requirements [16], and thus leads to different hidden
bugs and resource or security issues.

Now let us consider the code example in Listing 2 rec-
ommended by the proposed approach for the current pro-
gramming context (i.e., code under development) in Listing
1. The example performs a similar type of programming task
using a similar set of API objects, and thus is completely
relevant to the current context. The code example treats each
of the exceptions that can trigger from the code, and it also
provides valuable information for exception handling. First,
the developer is often not aware of the exceptions which might
occur from the current programming context. She also might
not be sure of which of the exceptions are to be caught and
handled if the IDE suggests them based on API specifications.
The recommended relevant example provides such informa-
tion, and she can easily apply that in the current context.
Second, she might also lack necessary skills required to handle
the exceptions, and the example demonstrates how certain
exceptions should be caught and handled (e.g., highlighted
lines in Listing 2). For example, the technical details of a
MalformedURLException can be used to warn a user about the

URL, and thus it is a candidate exception for handling accord-
ing to the first principle [4, 5] of exception handling–Always
catch only those exceptions that you can actually handle. The
example handles it through reporting to the user using a dialog
box (i.e., instant notification) and logging the details for future
maintenance. In practice, effective handling of exceptions is
a frequently misunderstood aspect of programming especially
with applications of multilayer abstraction, and such exception
handling code examples can act as a helpful learning tool for
the developer. The examples are not necessarily meant for
reuse; however, they can guide her towards effective handling
in her application context through exemplary implementation.

III. BACKGROUND

A. Static Relationship & Data Dependency

Nguyen et al. [22] propose a graph-based approach for API
usage pattern extraction, where they represent the usage of
different API objects in the code using graphs. In the graph,
each API object and its properties such as fields, constructors
and methods are represented as nodes, and static relationships
between the object and its properties or its dependencies on
other objects are represented as connecting edges. They clas-
sify the dependencies into two– data dependency and temporal
usage order. If an API object accepts an instance or an attribute
of another object as the parameter either in the constructor or
in the method, the first object is said to be dependent on the
second object by data. On the other hand, certain methods can
be invoked only after the invocation of another method from
the same object. For example, all method invocations of an
object are followed by the initialization (i.e., <init> method) of
the object, and this type of dependency of sequence is termed
as the temporal usage order. In this research, we leverage the
static relationships between API objects and their properties
as well as the data dependencies among different objects in
the code in order to determine the structural relevance between
two code segments. Fig. 1 shows the static relationships (i.e.,
solid edges) and the data dependencies (i.e., dashed edges) in
the recommended code example in Listing 2, which uses four
API classes– URL, HttpURLConnection, InputStreamReader
and BufferedReader. We note that InputStreamReader ob-
ject accesses getInputStream method of HttpURLConnection
object, and BufferedReader object accepts an instance of
InputStreamReader class in their constructors respectively, and
these data dependencies are shown using dashed edges. On the
other hand, object to property (e.g., method, constructor) static
relationships are represented as green coloured solid edges.

B. Graph Matching

In graph theory, matching graphs involves matching a set
of independent edges along with their vertices [3]. Fig. 1, the
adapted API usage graph of our toy example (Listing 2), shows
the static relationships and the data dependencies in the code
in terms of vertices and edges. In our research, we estimate
the structural relevance between a candidate code example
and the context code, where we determine matching between

Fig. 1. Static Relationship and Data Dependency in Listing 2

Fig. 2. Schematic Diagram of Proposed Approach

two such corresponding usage graphs. We consider maximum
matching in the graphs, and also estimate different heuristic
weights for different types of matching (e.g., dependency,
static relations) using a machine-learning based approach
(Section IV-D). For example, a data dependency matching is
considered more important (i.e., contains greater weight) than
a static relationship matching for relevance estimation. The
static relationship matching between two graphs explains that
two graphs merely contain similar set of API objects with
their properties (e.g., method or field). On the other hand, the
data dependency matching explains that those API objects also
interact with each other in a similar fashion in both graphs,
which adds more value in relevance estimation.

IV. PROPOSED APPROACH

Fig. 2 shows the schematic diagram of our proposed ap-
proach for exception handling code example recommendation.
We package our solution into an easily accessible web service
[9] and an Eclipse plugin [9]. In this section, we discuss
different working modules of the solution, proposed metrics
for relevance estimation between code segments as well as
the quality estimation of the exception handlers, metric weight
estimation techniques and ranking algorithms.

A. Working Modules

The proposed solution adopts a client-server architecture,
and it has two working modules– client module (Fig. 2-(a,
b, d, e)) and computation module (Fig. 2-(c)). The client
module, an Eclipse plugin prototype [9], collects the code

under development (hereby we call it context code) containing
generic or poorly designed exception handlers from the IDE,
and prepares a search query by extracting suitable keywords
from the code (Section V-B). It then sends the search query
as well as the context code to the computation module. The
computation module, hosted as a web service [9], collects
code examples from GitHub code repositories using that
search query and GitHub code search API, and develops a
dynamic corpus (Fig. 2-(c)). The corpus generally contains
about 60-70 code examples from hundreds of repositories,
which are analyzed, filtered, and then ranked against the
context code using the proposed metrics (Section IV-B) and
ranking algorithms (Section IV-C). Once the ranked examples
are returned from the computation module, the client module
recommends the top 15 of them in the IDE (Fig. 2-(d, e)). The
developer then can check the code examples and leverage for
exception handling in her own programming context.

B. Proposed Metrics

This section discusses our proposed metrics which are used
to determine the structural and lexical relevance of a candidate
code example in the corpus with the context code in the IDE.
It also discusses our proposed metrics that estimate the quality
of the exception handlers in the code example.

1) Structural Relevance (Rstr): Barbosa et al. [13] apply
heuristic strategies on three structural facts–(1) the hierarchy
level of the handled exception, (2) list of methods called,
and (3) types of the variables used, of an exception handling
code example for structural relevance estimation. Holmes
and Murphy [19] also adopt a similar approach to capture
the structural information from the code. They develop six
heuristic strategies associated with class inheritance, method
call and variable usage. Thus, existing two studies [13, 19]
basically consider number of matched method calls and num-
ber of matched variables as the core components of structural
relevance between two code segments.

In our research, we propose a graph-based approach
(adapted from the approach of Nguyen et al. [22] for API usage
pattern extraction) to capture the structural features from the
code. We consider a code example as a network or graph of
API objects interacting with each other through method or
constructor invocations and field accesses in order to solve a
programming problem. We consider each of the API objects,
the static relationships between an API object and its fields
or methods, and the data dependencies of the object upon
other API objects in the code as the structural features, and we
exploit them to estimate the structural relevance (i.e., structural
similarity) between two code segments. Thus the structural
relevance is based on four structural aspects– matched API
objects, matched field accesses, matched method calls, and
matched data dependencies.

API Object Match (AOM): In the code, different API
objects are initialized, and their fields and methods are ac-
cessed in order to accomplish a programming task. We use
JavaParser [6], an Eclipse AST-based parser, to extract the
API objects from the context code and the candidate code

examples collected from GitHub. API Object Match metric
determines the number of matched API objects between the
context code and a candidate example. Given that each API
object has a predefined set of fields and methods, the metric
can be considered as a rough estimate of the functional
similarity between the two code fragments.

Field Access Match (FAM): The metric determines the
matching between field accesses of an API object in the
context code and that of the target object in the candidate
code. While existing approaches [13, 19] ignore this feature,
we use it as a structural component of the code. In practice,
the metric accumulates field matching in the candidate code
for all API objects in the context code, and indicates the extent
to which both code fragments access the common attributes.

Method Invocation Match (MIM): We consider method
invocations as an important structural component of the code
as the API objects generally interact with each other through
them. Existing approaches [13, 19] do not consider the scope
(i.e., API class instances) of the invoked methods during
matching, and thus their method invocation matching might be
erroneous (i.e., same method names are available in different
API objects). In our research, we treat each API object as a
working unit. We consider the invoked methods from an API
object in the context code, and then determine the method
invocation match by comparing with the invocation list from
the same object in the candidate code example. In practice,
the metric considers each API object in the context code and
accumulates the invocation match measures.

Data Dependency Match (DDM): The API objects in the
code depend on each other for object initialization, method pa-
rameters and so on, and we call it data dependency among the
objects [22]. We consider the data dependency as a structural
component of the code, and we use API usage graph in order
to determine the dependency matching. For example, in Fig.
1, the dependencies among the API objects are represented
as dashed edges among the vertices. Given that API libraries
are designed with certain dependencies among different API
classes, we capture and exploit such dependencies in order to
determine the structural relevance between the context code in
the IDE and a candidate code example.

We sum up the above four structural components in order
to determine the structural relevance score (Rstr) as follows:

Rstr = α×N + β ×
N∑
i=1

FAMi

FAQi
+ γ ×

N∑
i=1

MIMi

MIQi
+

δ ×
M∑
i=1

DMTi

(1)

Here, N and M refer to number of matched API objects and
number of matched dependencies respectively. α, β, γ and δ
are the weights of API Object Match (AOM), Field Access
Match (FAM), Method Invocation Match (MIM), and Data
Dependency Match (DDM) metrics respectively. The weight
estimation technique is discussed in Section IV-D. FAQi and
MIQi are number of field accesses and number of method
invocations of an API object from the context code, and DMT
refers to the matching weight of each data dependency. For

example, if an API object in the candidate code depends on
another object through a different access point (e.g., method,
constructor) than that in the context code (i.e., code under
development), we call it partial matching (i.e., weight 0.5). On
the other hand, a complete matching (i.e., weight 1.0) should
match both the access points and the target end objects.

2) Lexical Relevance (Rlex): While structural relevance
exploits certain API object-based structural features in the
code, lexical relevance captures even finer level granularity–
token. In order to capture token-level relevance between two
code fragments and to add more value to relevance estimation,
we use two lexical similarity measures– cosine similarity [1]
and code clone measure. They also help to overcome the
limitations with non-compilable code (i.e., structural relevance
estimation requires the code to be compilable). Cosine similar-
ity focuses on occurrence and frequency of a particular token
in the code irrespective of its order, and thus determines the
content similarity between two code segments. On the other
hand, the code clone measure depends on the clone detection
algorithms. In the case of cosine similarity calculation, we
consider a code fragment as a vector of tokens, and discard
insignificant tokens (e.g., punctuations). We then determine
the cosine of the angular distance (i.e., cosine similarity)
between the two such vectors corresponding to the context
code and a candidate code example. In case of code clone
measure (Sccm), we use a state-of-the-art code clone detection
technique, NiCAD [25], where we determine the longest
common subsequence of tokens between the context code and
the candidate code, and then normalize it as follows:

Sccm =
|Slcs|
|Stotal|

(2)

Here, Slcs denotes the longest common subsequence of tokens,
and Stotal denotes the set of tokens extracted from the context
code. The measure values between zero to one, and it provides
an estimate of the extent to which the candidate code matches
with the context code lexically. Thus, the two measures
compute the lexical similarity between code from two different
viewpoints, and we use them in order to determine the lexical
relevance score (Rlex) as follows:

Rlex = λ× Scos + σ × Sccm (3)
Here λ and σ are the weights of the corresponding measures,
and they are calculated using a machine learning technique
involving logistic regression (Section IV-D).

3) Quality of Exception Handler (Qehc): The metrics dis-
cussed earlier focus on the relevance of an exception handling
code example for recommendation; however, relevance alone
is not sufficient enough for effective recommendation (i.e., a
limitation of existing studies). The quality of the exception
handlers in the code is also an important concern. In addition
to the above metrics and measures, we thus also consider the
quality of the exception handlers in the code as follows:

Readability (RA): Readability of software code refers to
a human judgement of how easy the code is to understand
[14]. In our research, we consider readability as one of most
important quality metrics for an exception handler in the
code example. The baseline idea is– the more readable and

understandable the handler code is, the easier it is to leverage
in exception handling. Buse and Weimer [14] propose a code
readability model trained on human perception of readabil-
ity and understandability. The model uses different textual
features (e.g., length of identifiers, number of comments,
line length) of the code that are likely to affect the human
perception of readability. It then predicts a readability score
on the scale from zero to one, inclusive, with one describing
that the code is highly readable. We use the readily available
library [10] by Buse and Weimer to calculate the readability
metric of the exception handling code examples.

Average Handler Actions (AHA): The metric calculates
the average number of statements (i.e., actions) in each of
the catch clauses in the code example. During calculation,
we discard the insignificant statements such as the statements
printing stack traces or error messages. We consider the
measure as an important indicator of how extensively (i.e.,
meaningfully) data from the caught exceptions are used for
handling. The lower the measure, the poorer the design of the
exception handlers.

Handler to Code Ratio (HCR): The metric refers to
the fraction of the code in the example that is intended for
exception handling, and we use SLOC (Source Lines of Code)
for the calculation. While the metric indicates the richness
of the code example in handling exceptions, it also helps
to filter out the examples with poorly designed exception
handlers (e.g., generic handler with empty catch block) or
long methods. These examples would necessarily contain a
large number of program statements compared to the handler
statements in the catch clauses, and we use Handler to Code
Ratio metric to penalize such code examples.

We use the above three quality estimates focusing on distinct
aspects, and determine an overall quality estimate for the
exception handlers in the code example as follows:

Qehc = µ×R+ ε×AHA+ κ×HCR (4)
Here, µ, ε and κ are the weights of the corresponding qual-
ity metrics, which are calculated using a machine learning
technique involving logistic regression (Section IV-D). While
HCR metric is likely to encourage examples with excessive
handling code, AHA metric ensures that the handlers contain
meaningful statements, and RA metric penalizes code with too
many parentheses [14] (i.e., code with too many handlers).

C. Result Scores and Ranking

In our research, we consider three important aspects– struc-
tural relevance, lexical relevance and quality of exception
handler for ranking and recommendation of code examples.
The structural relevance helps to recommend a code example
that uses a set of API objects similar to that of the context
code in the IDE. Moreover, it ensures that each API object in
that set matches with that in the context code in terms of field
access, method invocation and data dependency upon other
objects. The lexical relevance refers to the lexical similarity
of a code example against the context code, and it helps
to recommend similar type of code examples for possible
reuse. The last aspect focuses on the overall quality of the

handlers in the code example. It helps to recommend code
examples that are highly understandable, and contain good
quality handlers for the exceptions of interest. Thus, the
total relevance (Rtotal), for each candidate code example is
calculated using the component scores associated with those
three aspects in Equation (5). The component scores belong
to different ranges due to heterogeneous feature values, and
each score is normalized between zero to one.
Rtotal = wstr ×Rstr + wlex ×Rlex + wehc ×Qehc (5)

Here, Rstr, Rlex and Qehc are structural relevance, lex-
ical relevance and quality of exception handler estimates
respectively of a candidate code example. wstr, wlex and
wehc are the heuristic weights (i.e., relative importance) of
the corresponding metrics, which are calculated using the
machine learning approach discussed in Section IV-D. Once
we calculate the total scores, we sort the code examples
based on their scores, and recommend the top 15 examples
to the developer. For instance, the code example in Listing 2
shows these values for the proposed nine individual metrics–
AOM=2, FAM=0, MIM=1, DDM=0, Scos=0.67, Sccm=0.58,
RA=0.09, AHA=1.67, HCR=0.52 during ranking. Given the
limited (i.e., a few statements) context code (i.e., code under
development) in Listing 1, the example in Listing 2 matches
with it the best both structurally and lexically among all other
examples. More importantly, exceptions in the example are
handled carefully with at least two actions (i.e., statements) in
each handler and the code is moderately readable, and thus the
example gets a normalized handler quality score of 0.68. While
other approaches either analyzes manually or depends on the
reputation of the code repository for good quality handlers of
exceptions, we not only choose reputed repositories and but
also propose and use several metrics to ensure quality of the
exception handlers (i.e., effectiveness shown in Fig. 3). Based
on the three aspects (structual, lexical and handler quality)
considered, the example scores the highest, and ranks the top
in the recommended example list.

D. Metric Weight Estimation

In order to determine the weight of nine of the individual
metrics associated with structural relevance, lexical relevance
and handler quality of a code example, we choose 650 code
examples handling 65 exceptions from experiment dataset. For
each exception, we collect ten random candidate examples
from the corpus, analyze their content, and manually tag them
either as relevant or irrelevant for recommendation. We also
collect the values of all nine proposed metrics for each tagged
code example. We then feed the feature (i.e., metric) values
and class labels (i.e., tag of example) to Weka tool [11] that
returns a logistic regression based classifier model [7]. In the
classifier model, each of the features is associated with certain
coefficients, which the tool tunes in order to classify a sample
(i.e., code example) with maximum accuracy. We believe that
these coefficients are an estimate of the importance of the
features used in the classification, and we consider them as
the weights of the corresponding nine relevance and quality
metrics [21]. However, the coefficients are either positive (i.e.,

supporting for a particular class) or negative (i.e., discouraging
for a particular class), and one may find them counter-intuitive
for weight estimates. Therefore, we use Odd Ratio of each
feature, a logarithmic transformation of the coefficient, as the
weight estimate for the corresponding relevance and quality
metrics. Among the nine weight estimates, weights of lexical
measures dominate others; that means lexical metrics play a
decisive role in the classification of the code examples. Weight
estimates, and associated data can be found online [9].

Once we calculate the subtotal scores using the individual
metrics and their corresponding weights, they represent certain
aspects such as structural relevance, lexical relevance and
exception handler quality of a code example. We then adopt
the same machine-learning technique (as in case of individual
metrics above) in order to estimate the relative weights (i.e.,
importance) of those three aspects. We consider a heuristic
relative weight of 1.0152 for lexical relevance, 1.2787 for
structural relevance, and 1.1588 for exception handler quality
estimate based on the Odd Ratios of the corresponding metrics
in classifier model.

V. EXPERIMENT

A. Dataset Preparation

We collect 65 exception handling cases (i.e., scenarios) for
the experiments, where each case comprises of a context code
segment and an exception to be handled. Most of the cases
are collected from different online sources such as Pastebin
[8] and StackOverflow Q & A site, and a few of them are
developed by us. For each of the cases, the context code is
analyzed to prepare a suitable search query (Section V-B),
which is then used to develop a corpus of candidate code
examples containing handlers of the corresponding exception.
In order to collect examples, we choose four popular software
organizations–Apache, Eclipse, Facebook and Twitter, and they
host about 738 open source Java projects (visited on January,
2014) at GitHub. The code bases of the target organizations
are considerably rich and matured, and some of the organi-
zations even developed exception handling frameworks (e.g.,
ExceptionUtils and Camel by Apache). Thus we believe that
their code bases are more likely to contain code examples
with efficient handlers for exceptions. We use GitHub Code
Search and the prepared search queries to collect the code
examples. For each of the cases, we collect 60-70 candidate
code examples containing exception handlers, and the whole
corpus contains about 4,400 examples in total.

B. Search Query Formulation

During corpus development, we prepare a search query
for each of the exception handling cases, and collect the
candidate code examples from GitHub code search using that
query. Each of those queries generally contains two types of
information–exception name and dominant API class name.
We analyze the context code to extract such information,
where we experience two exception handling scenarios. In the
first scenario, the context code specifies which exception to
be handled, and we use that exception name in the search

query. In the second scenario, the context code either does
not specify the exception or contains a generic exception
handler (e.g., Listing 1), and we adopt a careful approach to
choose an exception (to be handled) for this scenario. Given
that exceptions are associated with different API methods
(according to API design specifications), we consider all the
checked exceptions those might be thrown from within the
context code, and choose the one that is the most frequent with
the API methods in the code. In case of dominant API class
name token in the search query, we analyze the API objects
used in the context code. The idea is to identify the most active
API objects in the code, and we consider an object with the
most frequent method invocation and field access as the most
active API object. Thus the search query for the context code
in Listing 1 is– IOException URL.

C. Exception Oracle Development

We develop an oracle that returns a list of the most relevant
code examples for each of the exception handling cases. For
oracle development, we analyze code examples in the corpus
collected for each case, and check for their relevance against
the corresponding context code and the exception of interest.
Given that checking the relevance of a code example against
an exception and its context code is a subjective approach, and
a number of examples are associated with each case, we use
tool support in our analysis. First, we rank the examples based
on their lexical similarity against the context code, and then
manually check them from the top for relevance. We consult
the best accepted practices [4] for exception handling, look for
meaningful actions (e.g., cleanup, rethrow, status notification)
other than logging in the exception handlers of a code example,
and use our best judgement to choose the relevant examples.
Once the examples are chosen for the oracle, they are cross-
validated by the peers (e.g., two graduate research students
with at least five years of Java programming experience), and
we finalize the example list through discussion. We choose
176 code examples as the most relevant ones for 65 exception
handling cases. It took about 50-60 working hours. The code
examples are hosted online [9], and we use them as the
benchmark examples to determine the performance of the
proposed and existing approaches.

D. Performance Metrics

Our proposed approach profoundly aligns with the research
areas of information retrieval and recommendation systems.
We thus use a list of performance metrics for evaluation from
those areas as follows:

Mean Precision (MP): Precision determines the percentage
of the results (i.e., code examples) returned by a query (i.e.,
exception handling case) that is relevant. Mean Precision
averages that percentage for all queries in the dataset.

Mean Average Precision at K (MAPK): Precision at K
calculates precision at the occurrence of every relevant result
(i.e., relevant code example) in the ranked list. Average Pre-
cision at K (APK) averages the precision at K for all relevant
results in the list for a query (i.e., exception handling case).

TABLE I
EXPERIMENTAL RESULTS

Metric Top 5 Top 10 Top 15
MP 31.07% 18.62% 13.85%
MAPK 41.92% 39.92% 38.64%
TEH1(65) 48(101) 53(121) 56(135)
PEH2 73.85% 81.54% 86.15%
R3 57.39% 68.75% 76.70%

1No. of exceptions handled, 2% of all exceptions
handled, 3% of relevant examples recommended

Fig. 3. Result Distribution over Metrics

Mean Average Precision is the mean of average precision at
K for all queries in the dataset.

Recall (R): Recall denotes the fraction of all the relevant
results (i.e., benchmark examples) that are retrieved.

E. Experimental Results

We conduct experiments with 65 exceptions (related to
standard Java development) along with their context code
segments, and collect the top 15 recommended code examples
for each of the exceptions for evaluation. We analyze the
results and determine the performance using necessary metrics
(Section V-D). This section discusses the experimental results
and the recommendation performance of our approach.

Table I shows the results of the experiments conducted on
the proposed approach, where we apply different performance
metrics such as Mean Precision (MP), Mean Average Precision
at K (MAPK), Total Exceptions Handled (TEH), Percentage
of all Exceptions Handled (PEH) and overall Recall (R). We
collect the top 5, top 10 and top 15 code examples from
the recommendation list for evaluation. From Table I, we
note that the approach provides results with 31.07% mean
precision. That means, on average the technique recommends
31.07% relevant code examples for each of the exception
handling cases, and it recommends correctly for 86.15% of the
exceptions. It also successfully recommends 135 out of 176
benchmark relevant examples, which gives an over all recall
of 76.70%. More interestingly, our approach recommends
relevant code examples for 48 (73.85%) out of 65 exceptions
with 41.92% mean average precision even when only top 5
results are considered. These results are also found promising
according to relevant existing studies [20, 23, 28].

Fig. 3 shows the distribution of the handled (i.e., code
examples correctly recommended) exceptions over different
metrics–structural relevance (S), lexical relevance (L) and
exception handler quality (Q). The distribution over a metric
means that a certain fraction of the exceptions are handled
(i.e., relevant code examples recommended) considering that
metric in isolation. We note that the handled exceptions are

TABLE II
EXPERIMENTAL RESULTS ON DIFFERENT SCORE COMPONENTS

Single aspect Metric Top 5 Top 10 Top 15 Combined aspects Metric Top 5 Top 10 Top 15

Structure (Rstr)

MP 27.07% 16.76% 12.51%
Structure (Rstr),

MP 27.99% 17.99% 13.44%
MAPK 38.07% 33.84% 32.64% MAPK 43.08% 38.69% 37.33%
TEH(65) 45(88) 49(109) 53(122) and Content (Rlex) TEH(65) 45(91) 49(117) 53(131)
PEH 69.23% 75.38% 81.54% PEH 69.23% 75.38% 81.54%
R 50.00% 61.93% 69.32% R 51.70% 66.48% 74.43%

Content (Rlex)

MP 24.62% 17.23% 12.72%
Structure (Rstr),

MP 31.07% 18.62% 13.85%
MAPK 35.00% 33.85% 33.08% MAPK 41.92% 39.92% 38.64%
TEH(65) 43(80) 49(112) 53(124) Content (Rlex), TEH(65) 48(101) 53(121) 56(135)
PEH 66.15% 75.38% 81.54% and Quality (Qehc) PEH 73.85% 81.54% 86.15%
R 45.45% 63.63% 70.45% R 57.39% 68.75% 76.70%

TEH=Total exceptions handled, PEH=Percentage of all exceptions handled

largely distributed over structural and lexical relevance metrics
compared to exception handler quality, and all three metrics
share about 34.55% of the exceptions. More interestingly, we
note that about 18% (from Fig. 3, 3.64% + 9.09% + 5.45%)
exception handling cases are unique to the three metrics, which
indicates that those exceptions cannot be handled or relevant
code examples cannot be retrieved without considering those
metrics in combination.

Table II further motivates the idea of combined relevance
and quality measures with statistical evidences. It shows the
results of the experiments, where we contrast among the three
aspects of relevance and exception handler quality of the code
examples. From Table II, we note that the different relevance
aspects such as lexical relevance and structural relevance are
not satisfactorily effective especially in terms of mean average
precision and recall, when they are considered in isolation.
For example, the approach can recommend at most 70.45%
of the relevant code examples with 35.00% mean average
precision when we consider only lexical relevance for ranking.
On the other hand, when we consider both structural and
lexical relevance, the approach can recommend with 74.43%
recall and 37.33% precision. One can argue that performance
improvement is not significant, which actually motivates the
inclusion of another dimension in code example ranking. We
consider quality of exception handler as the third aspect in the
relevance ranking of the code examples, and we also find it
promising in our experiments. When we add handler quality
to the rest two aspects of ranking, we get a maximum recall
of 76.70% and mean average precision of 41.92% by the
proposed approach, and it also handles a maximum of 86.15%
of all the exceptions in the dataset. While the improvement is
not still too high, the combination of three aspects interestingly
performs the best in terms of all performance metrics, and the
results are promising. Similar findings can also be reported
from Fig. 3.

F. Comparison with Existing Approaches

Even though our proposed approach shows promise in
the controlled experiments above, we further wanted to see
how good the approach is in terms of the literature. Thus,
we compare our approach with four well known existing
approaches– Barbosa et al. [13], Holmes and Murphy [19],
Takuya and Masuhara [27] and Bajracharya et al. [12]. We
implemented the approaches in our working environment
based on the methodologies described in the paper and our

prior development experience, tested with our dataset, and
analyzed their performance with the same set of metrics. This
section discusses the comparative study between our proposed
approach and the existing approaches.

Barbosa et al. [13] developed their corpus by collecting code
examples from the repositories hosted at Eclipse Foundation
Open Source Community. They apply different preprocessing
on the examples such as discarding inefficient handlers and
long methods and so on, and they then apply three heuristics
related to exception type, method call and variable usage for
the relevance ranking. In our implementation of the approach,
although we could not replicate their preprocessing steps
properly, we used our example corpus as the dataset, and
implemented their heuristics according to the guidelines de-
scribed in the paper. We thus basically compare our proposed
metrics with their proposed heuristics in terms of different
experiments. Table III shows the findings of the comparative
study, where we observe that their heuristic-based approach
performs relatively poor in recommendation. The approach
by Barbosa et al. recommends relevant code examples at
most for 44.62% of the exceptions with 31.25% recall and
16.15% mean average precision, whereas our approach can
recommend for 86.15% of the exceptions with 76.70% recall
and 41.92% mean average precision. This clearly shows that
our approach outperforms their approach. One can rationalize
the lack of preprocessing for the low performance of their
approach, we argue that the same limitation is also acknowl-
edged by Barbosa et al., and this actually validates that our
proposed metrics are more effective than their heuristics for
the recommendation from the same corpus.

Although the remaining three approaches are not especially
designed for recommending exception handling code exam-
ples, they are well known code example recommendation
techniques and are closely related to our work. They also
analyze either structural or lexical features from the code for
recommendation, and we compare our approach against them.
We implemented the existing approaches with required adjust-
ments for the comparative study as the implementations by the
authors are either unavailable or not directly applicable. The
approach by Holmes and Murphy [19] uses six heuristics for
code recommendation, and we find three of them are relevant
for exception handling code recommendation. We thus use the
three heuristics dealing with method calls and variable usages
in the code. Takuya and Masuhara [27] use cosine similarity

Fig. 4. Mean Precision vs. Recall Curves

in order to determine relevance between two code examples.
Bajracharya et al. [12] adopt an information retrieval-based
approach for code example recommendation. They extract the
tokens containing different structural information from the
code, and develop a lucene index for all the examples in
the corpus. They then use a structured query containing a
set of predefined parameters to collect recommendable code
examples. In our implementation, we adopt a similar approach
in index development involving lucene indexer; however, we
follow a different approach for query formulation. Their query
parameters [12] are not sufficient enough to request for excep-
tion handling code examples, and we use the queries (Section
V-B) by our proposed approach. However, as the experiment
results suggest, none of the three existing approaches perform
considerably well in recommending exception handling code
examples. From Table III, we note that the approach by
Takuya and Masuhara handles a maximum of 31 (47.69%)
of exceptions and recommends examples with 21.54% mean
average precision and 30.68% recall, and others recommend
less than 30% of all the relevant examples (i.e., recall),
which are significantly poor compared to our results. One
can argue that the comparison might not be fair due to the
handler quality metrics in our approach. However, as shown
in Table II, our approach also performs significantly better
than those approaches without using those metrics. Thus, we
conjecture that those approaches were not actually designed
for exceptional handling code recommendation; but to the best
of our knowledge they are worthy of comparison as there are
no others available.

As shown in the schematic diagram in Fig. 2-(c), our
approach leverages GitHub code search in dynamic corpus
development. The approach thus applies ranking algorithms
on a narrowed-down dataset for each exception handling case,
whereas other approaches deal with a large local or remote cor-
pus for the same. We also investigate if this additional search
(i.e., GitHub search) is the sole factor behind the promising
results of our approach, and conduct experiments with 4,400
code examples as the corpus for each of the exception handling
cases. From Table III, we note that our approach also performs
significantly well compared to the existing approaches in this
case. It recommends relevant code examples for a maximum of
40 (61.54% compared to 47.69% of existing approaches) out
of 65 exception handling cases with 43.75% recall. The mean
precision-recall curve in Fig. 4 also shows that the proposed
approach is more promising than the existing approaches in
exception handling code recommendation. Given that the area
under the curve denotes the performance of a system, our
approach outperforms all other approaches in the experiments.

VI. THREATS TO VALIDITY

In our proposed approach, we note several issues worthy of
discussion. First, one might argue about the reliability of the
judges for the oracle, especially because relevance checking
of a code example against an exception (and its context code)
is a subjective approach. In order to overcome this threat, we
carefully chose the examples by consulting the best accepted
practices of exception handling as well as based on our best
judgment, and both authors have professional development
experience (details in Section V-C).

Second, we exploit GitHub code search API to develop the
corpus for our experiments, and our approach is subjected to
strengths and weaknesses of the search feature. One might
argue about the relatively smaller size of the corpus developed
dynamically for each of the exception handling cases. How-
ever, we argue that those examples are actually collected from
hundreds of open source repositories (about 750), and then
filtered and even ranked before returning. Thus, the developed
corpus was not only sufficient for our experiments but also an
effective one, which is also shown by the experimental results.

Third, one might argue about the number of exceptions for
the experiments. We used 65 exception handling cases for the
experiments and this might not be sufficient enough to draw
a generalized conclusion. However, collecting suitable cases
and developing reliable oracle for them requires significant
amount of time and efforts, and we covered most of the
well known standard Java exceptions [9] in different cases.
The corpus is also developed using examples from hundreds
of code repositories hosted online. Thus we believe that the
sample size is sufficient enough for a controlled experiment
and to draw such a conclusion.

VII. RELATED WORK

Exception handling is not a new topic, and there exists a
good number of studies [13, 15, 16, 17, 18, 24]. Barbosa et al.
[13] propose an approach to recommend exception handling
code by exploiting three heuristics about structural facts in
the code. The approaches by Holmes and Murphy [19], Takuya
and Masuhara [27] and Bajracharya et al. [12] are well known
as code recommendation techniques although they are not
specialized for exception handling code. We compared our
approach to all four of them and found that ours one performs
significantly better than all of them. For a detailed comparison
the readers are referred to Section V-F.

The other existing studies on exception handling are not
directly related to code example recommendation, and thus,
they were not applicable for the comparison experiments.
Chang et al. [16] propose a static analysis technique that
considers the exceptional control flows, and helps to dis-
card unnecessary try-catch and throw statements. However,
discarding unnecessary elements from the code may not al-
ways meet the needs of the developer in exception handling.
Robillard and Murphy [24] propose another static analysis
approach that identifies different possible exceptional flows in
the application program and helps the developer to understand

TABLE III
COMPARISON WITH EXISTING APPROACHES

Recommender Metric Top 5 Top 10 Top 15 Recommender Metric Top 5 Top 10 Top 15

Barbosa et al. [13]

MP 8.92% 6.92% 5.64%
Proposed Approach (without GitHub search)

MP 13.54% 8.77% 7.18%
MAPK 16.15% 14.69% 13.72% MAPK 21.80% 19.87% 18.85%
TEH(65) 18(29) 25(45) 29(55) Structure(Rstr) only TEH(65) 30(44) 33(57) 37(70)
PEH 27.69% 38.46% 44.62% PEH 46.15% 50.77% 56.92%
R 16.47% 25.57% 31.25% R 25.00% 32.38% 39.77%

Holmes and Murphy [19]

MP 6.15% 5.85% 5.03%
Proposed Approach (without GitHub search)

MP 13.85% 9.23% 7.90%
MAPK 4.62% 2.31% 2.31% MAPK 30.64% 27.44% 25.90%
TEH(65) 16(20) 25(38) 31(49) Structure(Rstr), Content(Rlex), TEH(65) 31(45) 34(60) 40(77)
PEH 24.62% 38.46% 47.69% and Quality(Qehc) PEH 47.69% 52.31% 61.54%
R 11.36% 21.59% 27.84% R 25.56% 34.09% 43.75%

Takuya and Masuhara [27]

MP 8.31% 7.38% 5.54%
Proposed Approach (with GitHub search)

MP 27.99% 17.99% 13.44%
MAPK 21.54% 20.51% 19.74% MAPK 43.07% 38.69% 37.33%
TEH(65) 22(27) 31(48) 31(54) Structure(Rstr) and Content(Rlex) TEH(65) 45(91) 49(117) 53(131)
PEH 33.85% 47.69% 47.69% PEH 69.23% 75.38% 81.54%
R 15.34% 27.27% 30.68% R 51.70% 66.48% 74.43%

Bajracharya et al. [12]

MP 5.85% 4.31% 3.49%
Proposed Approach (with GitHub search)

MP 31.07% 18.62% 13.85%
MAPK 8.46% 7.95% 6.41% MAPK 41.92% 39.92% 38.64%
TEH(65) 12(19) 18(28) 20(34) Structure(Rstr), Content(Rlex), TEH(65) 48(101) 53(121) 56(135)
PEH 18.46% 27.69% 30.77% and Quality(Qehc) PEH 73.85% 81.54% 86.15%
R 10.80% 15.91% 19.32% R 57.39% 68.75% 76.70%

TEH=Total exceptions handled, PEH=Percentage of all exceptions handled

and improve the exception handling structures of the system.
However, it returns thousands of possible control flow paths
for an exception, and that information is not easy to use
in practical sense [13]. Thus, in general, the static analysis-
based techniques provide limited support for instant exception
handling from the first place, and they often assume that
handling is already done somehow and the handler code is
there [13]. Garcia et al. [17] conduct an empirical study on the
exception handling mechanisms available in different object-
oriented programming languages, and propose a new exception
handling structure that considers 10 important aspects related
to handling. Shah et al. [26] propose a visualization approach
that visualizes the exception handling structures in the large
software systems for better understanding of how the system
works. Thus while other studies provide useful insights into
the control flows, handling structures through static analysis,
field studies, empirical studies and visualization, our proposed
approach provides readily available and relevant working code
examples by exploiting context code in the IDE, which can be
easily leveraged for exception handling.

VIII. CONCLUSION & FUTURE WORKS

To summarize, we propose a context-aware code recom-
mender that recommends exception handling code examples
against the code under development (i.e., context code) in
the IDE. We consider three aspects–structure, content and
handler quality of the candidate code examples for relevance
ranking. Experiments with 65 exceptions (and their context
code) and 4,400 code examples as well as comparisons with
four existing approaches show that our approach is highly
promising. While our experiments show that the general-
purpose code recommendation approaches are not satisfacto-
rily applicable for the recommendation of exception handling
code, in this paper, our technical contribution lies in proposing
a graph-based approach for structural relevance estimation,
introducing handler quality dimension in relevance ranking,
and developing an Eclipse plugin. In future, we plan to conduct
a user study with prospective participants.

REFERENCES
[1] Cosine Similarity. URL http://en.wikipedia.org/wiki/Cosine_similarity.
[2] GitHub Code Search. URL http://developer.github.com/v3/search/.
[3] Graph Matching. URL http://en.wikipedia.org/wiki/Matching_(graph_theory).
[4] Exception Handling Principles. URL http://howtodoinjava.com/2013/04/04/

java-exception-handling-best-practices.
[5] Best Practices for Exception Handling. URL https://www.ibm.com/developerworks/

library/j-ejbexcept.
[6] Javaparser-Java 1.5 Parser and AST. URL http://code.google.com/p/javaparser.
[7] Logistic Regression. URL http://en.wikipedia.org/wiki/Logistic_regression.
[8] Pastebin. URL http://pastebin.com.
[9] SurfExample Portal. URL http://www.usask.ca/~mor543/surfexample.

[10] Readability Library. URL http://www.arrestedcomputing.com/readability.
[11] Weka. URL http://www.cs.waikato.ac.nz/ml/weka/.
[12] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An Internet-Scale Software

Repository. In Proc. SUITE, pages 1–4, 2009.
[13] E. A. Barbosa, A. Garcia, and M. Mezini. Heuristic Strategies for Recommendation

of Exception Handling Code. In Proc. SBES, pages 171–180, 2012.
[14] R. P. L. Buse and W. R. Weimer. Learning a Metric for Code Readability. TSE,

36(4):546–558, 2010.
[15] B. Cabral and P. Marques. Exception Handling: A Field Study in Java and .NET.

In Proc. ECOOP, pages 151–175, 2007.
[16] B. M. Chang, J. W. Jo, K. Yi, and K. M. Choe. Interprocedural Exception Analysis

for Java. In Proc. SAC, pages 620–625, 2001.
[17] A. F. Garcia, C. M. F. Rubira, A. Romanovsky, and J. Xu. A Comparative Study

of Exception Handling Mechanisms for Building Dependable Object-Oriented
Software. JSS, 59(2):197–222, 2001.

[18] J. B. Goodenough. Exception Handling: Issues and a Proposed Notation. Commun.
ACM, 18(12):683–696, 1975.

[19] R. Holmes and G. C. Murphy. Using Structural Context to Recommend Source
Code Examples. In Proc. ICSE, pages 117–125, 2005.

[20] B. T. S. Kumar and J. N. Prakash. Precision and Relative Recall of Search Engines:
A Comparative Study of Google and Yahoo. J. Lib. and Info. Mgmt., 38(1):124–
137, 2009.

[21] C. Le Goues and W. Weimer. Measuring Code Quality to Improve Specification
Mining. TSE, 38(1):175–190, 2012.

[22] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
Graph-based Mining of Multiple Object Usage Patterns. In Proc. ESEC/FSE, pages
383–392, 2009.

[23] M. M. Rahman, S. Yeasmin, and C. K. Roy. Towards a Context-Aware IDE-
Based Meta Search Engine for Recommendation about Programming Errors and
Exceptions. In Proc. CSMR-WCRE, pages 194–203, 2014.

[24] M. P. Robillard and G. C. Murphy. Static Analysis to Support the Evolution of
Exception Structure in Object-Oriented Systems. TOSEM, 12(2):191–221, 2003.

[25] C. K. Roy and J. R. Cordy. NICAD: Accurate Detection of Near-Miss Intentional
Clones Using Flexible Pretty-Printing and Code Normalization. In Proc. ICPC,
pages 172–181, 2008.

[26] H. Shah, C. Görg, and M. J. Harrold. Visualization of Exception Handling
Constructs to Support Program Understanding. In Proc. SoftVis, pages 19–28,
2008.

[27] W. Takuya and H. Masuhara. A Spontaneous Code Recommendation Tool Based
on Associative Search. In Proc. SUITE, pages 17–20, 2011.

[28] T. Usmani, D. Pant, and A. K. Bhatt. A Comparative Study of Google and Bing
Search Engines in Context of Precision and Relative Recall Parameter. J. CSE, 4
(1):21–34, 2012.

