
Prediction and Ranking of Co-change Candidates for
Clones

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Software Research Laboratory, University of Saskatchewan, Canada

{mshankar.mondal, chanchal.roy, kevin.schneider} @usask.ca

ABSTRACT
Code clones are identical or similar code fragments scattered
in a code-base. A group of code fragments that are similar to
one another form a clone group. Clones in a particular group
often need to be changed together (i.e., co-changed) consis-
tently. However, all clones in a group might not require con-
sistent changes, because some clone fragments might evolve
independently. Thus, while changing a particular clone frag-
ment, it is important for a programmer to know which other
clone fragments in the same group should be consistently co-
changed with that particular clone fragment.

In this research work, we empirically investigate whether
we can automatically predict and rank these other clone
fragments (i.e., the co-change candidates) from a clone group
while making changes to a particular clone fragment in this
group. For prediction and ranking we automatically retrieve
and infer evolutionary coupling among clones by mining the
past clone evolution history. Our experimental result on six
subject systems written in two different programming lan-
guages (C, and Java) considering both exact and near-miss
clones implies that we can automatically predict and rank
co-change candidates for clones by analyzing evolutionary
coupling. Our ranking mechanism can help programmers
pinpoint the likely co-change candidates while changing a
particular clone fragment and thus, can help us to better
manage software clones.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Measurement and Experimentation

Keywords
Evolutionary Coupling, Code Clones, Co-change Candidates,
Co-change Frequency, Co-change Recency, Ranking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 - June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

1. INTRODUCTION
Code cloning is a common phenomenon during software

development and maintenance. Cloning refers to the process
of copying a code fragment from one place of a code-base and
pasting it to one or more other places with or without mod-
ifications. The original code fragment and the pasted code
fragments become clones of one another. A group of code
fragments that are exactly or nearly similar to one another
form a clone class or a clone group.

Motivation. Code cloning is a matter of great impor-
tance from the maintenance perspective. A great many
studies [2,3,9,10,12–17,21] have already been done focusing
on the impacts of code clones in software development and
maintenance. While a number of studies [2,10,12,14,15] in-
dicate some positive effects of cloning during development,
there are strong empirical evidences [3,16,17,21] of the nega-
tive impacts (such as hidden bug propagation, unintentional
inconsistent changes, late propagation, high instability) of
clones on software maintenance. The negative impacts in-
dicate the necessity of proper management of code clones
for better software maintenance. Clone refactoring is one
possible way of managing clones, however, refactoring of all
clones in a software system is impractical [13]. There can be
situations where refactoring of clones in a particular class is
impossible but the clones need to be updated together (i.e.,
co-changed) consistently [5]. To address this issue, studies
have focused on automatic tracking of clone fragments in
the clone classes. The idea is that while changing a particu-
lar clone fragment in a particular class, a developer will be
notified about all other clone fragments in that clone class
so that he/she can look at these other clone fragments to
decide whether the changes need to be propagated to these
fragments too.

However, all clone fragments in a clone class might not
need to be updated consistently because clone fragments
might evolve independently. Thus, it is important to have
a prior knowledge about which other clone fragments in a
clone class need to be consistently co-changed while chang-
ing a particular clone fragment in that class. Without such
prior knowledge a developer can be overwhelmed while deal-
ing with a clone class with a large number of clone frag-
ments (such as 76 clones in a class of our candidate system
jEdit) and might need to spend a significant amount of time
and effort in understanding and determining which other
clone fragments in the clone class need to be consistently
co-changed. Focusing on this issue we propose to automati-
cally rank the other clone fragments in a clone class accord-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597104

32

Figure 1: Evolution history of four clone fragments
from the same clone class

ing to their probability of being co-changed by mining and
inferring from their previous evolution history.

Importance of our study with respect to the exist-
ing studies. There is no existing study on such a ranking
of the possible co-change candidates for clones. There is an
existing tool called CloneTracker [6] that presents the other
clones in a clone class while a programmer changes a par-
ticular clone fragment in that class. However, this tool does
not support ranking the clone fragments by their need to
co-change consistently. There are also several other clone
tracking tools [11,18,29]. However, none of these tools sup-
ports ranking of co-change candidates for clones. There is
no previous study on the possibility of ranking the co-change
candidates for clones to assist programmers in dealing with
consistent updates of clone fragments. Thus, we believe that
our study in this paper is unique and important.

The underlying idea of ranking. Our idea of ranking
on the basis of the past evolution history is illustrated in Fig.
1. We can see the evolution history of four clone fragments
CF1, CF2, CF3, and CF4 in a particular clone class CC
through ten commit operations (C1 to C10). The clone
fragments CF1 and CF3 changed together (i.e., co-changed)
most times. In other words, these two clone fragments have
a high tendency of changing together. Thus, it is highly
probable that these two clone fragments have co-changed
consistently [20]. Also, it is likely that a future change in any
one of these two fragments will accompany a corresponding
change in the other one. CF2 has rarely co-changed with
CF1 and CF3. CF4 has never co-changed with any other
fragments in its class. In this case, it is likely that CF4 has
a tendency of experiencing independent evolution. After a
certain period of evolution CF4 might not be considered as
a clone in the clone class CC.

Given this evolution history, if a developer makes a change
to the clone fragment CF1 at a later time, he/she should at
first look at CF3 to check whether CF3 needs a correspond-
ing change, because CF3 has co-changed with CF1 most fre-
quently. CF2 has a comparatively lower probability (com-
pared to CF3) of getting a corresponding change, because
CF2 has co-changed with CF1 less frequently. Finally, CF4
has the lowest probability. Thus, the co-change candidates
of CF1 can be ordered as: CF3, CF2, CF4 according to
their tendency of getting co-changed with CF1. In this way,
as a software system evolves, we can store the past co-change
history of the clone fragments and infer this history to make

decisions regarding co-change candidates in the future. In
this example we present a ranking on the basis of co-change
frequency of CF with the other clone fragments. However,
we also investigate ranking on the basis of co-change recency
(i.e., how lately the other clone fragments co-changed with
CF). We describe this in Section 4.2.

The co-changing tendency of the related program entities
(such as files, classes, methods) is known as evolutionary
coupling in the literature [8]. We apply the concept of evo-
lutionary coupling in ranking the co-change candidates for
clones. Evolutionary coupling is discussed in Section 2.

Findings. We performed our investigation on six sub-
ject systems written in two different programming languages
(Java, and C) and answer four important research questions
listed in Table 1. According to our observation, ranking of
co-change candidates for clones is very important because a
clone class may contain a large number of clone fragments.
The sizes of the largest clone classes of our subject systems
Ctags, QMailAdmin, jEdit, Freecol, Carol, and Jabref are
respectively 22, 9, 57, 76, 40, and 65. Also, considering all
the systems overall 4% of the clone classes contain more than
10 clone fragments. Thus, we believe that automatic rank-
ing of co-change candidates for clones can help programmers
identify which other clone fragments from a clone class actu-
ally need to be co-changed while changing a particular clone
in that class with significantly less effort and time. Even
if a clone class contains only a few clones (such as three or
four), our ranking mechanism can still help programmers
by pin-pointing the most likely co-change candidates for a
particular clone fragment being changed. According to our
experimental results and analysis we can state that:

While changing a particular clone fragment CF from a
particular clone class, we can automatically rank its possi-
ble co-change candidates (i.e., the other clone fragments in
the same clone class) according to its co-change tendency
with them. For ranking we automatically retrieve and infer
the evolutionary coupling of CF with its possible co-change
candidates from the previous evolution history. We propose
a composite ranking mechanism for ranking the possible co-
change candidates of CF. Our empirical study shows that our
proposed ranking mechanism can assign higher ranks to the
actual co-change candidates (i.e., the other clone fragments
from the same clone class that actually co-changed with CF)
so that a developer attempting to change CF can identify the
more likely co-change candidates with less effort and time.
The ranking mechanism is our primary contribution. The
state of the art techniques and tools [6, 11, 18, 29] do not
rank the possible co-change candidates for clones. We be-
lieve that our proposed ranking mechanism can complement
existing clone tracking tools and techniques.

The rest of the paper is organized as follows. Section 2 de-
scribes the terminology, Section 3 discusses the experimen-
tal steps, we present and analyze our experimental results
in Section 4, Section 5 mentions some possible threats to
validity, Section 6 elaborates on the related work, and we
conclude our paper by mentioning future work in Section 7.

2. TERMINOLOGY
Types of clones. We conduct our experiment consider-

ing exact (Type 1) and near-miss clones (Type 2 and Type
3 clones). As is defined in the literature [23], if two or
more clone fragments in a particular clone class are exactly
the same disregarding the comments and indentations, these

33

Table 1: Research Questions

SL Research Question

1 Can we predict co-change candidates for a particular clone fragment by using evolutionary coupling?

2 Can we achieve better ranking of co-change candidates that exhibited evolutionary coupling by considering co-
change recency instead of co-change frequency?

3 What are the characteristics of the clone fragments that exhibit evolutionary coupling? Which characteristic can
help us in better ranking of co-change candidates that have not yet exhibited evolutionary coupling?

4 How can we rank both types of co-change candidates - (1) the candidates that exhibited evolutionary coupling,
and (2) the candidates that did not exhibit evolutionary coupling for a particular clone fragment?

Table 2: Subject Systems

Sys. Lang. Domains LOC Revs

Ctags C Code Def. Generator 33,270 774

QMail
Admin

C Mail Management 4,054 317

jEdit Java Text Editor 191,804 4000

Freecol Java Game 91,626 1950

Carol Java Game 25,091 1700

Jabref Java Reference Manager 45,515 1545

Revs = Revisions. Sys = Systems

clone fragments are called exact clones (i.e., Type 1 clones)
of one another. Type 2 clones are syntactically similar code
fragments. In general, Type 2 clones are created from Type 1
clones because of renaming variables or changing data types.
Type 3 clones are mainly created because of additions, dele-
tions, or modifications of lines in Type 1 or Type 2 clones.

Evolutionary coupling. During the evolution of a soft-
ware system if two or more program entities (such as files,
classes, methods) appear to change together (i.e., co-change)
frequently (i.e., in many commits) then we say that these
entities exhibit evolutionary coupling. It is likely that these
entities are related and a future change to any one of these
entities will accompany corresponding changes to the other
entities. By mining and analyzing evolutionary coupling we
can discover the underlying relationships among program
entities in a software system [8, 31]. Evolutionary coupling
helps us predict the co-change candidates (i.e., the other en-
tities that might also need to be changed) while changing a
particular entity [31]. In this research work, we apply the
concept of evolutionary coupling to discover the underly-
ing relationships among clones and to predict the co-change
candidates while changing a particular clone fragment in a
particular clone class.

In order to mine evolutionary coupling among clone frag-
ments we determine all possible pairs of co-changed clone
fragments by examining the software evolution history.

Pair of Co-changed Clone Fragments (PCCF). A
pair of co-changed clone fragments (i.e., a PCCF) consists
of two clone fragments CF1 and CF2 from the same clone
class such that they changed together (i.e., co-changed) in
at least one commit operation during system evolution.

During the evolution of a software system if n >= 2 clone
fragments from a particular clone class changed together (co-
changed) in a particular commit, we determine all possible
pairs from these n clone fragments. Each of these pairs is a
PCCF. For every PCCF that we obtain by mining the whole
evolution history, we determine the number of times (i.e., the
number of commits) the constituent clones co-changed. We
call this number the co-change frequency of a PCCF.

3. EXPERIMENTAL STEPS
In this experiment, we consider clones residing in meth-

ods. Thus, both fully cloned and partially cloned methods
have been investigated. For a particular subject system, we
collect all of its revisions (mentioned in Table 2), then ex-
tract the methods in each revision using CTAGS, and then
determine method genealogies following the technique pro-
posed by Lozano and Wermelinger [16]. We detect clones
in each revision using NiCad [4] and then map the clones
to the already detected methods of the corresponding re-
visions. As method genealogies are already detected, af-
ter clone mapping we can easily track the evolution of each
clone fragment residing inside a method. Finally, we detect
changes between every two consecutive revisions and map
these changes to the methods as well as clones located in-
side the methods. For the details of these steps we refer the
readers to our earlier work [19]. We detected both exact
and near-miss block clones using the NiCad clone detector
considering a dissimilarity threshold of 30% with blind re-
naming. This setting of NiCad is considered standard for
detecting near-miss clones [24].

After the preliminary steps we determine all possible pairs
of co-changed clone fragments (PCCF s) by examining all the
commit operations. For each of the PCCF s we determine
its co-change frequency. We rank the possible co-change
candidates of a particular clone fragment on the basis of this
co-change frequency. However, we also rank the possible co-
change candidates on the basis of co-change recency (i.e., on
the basis of how lately a co-change occurred). We describe
and compare these two ranking mechanisms in Section 4.2.

4. EXPERIMENTAL RESULTS AND ANAL-
YSIS

We perform our investigation on each of the subject sys-
tems listed in Table 2. We determine all pairs of co-changed
clone fragments (PCCF s) from these candidate systems. For
each of the systems we determine four measures - (1) total
number of clones created during system evolution, (2) to-
tal number of clones that received changes (at least once)
during evolution, (3) total number of clones that exhibited
evolutionary coupling, and (4) total number of PCCF s and
show these in Table 3. If a clone fragment is included in at
least one PCCF, we consider that it has exhibited evolution-
ary coupling, because it has co-changed with at least one of
the other clone fragments in its clone class during evolution.

We also determine the percentage of modified clones (i.e.,
the clones that received changes at least once during evolu-
tion) that exhibited evolutionary coupling. This percentage
for each subject system is shown in Fig. 2. The figure
shows that in case of each of the subject systems, a consid-

34

Table 3: Statistics Regarding Evolutionary Coupling
among Clones

Systems NC NCRC NCEC NPCCF

Ctags 694 412 89 79

QMailAdmin 137 128 34 347

jEdit 12329 1356 326 324

Freecol 2265 1659 489 577

Carol 3040 1365 616 2041

Jabref 3708 1552 509 684

NC = No. of Clones created during system evolution.

NCRC = No. of Clones that Received Changes.

NCEC = No. of Clones that showed Evolutionary Coupling.

NPCCF = No. of the pairs of co-changed clone fragments.

Figure 2: Proportion of modified clones (i.e., the
clones that received changes at least once during
evolution) that exhibited evolutionary coupling

erable percentage of modified clones exhibited evolutionary
coupling. The overall percentage considering all subject sys-
tems is 31.85%. Thus, it seems that overall 68.15% of the
modified clones (i.e., clone fragments that received changes)
evolved independently. However, according to our observa-
tion, overall 70.82% of the total clone fragments of a subject
system never changed during evolution.

We automatically retrieve evolutionary coupling from each
of the candidate subject systems. The XML files containing
the pairs of co-changed clone fragments are available on-
line1. Our primary goal in this research work is to investi-
gate whether we can predict and rank co-change candidates
for clones using evolutionary coupling. In the following sub-
sections, we answer four research questions regarding this.

4.1 Answering Research Question 1
RQ 1: Can we predict co-change candidates for a partic-

ular clone fragment using evolutionary coupling?
Finding the answer to this research question is the central

objective of our research work. Here, we should note that by
the term ‘co-change candidates’ for a particular clone frag-
ment we mean the other clone fragments in the same clone
class containing the particular clone fragment. However,
non-clone fragments can also co-change with a clone frag-
ment. We do not investigate this in this research work. We
mainly focus on the efficient tracking as well as proper man-
agement of code clones. We target to minimize the draw-
backs of the existing clone tracking techniques and tools.
We plan to investigate regarding the non-clone co-change

1XML Files: https://homepage.usask.ca/~mam815/
ongoingresearch.php

Figure 3: Prediction of co-change candidates using
evolutionary coupling

fragments as future work. In the following paragraphs we
describe our investigation methodology for answering RQ 1.

Methodology. For answering this research question we
automatically analyze each of the commits of a subject sys-
tem. Let us consider a particular clone class CC in a partic-
ular revision R of a subject system. A commit operation C
was applied on revision R and more than one clone fragments
of the clone class CC co-changed (i.e., changed together) in
this commit. We consider a particular clone fragment CF
from CC such that CF changed in commit C. So, we know
which other clone fragments from clone class CC actually
co-changed with CF in commit C. However, we want to
determine whether and to what extent we can predict these
true co-change candidates for CF (in commit C) by analyz-
ing the evolutionary coupling exhibited by CF during the
previous commits 1 to C − 1.

Our prediction mechanism is presented in Fig. 3. In this
figure, we see a clone class CC in revision R. The clone class
CC contains eight clone fragments CF to CF7. A commit
operation C applied on revision R modified five clone frag-
ments - CF, CF1, CF4, CF6, and CF7 from this class. The
corresponding clone class in revision R+1 (i.e., after the ap-
plication of the commit operation C) is also shown in the fig-
ure. We consider the clone fragment CF. From the figure we
can determine the actual co-change candidates (CF1, CF4,
CF6, and CF7) for CF. We want to determine the extent we
can correctly predict these actual co-change candidates for
CF by analyzing its evolutionary coupling during the past
commits (i.e., the commits from 1 to C−1). For the purpose
of describing we define the following four sets considering the
clone fragment CF and the commit operation C.

Possible Co-change Candidates. All the clone frag-
ments of the clone class CC excluding CF are termed as the

35

set of possible co-change candidates of CF. Each of these
clone fragments has a possibility of co-changing with CF.
However, all of these possible co-change candidates might
not co-change with CF in a particular commit.

True Co-change Candidates. All those clone fragments
(from the clone class CC) that actually co-changed with CF
in commit operation C are termed as the set of true co-
change candidates of CF in commit C.

Predicted Co-change Candidates. All those clone frag-
ments (in the clone class CC) that we can predict as the
co-change candidates for CF by analyzing the evolutionary
coupling of CF in previous commits (from commit 1 to C−1)
are termed as the set of predicted co-change candidates.

Correctly Predicted Co-change Candidates. All those
clone fragments from the set of predicted co-change candi-
dates that actually co-changed with CF in commit C are
termed as the set of correctly predicted co-change candidates.

Fig. 3 shows these four sets for clone fragment CF consid-
ering commit C. We determine the set of predicted co-change
candidates for CF in the following way. We at first retrieve
all the pairs of co-changed clone fragments (PCCF s) con-
sidering all the commits from 1 to C − 1. We select those
PCCF s where the clone fragment CF appears. Fig. 3 shows
five such PCCF s. From these PCCF s we determine all other
clone fragments beside CF. These clone fragments (CF2,
CF4, CF5, CF6 and CF7 as shown in Fig. 3) are the set of
predicted co-change candidates for CF, because we get these
by analyzing the evolutionary coupling of CF.

Finally, we determine the set of correctly predicted co-
change candidates for CF in commit C. Fig. 3 shows three
correctly predicted co-change candidates - CF4, CF6, CF7.
We determine the following six measures for CF considering
the commit operation C.

(1) The number of possible co-change candidates for CF,
(2) The number of possible co-change candidates that ex-

hibited evolutionary coupling with CF in the previous com-
mits 1 to C − 1. This is the number of predicted co-change
candidates for CF in commit C

(3) The number of possible co-change candidates that did
not exhibit evolutionary coupling with CF in the past com-
mits. We call these co-change candidates the non-predicted
co-change candidates for CF in commit C, because we could
not predict them by analyzing evolutionary coupling.

(4) The number of predicted co-change candidates that
actually co-changed with CF in commit C. This is the num-
ber of correctly predicted co-change candidates for CF.

(5) The number of non-predicted co-change candidates
that co-changed with CF in commit C.

(6) The number of true co-change candidates (i.e., the
possible co-change candidates that actually co-changed with
CF) for CF in commit C.

We examine all the commit operations where more than
one clone fragments from the same clone class changed to-
gether (i.e., co-changed). For each of the clone fragments
(CF) that changed in such a commit, we determine the
above six measures. Considering all the commit operations
of a particular subject system we determine the summation
for each of the respective measures. Then, we calculate the
following percentages using these measures.

(1) The percentage of possible co-change candidates that
were selected as the predicted co-change candidates. In
other words, the percentage of possible co-change candidates
that exhibited evolutionary coupling with CF.

Figure 4: Comparison between the proportions of
predicted co-change candidates and non-predicted
co-change candidates

Figure 5: Comparison between the percentage of
predicted co-change candidates that were true co-
change candidates (i.e., the precision) and the per-
centage of non-predicted co-change candidates that
were true co-change candidates

(2) The percentage of possible co-change candidates that
were selected as the non-predicted co-change candidates. In
other words, the percentage of possible co-change candidates
that did not exhibit evolutionary coupling with CF.

(3) The percentage of predicted co-change candidates that
are true co-change candidates. We also call this the precision
in predicting true co-change candidates by analyzing evolu-
tionary coupling.

(4) The percentage of non-predicted co-change candidates
that are true co-change candidates.

(5) The percentage of true co-change candidates that we
could predict (i.e., by analyzing evolutionary coupling). We
also call this percentage the recall in predicting true co-
change candidates by analyzing evolutionary coupling.

Fig. 4 compares the first two percentages - (1) the per-
centage of possible co-change candidates that exhibited evo-
lutionary coupling, and (2) the percentage of possible co-
change candidates that did not exhibit evolutionary cou-
pling, for each of the subject systems. We see that the
proportion of possible co-change candidates that exhibited
evolutionary coupling is much lower than its counter part
for most of the subject systems. The overall values of these
percentages are, 26% and 74% respectively.

However, from the comparison scenario in Fig. 5 (com-
paring the third and fourth percentages) we see that the
proportion of predicted co-change candidates that were true
co-change candidates (i.e., that were correctly predicted) is
much higher compared to the proportion of non-predicted
co-change candidates that were selected as true co-change
candidates for most of the subject systems. Thus, the pre-
dicted co-change candidates have a much higher probability
of being true co-change candidates. In other words, the pos-

36

Figure 6: The proportion of true co-change candi-
dates that we could predict by analyzing evolution-
ary coupling (i.e., the recall)

sible co-change candidates that exhibited evolutionary cou-
pling have a much higher probability of being true co-change
candidates compared to the possible co-change candidates
that did not exhibit evolutionary coupling.

Finally, Fig. 6 demonstrates that for each of the subject
systems a considerable proportion of true co-change candi-
dates can be predicted by analyzing evolutionary coupling.
The overall proportion considering all subject systems is
43.17%. As we mentioned before, this percentage is the
recall in predicting true co-change candidates by analyzing
evolutionary coupling. We also determine the overall preci-
sion (i.e., the third percentage) in predicting true co-change
candidates considering all systems. This overall precision is
85.18%.

Answer to RQ 1. From our analysis and discussion we
can say that evolutionary coupling can help us predict true
co-change candidates for a particular clone fragment with
considerable accuracy in terms of precision (= 85.18%) and
recall (= 43.17%).

4.2 Answering Research Question 2
RQ 2: Can we achieve better ranking of co-change candi-

dates by considering co-change recency instead of co-change
frequency?

From the first research question we understand that we
can predict a considerable amount of true co-change candi-
dates for clones by analyzing evolution coupling. For answer-
ing this research question we rank the predicted co-change
candidates (i.e., predicted by analyzing evolutionary cou-
pling) in the following two ways.

(1) On the basis of co-change frequency
(2) On the basis of co-change recency (i.e., how lately a

co-change occurred)
Then, we determine which ranking system generally gives

better ranks for the correctly predicted co-change candi-
dates. In the following paragraphs we at first describe the
ranking mechanisms and then discuss their comparison.

Description of the ranking mechanisms. We at first
assume a particular clone class CC in a particular revision R
of a particular candidate system. More than one clone frag-
ments from this class co-changed in the commit operation C
applied on revision R. We consider a particular clone frag-
ment CF from CC that changed in this commit operation
C. For the clone fragment CF, we determine the following
two sets of co-change candidates considering commit opera-
tion C following the methodology described in the previous
subsection.

Figure 7: Ranking of predicted co-change candidates
by co-change frequency and co-change recency

(1) True co-change candidates. The clone fragments
from clone class CC that actually co-changed with CF

(2) Predicted co-change candidates. The clones in
clone class CC that exhibited evolutionary coupling with
CF

We rank these predicted co-change candidates in two ways
mentioned above. The ranking procedures are as follows.

Ranking predicted co-change candidates on the ba-
sis of co-change frequency. We know that each of the
predicted co-change candidates has previously (in the com-
mits preceding the commit C) co-changed with the clone
fragment CF. We assume higher ranks for those predicted
co-change candidates that previously co-changed with CF
more frequently. We sort these predicted co-change candi-
dates in decreasing order of their co-change counts with CF .

Ranking predicted co-change candidates on the ba-
sis of co-change recency. In this case the predicted co-
change candidates that co-changed with CF more recently
are given higher ranks. For each of the predicted co-change
candidates, we determine the last commit operation where
it co-changed with CF. We sort the predicted co-change can-
didates in decreasing order of their last commits.

An example describing the two ways of ranking. Fig.
7 shows an example of the two ways of ranking of the pre-
dicted co-change candidates for a clone fragment CF. The
sets - (1) true co-change candidates, (2) predicted co-change
candidates, and (3) correctly predicted co-change candi-
dates for CF are taken from Fig. 3. In this figure (i.e., Fig.
7) we show a possible co-change history of CF with each of
the predicted co-change candidates. The co-change history
consists of two pieces of information - (1) The number of
times CF co-changed with a predicted co-change candidate,
and (2) The last commit operation where CF co-changed
with a predicted co-change candidate.

These are the indicators of co-change frequency and co-
change recency respectively. We automatically collect this

37

information from the co-change history of CF. From the fig-
ure (Fig. 7) we see that CF co-changed with CF7 the high-
est number of times (i.e., 6 as shown in the figure). How-
ever, among all the predicted co-change candidates, CF4 co-
changed with CF most recently. This co-change occurred in
commit 245 as shown in the figure. Rankings (i.e., orderings)
of the predicted co-change candidates in two ways (i.e., on
the basis of co-change frequency and co-change recency) are
also shown in Fig. 7. We see that while CF7 is assigned
the highest rank (i.e., its serial number is 1) on the basis
of co-change frequency, CF4 is assigned the highest rank on
the basis of co-change recency. In both cases, CF5 gets the
lowest rank.

Comparison of the ranking mechanisms. We see
that each of the two ranking systems described above is
based on evolutionary coupling of the clone fragments. How-
ever, we want to determine which one is better. The ranking
system that provides better ranks for the correctly predicted
co-change candidates should be considered as the superior
one.

For each clone fragment CF changed in a commit oper-
ation C we determine its predicted co-changed candidates
and rank these in two ways to get two different rankings
(or orderings) of the predicted co-change candidates. Then
we determine the correctly predicted co-change candidates
and locate them in each of the rankings of the predicted co-
change candidates. We determine the serial numbers (i.e.,
position values) of the correctly predicted co-change candi-
dates from each ranking. We get two sets of serial numbers
from the two ranking systems. We determine the summation
of the serial numbers obtained from each ranking system. A
lower summation indicates better ranking.

In Fig. 7, the widest table (i.e., the bottom one) shows the
comparison of the ranking systems considering the predicted
co-change candidates for the clone fragment CF. There are
five predicted co-change candidates for CF. According to
the example, three (CF4, CF6, CF7) of these predicted
co-change candidates have actually co-changed with CF in
commit operation C. We show the serial numbers of the pre-
dicted co-change candidates in each of the rankings. We see
that from the ranking on the basis of co-change frequency,
we get the serial numbers - 2, 3, and 1 for the correctly
predicted co-change candidates CF4, CF6, and CF7 respec-
tively. The serial numbers obtained from the other ranking
system are 1, 2, and 4 respectively. The summations (6 con-
sidering co-change frequency, and 7 considering co-change
recency) of the serial numbers are also shown in the figure.
According to our explanation, the ranking system on the
basis of co-change frequency provides better ranks to the
correctly predicted co-change candidates.

For each of the clone fragments changed in each of the
commits we determine which ranking system provides bet-
ter ranks to the correctly predicted co-change candidates.
We determine two percentages - (1) The percentage of cases
where the ranking on the basis of co-change frequency gives
us better ranks for the correctly predicted co-change candi-
dates, and (2) The percentage of cases where the ranking
on the basis of co-change recency provides us better ranks
for the correctly predicted co-change candidates

We show these percentages in Fig. 8. In case of each of
the subject systems, for most of the cases the two ranking
systems provide the same ranks to the correctly predicted
co-change candidates. However, if we consider the remain-

Figure 8: Comparison of the two ranking systems
(ranking using co-change frequency and co-change
recency)

ing cases we see (c.f., Fig. 8) that for each of the subject
systems, co-change recency provides better ranks to the cor-
rectly predicted co-change candidates compared to co-change
frequency.

Answer to RQ 2. From our discussion we decide that we
can achieve better ranking of co-change candidates by con-
sidering co-change recency instead of co-change frequency.

4.3 Answering Research Question 3
RQ 3: What are the characteristics of the clone fragments

that exhibit evolutionary coupling? Which characteristic
can help us in better ranking of the co-change candidates
that have not yet exhibited evolutionary coupling?

Answering this research question is important. From our
discussion and analysis while answering RQ 1 we under-
stand that the percentage of predicted co-change candidates
for a particular clone fragment CF (i.e., the percentage of
possible co-change candidates that exhibit evolutionary cou-
pling with CF) is always smaller compared to the percentage
of non-predicted co-change candidates (i.e., the possible co-
change candidates that have not yet exhibited evolutionary
coupling with CF). We can rank the predicted co-change
candidates. However, we are also interested in ranking the
non-predicted co-change candidates. For this purpose we
analyze the characteristics of the clone fragments that ex-
hibit evolutionary coupling. Let us assume that we have
discovered a dominant characteristic of the clone fragments
that exhibit evolutionary coupling. If we see that some of the
non-predicted co-change candidates also possess this charac-
teristic, we can assume better ranks for these non-predicted
co-change candidates.

Methodology. For answering this research question, we
analyze the following two characteristics of the clone frag-
ments that exhibit evolutionary coupling.

(1) Regarding clone type. We analyze whether the
clone fragments exhibiting evolutionary coupling are method
clones or block clones.

(2) Regarding the proximity of the clone fragments.
We analyze whether two clone fragments exhibiting evolu-
tionary coupling generally remain in close proximity to each
other or not.

Considering each of the subject systems we determine all
the pairs of co-changed clone fragments (PCCF s). For each
PCCF we determine the types (method clone or block clone)
of the two participating clone fragments. We also determine
whether the two clone fragments remain in the same file or
in different files. For each of the subject systems we de-
termine the following two percentages - (1) The percentage
of PCCF s (i.e., the pairs of co-changed clone fragments)
where the participating clone fragments remain in the same

38

file. (2) The percentage of PCCF s where both of the par-
ticipating clone fragments are method clones.

We present these two percentages in Fig. 9. From the
black bars we see that for most of the subject systems (ex-
cept QMailAdmin), the participating clone fragments in most
of the PCCF s (i.e., above 55% of the PCCF s) remain in
the same file. We also observe (from the white bars) that
in case of four subject systems (Carol, Freecol, jEdit, and
Ctags), both of the participating clone fragments in most
of the PCCF s are method clones (i.e., clones are full meth-
ods). However, if we compare these two characteristics, we
see that file proximity is the more dominant one for most of
the subject systems (except Carol).

We rank the non-predicted co-change candidates (for a
particular clone fragment CF in a particular commit C) in
the following two ways.

(1) Considering clone file proximity and
(2) Considering clone type (method clones or block clones)
In case of ranking considering clone file proximity, we pro-

vide higher (i.e., better) ranks to those non-predicted co-
change candidates that are nearer (i.e., in closer proximity)
to the clone fragment CF. The clone file proximity between
CF and a particular non-predicted co-change candidate is
determined by the distance between the corresponding con-
tainer files in the file system structure as was done by Alali
et. al [1]. In case of ranking considering clone type, we
provide higher ranks to those non-predicted co-change can-
didates that are method clones. We compared these two
ranking systems following the same way described while an-
swering RQ 2. In this case, from the ranking (of the non-
predicted co-change candidates) obtained from each ranking
system, we determine the summation of the position values
(i.e., serial numbers) of the non-predicted true co-change
candidates. The ranking system that provides the lower
summation (i.e., the higher rank) is the better one.

Considering each of the clone fragments changed in each
of the commits (where more than one clone fragments from
the same clone class co-changed) of a particular subject sys-
tem we determine and rank the non-predicted co-change
candidates using the above two ranking systems and de-
termine which ranking system provides better ranks to the
non-predicted true co-change candidates. We determine two
percentages - (1) The percentage of cases where the ranking
system on the basis of clone file proximity provides better
ranks, and (2) The percentage of cases where the ranking
system on the basis of clone type provides better ranks

These two percentages for each of the subject systems
is shown in Fig. 10. We see that in case of each of the
subject systems, the percentage of cases where ranking by
clone file proximity provides better ranks is much higher than
the percentage of cases where ranking by clone type provides
better ranks to the non-predicted true co-change candidates.
However, we observed that for 56% to 87% cases (considering
all the subject systems) the two ranking systems provided
the same ranks. Finally, we consider the ranking system
on the basis of clone file proximity to be the better one for
ranking the non-predicted co-change candidates.

Answer to RQ 3. Generally, the clone fragments that
exhibit evolutionary coupling - (1) remain in close proximity
(i.e., in the same file) to each other, and (2) are method
clones. According to our analysis, consideration of clone file
proximity can help us in better ranking of the non-predicted
co-change candidates for a particular clone fragment.

Figure 9: Comparison of the characteristics of the
clone fragments that exhibit evolutionary coupling

Figure 10: Comparison of the two ranking systems
for the non-predicted co-change candidates

4.4 Answering Research Question 4
RQ 4: How can we rank both type of co-change candi-

dates - (1) the candidates that exhibited evolutionary cou-
pling, and (2) the candidates that did not exhibit evolution-
ary coupling for a particular clone fragment?

Answering this research question is important. From the
answers to the previous research questions we understand
that the possible co-change candidates for a particular clone
fragment can broadly be divided into two disjoint sets - (1)
the predicted co-change candidates (i.e., the candidates that
exhibited evolutionary coupling with the particular clone
fragment), and (2) non-predicted co-change candidates (i.e.,
the candidates that have not yet exhibited evolutionary cou-
pling with the particular clone fragment). For the first set
we decide a ranking mechanism on the basis of co-change
recency as the better one. For the second we found the
ranking mechanism on the basis of clone file proximity to
be the better one. Thus intuitively, a combination of the
two ranking mechanisms (ranking by co-change recency for
the predicted candidates and ranking by clone file proxim-
ity for the non-predicted candidates) can possibly be used
for better ranking of all co-change candidates of a particular
clone fragment. We verify this in this research question in
the following way.

Methodology. We rank all the possible co-change can-
didates for a particular clone fragment CF changed in a
particular commit C in the following two ways.

(1) Ranking of all possible co-change candidates using a
combination of the two ranking mechanisms - ranking of the
predicted candidates by co-change recency, and ranking of
the non-predicted candidates by clone file proximity

(2) Ranking of all possible co-change candidates by clone
file proximity

We compared these two ways of ranking to determine
which one can provide better ranks to all the true co-change
candidates for a particular clone fragment CF in a partic-
ular commit C. We performed our comparison in the same
way (i.e., considering all commit operations) as is described

39

Figure 11: Comparison between the combined rank-
ing (i.e, ranking predicted candidates by co-change
recency and non-predicted co-change candidates by
clone file proximity) and ranking considering only
clone file proximity

while answering RQ 2. We determine the percentage of cases
where we get better ranks for the true co-change candidates
using the combined ranking mechanism (the first way men-
tioned above) and also the percentages of cases where the
second way of ranking (ranking all candidates by clone file
proximity) provides better ranks. These percentages are
shown in Fig. 11. From Fig. 11 we see that in case of
each of the subject systems, the percentage of cases where
the combined ranking provides better ranks is much higher
compared to the percentage of cases where ranking by only
clone file proximity provides better ranks to the true co-
change candidates. Thus, we decide that the combined rank-
ing mechanism yields in better ranking of the true co-change
candidates compared to the file proximity ranking.

Answer to RQ 4. From our discussion and analysis pre-
sented above, we suggest a combined ranking (ranking of
predicted co-change candidates by co-change recency, and
ranking of non-predicted co-change candidates by clone file
proximity) of the possible co-change candidates for a partic-
ular clone fragment.

5. THREATS TO VALIDITY
We used the NiCad clone detector [4] for detecting clones.

For different settings of NiCad, the statistics that we present
in this paper might be different. Wang et. al [30] defined
this problem as the confounding configuration choice prob-
lem and conducted an empirical study to ameliorate the ef-
fects of the problem. However, the settings that we have
used for NiCad are considered standard [24] and with these
settings NiCad can detect clones with high precision and
recall [25,26].

For determining the prediction accuracy of our imple-
mented prediction system, we have used the precision and
recall measures. Shepperd and MacDonell [27] conducted a
fine grained study on the evaluation of the prediction sys-
tems. According to their observation different prediction
systems might give us conflicting results. They advised re-
searchers not to use biased accuracy measures for the pur-
pose of determining prediction accuracy. However, precision
and recall are well known and extensively used measures and
they represent the exact scenario (in term of accuracy) when
reported together. Thus, we believe that our reported find-
ings in the form of precision and recall are important.

The subject systems that we have studied in this experi-
ment are not enough to take a concrete decision regarding
the ranking of co-change candidates for clones. However, our

candidate systems are of diverse variety in terms of applica-
tion domains, sizes and revisions. Thus, our findings cannot
be attributed to a chance. Finally, we believe that our find-
ings are important and can help us in better management
of code clones.

6. RELATED WORK
A great many studies have already been done regarding

the detection, evolution [2, 13, 28], impact analysis [3, 10,
12, 14–17, 21, 22], and maintenance [7, 11, 18, 20, 29] of code
clones. Although there are some positive impacts [10, 12,
14,15] of cloning on both software development and mainte-
nance, a number of studies [3, 16, 17, 21] have shown empir-
ical evidences of some strong negative impacts of clones on
software evolution. Focusing on the negative impacts, soft-
ware researchers have emphasized on proper maintenance
of code clones through clone refactoring [20] or tracking
[6, 7, 11, 18, 29]. As clone refactoring is not always possi-
ble [13], tracking of clones becomes very important for better
software maintenance. As our research work is focused on
clone tracking, we discuss the existing clone tracking tech-
niques and studies.

The most recent study on clone tracking was conducted
by Duala-Ekoko and Robillard [7]. They introduced the con-
cept of clone region descriptor. On the basis of this concept
they proposed a technique for tracking clones in evolving
software. They implemented a tool called ’CloneTracker’ [6]
as an Eclipse plug-in for tracking clones. The tool provides
supports for two tasks - (1) change notifications and (2) si-
multaneous editing of clones. After modifying a particular
clone tracked by CloneTracker, the programmer is notified
about the other clone fragments in the same group that con-
tains the modified clone. However, ’CloneTracker’ does not
support any type of ranking of these other clone fragments.
In other words, this tool does not have any prior knowledge
about which other clone fragments have higher probability
of co-changing with the particular clone fragment. Our re-
search work in this paper focuses on ranking of these other
clone fragments so that the responsible programmer can eas-
ily pinpoint those other clone fragments that are more likely
to consistently co-change with the particular clone fragment.

Jablonski and Hou jablonski developed a tool called CReN
to track copy-paste code clones and support consistent re-
naming of identifiers. Miller and Myer [18] proposed a tech-
nique for simultaneous editing in multiple clone fragments
in the same clone class to minimize the task of repetitive
editing. They implemented their technique in a text edi-
tor called LAPIS. There is also another clone tracking tool
called Codelink developed by Toomin et. al [29]. However,
none of these existing clone trackers supports ranking of the
co-change candidates for clones.

There is an existing study conducted by Mondal et. al [20]
regarding the detection and ranking of SPCP clones (i.e.,
clones that evolve following a similarity preserving change
pattern) through analysis of evolutionary coupling. SPCP
clones are important candidates for refactoring. They ranked
these SPCP clones using evolutionary coupling to prioritize
refactoring tasks. However, as clones are not always refac-
torable, it is important to track them efficiently. Our prime
focus in this research work is to support the existing clone
trackers by providing facilities for automatic prediction and
ranking of the likely co-change candidates when we change
a particular clone fragment.

40

From our discussion above we believe that our study pre-
sented in this paper is important and unique. Our experi-
mental result has the potential to assist in better manage-
ment of code clones and thus can help us in better software
maintenance.

7. CONCLUSION
In this research work we present an in-depth investigate

on the possibility of predicting and ranking co-change can-
didates for clones through analysis of evolutionary coupling
among clone fragments. We empirically studied six sub-
ject systems written in two programming languages (Java
and C). We used the NiCad clone detector for detecting
clones. Our experimental results and analysis imply that
while changing a particular clone fragment in a particular
clone class

(1) We can predict which other clone fragments in the
same clone class will also co-change with the particular clone
fragment with considerable accuracy (precision = 85.18%,
recall = 43.17%) by analyzing the evolutionary coupling of
the particular clone fragment.

(2) We can automatically rank the possible co-change can-
didates (all other clone fragments in the same clone class) on
the basis of their evolutionary coupling with the particular
clone fragment such that the possible co-change candidates
that are more likely to co-change with the particular clone
fragment get higher ranks.

We propose a composite ranking mechanism for ranking
the possible co-change candidates of a particular clone frag-
ment. In the presence of such a ranking, the responsible pro-
grammer can easily pinpoint the likely co-change candidates
while changing a particular clone. Thus, our ranking mecha-
nism can complement existing clone tracking techniques and
tools for better management of code clones. As future re-
search work we plan to implement a clone tracking tool with
the capability of automatically ranking possible co-change
candidates when changing a particular clone fragment.

8. REFERENCES
[1] A. Alali, B. Bartman, C. D. Newman, J. I. Maletic, “A

Preliminary Investigation of Using Age and Distance
Measures in the Detection of Evolutionary Couplings”,
Proc. MSR, 2013, pp. 169 – 172.

[2] L. Aversano, L. Cerulo, and M. D. Penta, “How clones
are maintained: An empirical study”, Proc. CSMR,
2007, pp. 81-90.

[3] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in
Software Clones”, Proc. ICSM, 2011, pp. 273 – 282.

[4] J .R. Cordy and C.K. Roy, “The NiCad Clone
Detector”, Proc ICPC Tool Demo, 2011, pp. 219 – 220.

[5] Cross Cutting Concerns: http:
//en.wikipedia.org/wiki/Cross-cutting_concern

[6] E. Duala-Ekoko, and M. P. Robillard, “CloneTracker:
Tool Support for Code Clone Management”, Proc.
ICSE, 2008, pp. 843 – 846.

[7] E. Duala-Ekoko, and M. P. Robillard, “Tracking Code
Clones in Evolving Software”, Proc. ICSE, 2007, pp.
158 - 167.

[8] H. Gall, K. Hajek, and M. Jazayeri, “Detection of
logical coupling based on product release history,” Proc.
ICSM, 1998, pp. 190–199.

[9] N. Göde, Rainer Koschke, “Frequency and risks of
changes to clones.”, Proc. ICSE, 2011, pp. 311 – 320.

[10] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR,
2011, pp. 65-74.

[11] P. Jablonski, and D. Hou, “CReN: A tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the IDE.” Proc. Eclipse Technology
Exchange at OOPSLA, 2007.

[12] C. Kapser and M. W. Godfrey, ““Cloning considered
harmful” considered harmful: patterns of cloning in
software”, ESE, 13(6), 2008, pp. 645-692.

[13] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy,
“An empirical study of code clone genealogies”, Proc.
ESEC-FSE, 2005, pp. 187-196.

[14] J. Krinke, “A study of consistent and inconsistent
changes to code clones”, Proc. WCRE, 2007, pp.
170-178.

[15] J. Krinke, “Is cloned code more stable than non-cloned
code?”, Proc. SCAM, 2008, pp. 57-66.

[16] A. Lozano and M. Wermelinger, “Tracking clones’
imprint”, Proc. IWSC, 2010, pp. 65-72.

[17] A. Lozano, and M. Wermelinger, “Assessing the effect
of clones on changeability”, Proc. ICSM, 2008, pp.
227-236.

[18] R. C. Miller, and B. A.Myers. “Interactive
simultaneous editing of multiple text regions.”, Proc.
USENIX 2001 Annual Technical Conference, 2001, pp.
161 – 174.

[19] M. Mondal, C. K. Roy, and K. A. Schneider,
“Connectivity of Co-changed Method Groups: A Case
Study on Open Source Systems”, Proc. CASCON, 2012,
pp. 205-219.

[20] M. Mondal, C. K. Roy, and K. A. Schneider,
“Automatic Ranking of Clones for Refactoring through
Mining Association Rules”, Proc. CSMR-WCRE, 2014,
10 pp. (to appear)

[21] M. Mondal, C. K. Roy, and K. A. Schneider,
“Comparative Stability of Cloned and Non-cloned Code:
An Empirical Study”, Proc. SAC, 2012, pp. 1227 – 1234

[22] M. Mondal, C. K. Roy, and K. A. Schneider, “An
Empirical Study on Clone Stability”, ACM SIGAPP
Applied Computing Review, 2012, 12(3): 20 – 36.

[23] C. K. Roy, “Detection and analysis of near-miss
software clones.”, Proc. ICSM, 2009, pp. 447 – 450.

[24] C. K. Roy and J. R. Cordy, “NICAD: Accurate
Detection of Near-Miss Intentional Clones Using
Flexible Pretty-Printing and Code Normalization”,
Proc. ICPC, 2008, pp. 172 – 181.

[25] C. K. Roy, J.R. Cordy and R. Koschke, “Comparison
and Evaluation of Code Clone Detection Techniques
and Tools: A Qualitative Approach”, SCP, 2009, 74
(2009): 470 – 495.

[26] C.K. Roy, J.R. Cordy, “A Mutation / Injection-based
Automatic Framework for Evaluating Code Clone
Detection Tools”, Proc. Mutation, 2009, pp. 157 – 166.

[27] M. J. Shepperd, S. G. MacDonell, “Evaluating
prediction systems in software project estimation”.
Information & Software Technology, 2012, 54(8): 820 –
827.

[28] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. D. Penta, “An empirical study on the maintenance
of source code clones”, ESE, 15(1), 2009, pp. 1-34.

[29] M. Toomim, A. Begel, and S. L. Graham. “Managing
duplicated code with linked editing.”, Proc. IEEE
Symposium on Visual Languages and Human Centric
Computing, 2004, pp. 173 – 180.

[30] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching
for Better Configurations: A Rigorous Approach to
Clone Evaluation”, Proc. ESEC/SIGSOFT FSE, 2013,
pp. 455 – 465.

[31] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller,
“Mining version histories to guide software changes,”
Proc. ICSE, 2004, pp. 563–572.

41

