
A Fine-Grained Analysis on the Evolutionary
Coupling of Cloned Code

Manishankar Mondal Chanchal K. Roy Kevin A. Schneider
Software Research Laboratory, Department of Computer Science, University of Saskatchewan, Canada

mshankar.mondal@usask.ca chanchal.roy@usask.ca kevin.schneider@usask.ca

Abstract—Code clones are identical or similar code fragments
in a code base. A group of code fragments that are similar to
one another forms a clone class. Clone fragments from the same
clone class often need to be changed together consistently and
thus, they exhibit evolutionary coupling. Evolutionary coupling
among clone fragments within a clone class has already been
investigated and reported. However, a change to a clone fragment
of a clone class may also trigger changes to non-cloned code as
well as to clone fragments of other clone classes. Such coupling
information is equally important for the proper management of
clones during software maintenance. Unfortunately, there are
no such studies reported in the literature. In this paper, we
describe a large scale empirical study that we conduct to examine
whether a clone fragment from a particular clone class exhibits
evolutionary coupling with non-clone fragments and/or with clone
fragments of other clone classes. Our experimental results on
thousands of revisions of six diverse subject systems written in two
programming languages indicate the presence of such couplings.
We consider both exact and near-miss clones in our study.
By analyzing the evolutionary couplings of a particular clone
fragment from a particular clone class, we are able to predict its
three types of co-change candidates with considerable accuracy
in terms of precision and recall. These co-change candidates are:
(1) non-clone fragments, (2) clone fragments from clone classes
other than its own class, and (3) other clone fragments from its
own clone class. Thus, we can improve existing clone tracking
techniques so that they can also infer and suggest which non-
clone fragments as well as which clone fragments from other
clone classes might need to be co-changed correspondingly when
modifying a clone fragment from a particular clone class.

I. INTRODUCTION
If two or more code fragments in a code base are identical

or similar to one another, we call them code clones [29]. A
group (two or more) of identical or similar code fragments
forms a clone class. Clones are mainly created because of fre-
quent copy-paste activities performed by programmers during
both software development and maintenance. Clones are of
great importance during software maintenance. A great many
studies have been conducted on the detection and analysis
of code clones in software systems [2], [3], [11], [14]–[19],
[23], [24], [33]. While a number of studies [11], [14], [16],
[17] identify some positive impacts of code clones, there is
strong empirical evidence [3], [18], [19], [23] of some negative
impacts of clones on software evolution and maintenance.
These negative impacts include late propagation [3], hidden
bug propagation [3], unintentional inconsistencies [3], and high
change-proneness [23]. Focusing on these negative impacts
researchers emphasize that it is important for efficient man-
agement of code clones to support clone detection, refactoring,
and tracking [7], [22], [30].

A number of techniques and tools [28], [31] for detecting
clones already exist. Clone refactoring refers to the task

of merging several clone fragments into a single one [22].
However, refactoring of all clone fragments in a software
system is impractical [15]. There can be situations where
clone refactoring is impossible, however, the clone fragments
need to be updated consistently [6], [15]. Thus, clone tracking
is important. Clone tracking helps us to update the clone
fragments in a clone class consistently to avoid unintentional
inconsistencies and late propagation [7]. Our investigation in
this research focuses on clone tracking.

Usually clone tracking means remembering the clone frag-
ments of a particular clone class so that while changing a
particular clone fragment from this class in the future, we can
look at the other clone fragments in this class and can decide
whether these other clone fragments also need to be changed
together (i.e., co-changed) to ensure consistency. A number of
clone tracking techniques and tools exist [7], [8], [12], [20],
[34]. A recent study focused on predicting and ranking co-
change candidates that are the other clone fragments from the
same clone class when modifying a particular clone fragment
from that clone class [25].

The basic idea or assumption behind each of the existing
studies and tools regarding clone tracking is that a change in
a particular clone fragment can affect other clone fragments
in the same clone class. The research ignores the fact that a
change in a clone fragment can also affect non-clone fragments
as well as clone fragments from other clone classes. In other
words, while changing a particular clone fragment from a
particular clone class, we might also need to co-change some
non-clone fragments, as well as some clone fragments from the
other clone classes correspondingly. In this case, an efficient
clone tracking system should not only focus on tracking (i.e.,
remembering) the other clone fragments from the same class
but also focus on tracking probable co-change candidates that
are: (1) non-clone fragments, as well as (2) clone fragments
from other clone classes.

In this research, we investigate whether a clone fragment
from a particular clone class exhibits evolutionary coupling
with non-clone fragments as well as with clone fragments
from other clone classes. In the presence of such couplings,
it is possible to predict which non-clone fragments, and also
which clone fragments from other clone classes might need
to be co-changed correspondingly while changing a particular
clone fragment from a particular clone class. To the best of our
knowledge, our study is the first to investigate these couplings.
Here, we should note that by the term ‘corresponding changes’
we mean ‘related changes’. If two code fragments changed
together by receiving related changes, we say that they co-
changed correspondingly. We define and explain corresponding
changes in Section II.



TABLE I. RESEARCH QUESTIONS

SL Research Question

1 Do clone fragments have co-change tendencies with non-clone fragments? If so, are the changes corresponding?
2 Do clone fragments from different clone classes have co-change tendencies? If so, are the changes corresponding?
3 Can evolutionary coupling help us predict: (i) which non-cloned fragments, and (ii) which clone fragments from other clone classes might need to be co-changed

while changing a particular clone fragment from a particular clone class?

Through our investigation on thousands of revisions of six
diverse subject systems covering two programming languages
we answered three important research questions listed in
Table I. According to our experimental results and analysis
considering both exact and near-miss clones:

A clone fragment can exhibit evolutionary coupling
not only with the other clone fragments in its own class
but also with non-clone fragments as well as with clone
fragments from other clone classes.

According to our manual analysis, a change occurring to a
clone fragment in a particular clone class might require related
changes to non-clone fragments as well as to clone fragments
from other clone classes.

By analyzing the evolutionary couplings of a particu-
lar clone fragment from a particular class, we can predict:
(1) its non-clone co-change candidates with overall recall
and precision of 27.07% and 16.5%, (2) its co-change
candidates that are clone fragments from the other clone
classes with overall recall and precision of 30.74% and
20.67%, (3) its co-change candidates that are the other
clone fragments from the same clone class with overall
recall and precision of 80.46% and 74.24%, and finally
(4) all three co-change candidates with overall recall and
precision of 33.73% and 22%.

Existing clone tracking techniques only focus on tracking,
predicting, and ranking of clone fragments from the same
clone class. However, our experimental results indicate that for
proper management of code clones, clone tracking techniques
should also be able to infer and track change couplings
(i.e., evolutionary couplings) between clone and non-clone
fragments and also, between clone fragments from different
clone classes so that when a programmer changes a particular
clone fragment from a particular clone class, a clone tracker
can help them by suggesting: (1) possible non-clone fragments,
as well as (2) possible clone fragments from other clone classes
that might also need to be co-changed (i.e., changed together)
correspondingly.

A recent study conducted by Kagdi et al. [13] shows that
consideration of finer granularity (such as method) in detecting
co-change candidates using evolutionary coupling results in
very low precision and recall. Kagdi et al. [13] achieved at best
9% precision and 28% recall. In a previous study Zimmermann
et al. [37] achieved 26% precision and 15% recall. However,
detecting evolutionary coupling considering finer granularity
is important, because it can help programmers pin point co-
change candidates while making changes to a software system
[26], [27]. In our study we investigate evolutionary coupling
considering code fragment granularity (clone and non-clone
fragments) which is even finer than method granularity. How-
ever, our main focus is on detecting co-change candidates for
clones. Considering these issues and the previously reported
precision and recall values we believe that our precision and
recall results in detecting co-change candidates for clones are
interesting and significant.

The rest of the paper is organized as follows. Section
II describes the terminology, Section III elaborates on the
methodology, Section IV answers the research questions on the
basis of the experimental results, Section V mentions possible
threats to validity, Section VI discusses the related work, and
Section VII concludes the paper mentioning future work.

II. TERMINOLOGY
Types of clones. We conduct our experiment considering

exact (Type 1) and near-miss clones (Type 2 and Type 3
clones). As is defined in the literature [29], if two or more
clone fragments in a particular clone class are exactly the
same disregarding comments and indentations, these clone
fragments are called exact clones of one another (i.e., Type 1
clones). Type 2 clones are syntactically similar code fragments.
In general, Type 2 clones are created from Type 1 clones
because of renaming variables or changing data types. Type
3 clones are mainly created because of additions, deletions, or
modifications of lines in Type 1 or Type 2 clones.

Corresponding changes. Let us assume that two code
fragments have co-changed (changed together) in a particular
commit operation. If the changes are related such that changes
in one code fragment required changes to the other fragment to
ensure consistency between them, then we say that the changes
to these two code fragments are corresponding changes. Here,
a code fragment can be a clone fragment from a particular
clone class or a non-clone fragment (defined in Section III-B).
When two code fragments co-change correspondingly, they
receive related changes such as addition or deletion of the
same statements in both code fragments. In Sections IV-A and
IV-B, we provide examples of corresponding changes that we
found by manually investigating the evolution history of our
subject systems.

Evolutionary coupling. During the evolution of a software
system if two or more program entities (such as files, classes,
methods) appear to change together (i.e., co-change) frequently
(i.e., in many commits) then we say that these entities exhibit
evolutionary coupling. It is likely that these entities are related
and a future change to any one of these entities will accom-
pany corresponding changes to the other entities. Evolutionary
coupling is also known as change coupling or logical coupling
[9]. By mining and analyzing evolutionary coupling we can
discover the underlying relationships among program entities
in a software system [37]. Evolutionary coupling helps us
predict co-change candidates (i.e., other entities that might also
need to be changed together) while changing a particular entity
[37]. In our research, we apply the concept of evolutionary
coupling to discover the underlying relationships : (1) among
clone fragments in the same clone class, (2) among clone
fragments from different clone classes, and (3) among clone
and non-clone fragments to predict all possible co-change
candidates while changing a particular clone fragment from
a particular clone class.

Association Rule. Evolutionary coupling has been identi-
fied using association rules [1]. An association rule [1] is an
expression of the form X => Y where X is the antecedent and



All Revisions

of A Subject

System

Method Detection

and Extraction

from Each

Revision

Methods

in Each

Revision

Method

Genealogy

Detection

Method

Genealogies

Detection

of Changes

Between

Consecutive

Revisions

Locating

Changes

to Methods

and Clones

Clone Detection

and Extraction

from Each

Revision

Clones

in Each

Revision

Locating Clones

to Methods in

Each Revision

Detection

of Clone

Genealogies

Clone

Genealogies

Mining

Evolutionary

Coupling of

Cloned Code

Pairs of Co-changed Code

Fragments Involving Clones

Fig. 1. The experimental steps in detecting evolutionary coupling (i.e., logical coupling or change coupling) of cloned code of a subject system

TABLE II. SUBJECT SYSTEMS

System Language Domain LOC Revisions

Ctags C Code Def. Generator 33,270 774
QMailAdmin C Mail Management 4,054 317
jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Manager 45,515 1545
Revisions = Number of revisions investigated

Y is the consequent. Each of X and Y is a set of one or more
program entities. The meaning of such a rule in our context
is that if X gets changed in a particular commit, Y also has
the tendency being changed in that commit. We determine the
support and confidence of a rule in the following way.

Support and Confidence. As defined by Zimmermann et al.
[37], support is the number of commits in which an entity or a
group of entities changed together. Consider an example of two
entities E1 and E2. If E1 and E2 have ever changed together,
we can assume two association rules, E1 => E2 and E2 =>

E1, from them. Suppose, E1 was changed in four commits: 2,
5, 6, and 10 and E2 was changed in six commits: 4, 6, 7, 8, 10,
and 13. So, support(E1) = 4 and support(E2) = 6. However,
support(E1, E2) = 2, because E1 and E2 co-changed in two
commits: 6 and 10. Support of a rule is determined as follows.

support(X => Y ) = support(X,Y ) (1)
Where (X,Y ) is the union of X and Y . Thus, sup-

port(X => Y) = support(Y => X). From the above example, sup-
port(E1 => E2) = support(E2 => E1) = support(E1, E2) = 2.

Confidence of an association rule, X => Y , determines the
probability that Y will change in a commit operation provided
that X changed in that commit operation. We determine the
confidence of X => Y in the following way.

confidence(X => Y ) = support(X,Y )/support(X) (2)

From the above example of two entities, confidence
(E1 => E2) = support(E1, E2) / support(E1) = 2 / 4 = 0.5
and confidence(E2 => E1) = 2 / 6 = 0.33.

Higher values of support and confidence indicate stronger
change coupling (i.e., evolutionary coupling) among the enti-
ties in an association rule. A detailed description of how we
mine evolutionary coupling will be presented in Section III-B.

III. METHODOLOGY
Table II lists the six open source subject systems that we

investigate in our study. We consider all the revisions (as noted
in Table II) beginning with the first one for each of the systems.

A. Experimental Steps
We first download all the revisions as noted in Table II

for all the subject systems from their open-source SVN repos-
itory1. Then, for each system we perform eight experimental
steps as shown by the rectangles in Fig. 1 for mining evolu-
tionary coupling of cloned code. These steps are: (1) Method
detection and extraction from each of the revisions using
CTAGS 2, (2) Detection and extraction of code clones from
each revision using the NiCad clone detector [4], (3) Detection
of changes between every two consecutive revisions using diff,
(4) Locating these changes to the already detected methods as
well as clones of the corresponding revisions, (5) Locating the
code clones detected from each revision to the methods of
that revision, (6) Detection of method genealogies considering
all revisions using the technique proposed by Lozano and
Wermelinger [19], (7) Detection of clone genealogies by
identifying the propagation of each clone fragment through a
method genealogy, and (8) Mining the evolutionary coupling
of cloned code. For the details of the first seven steps we refer
the interested readers to our earlier work [21]. We will describe
the eighth step in Section III-B.

Detecting the method-genealogy for a particular method
involves identifying each instance of that method in each of
the revisions where the method was alive. By detecting the
genealogy of a method, we can determine how it changed
during evolution. We detect clone genealogies by locating the
clones detected from each revision to the already detected
methods of that revision. The genealogy of a particular clone
fragment also helps us determine how it evolved through the
commits. We assign unique IDs to the method genealogies and
clone genealogies to recognize them across revisions. Here, we
should also note that we use NiCad [4] for detecting clones
because it can detect all major types (Type 1, Type 2, and Type
3) of clones with high precision and recall [31], [32]. Using
NiCad we detect block clones including both exact (Type 1)
and near-miss (Type 2, Type 3) clones of a minimum size of 5
LOC with 20% dissimilarity threshold and blind renaming of
identifiers. These settings (explained in detail in our earlier
work [21]) are considered standard [30]. In the following
subsection we describe how we mine evolutionary couplings
for cloned code.

1Open source SVN repository. http://sourceforge.net/
2CTAGS: http://ctags.sourceforge.net/



B. Mining Evolutionary Coupling
By analyzing the evolution history of a subject system,

we determine pairs of co-changed code fragments that can be
categorized into the following categories.

● Same-Class-Pair: Each pair in this category consists
of two clone fragments, CF1 and CF2, that belong to
the same clone class and co-changed (i.e., changed
together) in one or more commit operations. If two
or more clone fragments from a particular clone
class ever co-changed in a particular commit, we
determine all possible pairs from these co-changed
clone fragments.

● Different-Class-Pair: Each pair in this category con-
sists of two clone fragments, C1F1 and C2F1, that
belong to two different clone classes and co-changed
in one or more commit operations.

● Clone-Non-clone-Pair: A pair in this category con-
sists of two code fragments, CF and NF, such that CF
is a clone fragment from a particular clone class and
NF is a non-clone fragment and these two code frag-
ments co-changed in at least one commit operation.

We provide a very simple example explaining how we form
the pairs of co-changed code fragments. Let us assume that
six code fragments changed together in a particular commit
operation. These are: C1F1, C1F2, C1F3, C2F1, NF1, and
NF2. The first three fragments are clone fragments belonging
to the clone class C1. The clone fragment C2F1 belongs to
the clone class C2. The remaining code fragments NF1, and
NF2 are non-clone fragments. From these code fragments we
form 14 pairs in total. Three pairs: (C1F1, C1F2) (C1F1,
C1F3), and (C1F2, C1F3) are Same-Class-Pairs. Each of the
three pairs: (C1F1, C2F1), (C1F2, C2F1), and (C1F3, C2F1)
is a Different-Class-Pair. Eight pairs are Clone-Non-clone-
Pairs. These are: (C1F1, NF1), (C1F2, NF1), (C1F3, NF1),
(C2F1, NF1), (C1F1, NF2), (C1F2, NF2), (C1F3, NF2), and
(C2F1, NF2). We examine each of the commit operations and
determine the pairs of co-changed code fragments. A particular
pair may appear more than once. We count the number of
commits a pair appears.

In this experiment, we consider clone and non-clone
fragments that reside in methods. The code fragments in a
particular pair may reside: (1) in the same method, or (2) in
two different methods. We consider both cases in our study.
We determine the percentages of both Same-Method-Pairs (i.e.,
the pairs each consisting of code fragments from the same
method) and Different-Method-Pairs in each of the above three
categories and show the percentages for each subject system in
Table IV. From this table we can see that most of the pairs in
the two categories: Different-Class-Pair, and Clone-Non-clone-
Pair consist of code fragments from different methods. We also
see that Same-Method-Pairs mainly exist in the first category
Same-Class-Pair. Moreover, for three subject systems: jEdit,
Carol, and Jabref the percentage of Same-Method-Pairs in this
category is very low. Although the proportion of Same-Method-
Pairs is generally very low, they are important. From our
manual investigation on our subject systems, we see that some
methods are very long containing even more than 100 lines of
code. Several clone fragments can be scattered in such a long
method. Remembering as well as consistent updating of all
the clone fragments in such a method might often be difficult
without automatic support. So providing automated support for
tracking couplings between code fragment pairs even within

TABLE III. NUMBER OF THE PAIRS OF CO-CHANGED CODE
FRAGMENTS IN DIFFERENT CATEGORIES

Carol Jabref Freecol jEdit Ctags QMail.

Same-Class-Pairs 1081 367 626 101 77 53
Different-Class-Pairs 5201 4365 3041 6273 798 712
Clone-Non-clone-Pairs 10248 17963 8074 17626 1141 1562

TABLE IV. PERCENTAGE OF THE PAIRS CONSISTING OF CODE
FRAGMENTS FROM THE SAME METHOD OR DIFFERENT METHODS

Same-Class-Pairs Different-Class-Pairs Clone-Non-clone-Pairs
SM DM SM DM SM DM

Ctags 51.95 48.05 10.15 89.85 3.68 96.32
QMailAdmin 54.72 45.28 11.24 88.76 2.24 97.76
Freecol 62.30 37.70 15.23 84.77 1.99 98.01
jEdit 24.75 75.25 1.05 98.95 0.37 99.63
Carol 4.63 95.37 5.06 94.94 1.01 98.99
Jabref 38.42 61.58 8.43 91.57 1.12 98.88
SM = % of pairs each consisting of code fragments from the same method
DM = % of pairs each consisting of code fragments from different methods

the same method is useful. However, not all methods are very
long, so tracking information might be just overhead. One
might even argue that although the couplings inferred from
the Same-Method-Pairs are important for long methods, such
couplings could possibly affect the overall statistics regarding
evolutionary coupling in our research. However, from Table IV
we again see that such couplings are of very low proportion in
the two categories Different-Class-Pair, and Clone-Non-clone-
Pair. As our main focus in this research is on detecting and
analyzing evolutionary coupling between clone fragments from
different clone classes (i.e., Different-Class-Pairs), and be-
tween clone and non-clone fragments (i.e., Clone-Non-clone-
Pairs), we believe that our reported results are not affected by
the couplings inferred from the Same-Method-Pairs.

Mondal et al. [25] conducted an empirical study where
they investigated evolutionary coupling among clone fragments
from the same clone class only and thus, they only mined pairs
of code fragments belonging to the first category (Same-Class-
Pairs) defined above. Thus, we believe that our study provides
further insight into the evolutionary coupling of cloned code.

We already mentioned that after detecting clones we locate
them in the methods. A clone fragment is recognized by
its starting and ending line numbers. However, non-clone
fragments require explanation. We define a non-clone fragment
in the following way.

A non-clone fragment. We consider a method m. If m
contains one or more clone fragments, then the remaining
code in this method (i.e., excluding the clone fragments) is
considered as a non-clone fragment. Moreover, if m contains
no clone fragments, then the whole method is considered a
non-clone fragment. A fully cloned method does not contain
a non-clone fragment.

For each pair of code fragments obtained in each of
the above three categories, we determine how many times
(i.e., in how many commit operations) the constituent code
fragments co-changed. The XML files containing the pairs of
code fragments (i.e., of three categories) that we detect from
our subject systems are available on-line3. In such a file, we
show the followings for each pair of code fragments: (1) The
methods containing these code fragments, (2) The number of
times the code fragments co-changed, (3) The commits where

3The XML Files: http://goo.gl/YkAY8V



Ctags QMail. Freecol jEdit Carol Jabref
0

20

40

60

80

% of Clone-Non-clone-Rules % of Same-Class-Rules

Fig. 2. Comparison regarding the percentage of association rules

Ctags QMail. Freecol jEdit Carol Jabref
0

20
40
60
80

100

% of clone fragments involved in the Clone-Non-clone-Rules

% of clone fragments involved in the Same-Class-Rules

Fig. 3. Comparison regarding the percentage of clone fragments

they co-changed, and (4) The types of the code fragments
indicating whether they are clone or non-clone fragments.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
We apply our implemented system on each of the six

subject systems listed in Table II and determine the pairs of
co-changed code fragments of each of the three categories
mentioned in Section III-B. The number of pairs in each
category is reported in Table III. In the following subsections
we answer our research questions by analyzing these pairs.

A. RQ 1: Do clone fragments have co-change tendencies with
non-clone fragments? If so, are the changes corresponding?

Rationale. Answering this question is important from the
perspective of software maintenance. A recent study [25]
shows that clone fragments from the same clone class have
tendencies of co-changing correspondingly. The existing clone
tracking techniques [7], [8], [12], [20], [34] help us determine
co-change candidates from the same clone class. However,
there is no study on whether a clone fragment has tendencies
of co-changing correspondingly (Section II) with non-clone
fragments as well as with clone fragments from other clone
classes rather than its own clone class. If such tendencies
are present, then a clone tracker should also be able to infer
and store these so that while changing a particular clone
fragment from a particular clone class, it can not only suggest
possible co-change candidates (clones) from the same clone
class but also can suggest: (1) possible non-clone fragments,
as well as (2) possible clone fragments from other clone
classes that might need to be co-changed correspondingly with
the particular clone fragment. In this research question, we
investigate whether clone fragments have co-change tendencies
with non-clone fragments, and if so, whether the changes are
corresponding changes. Co-change tendencies between clone
fragments from different clone classes have been investigated
in the second research question (RQ 2).

Methodology. For answering this research question, we
determine association rules from the pairs of co-changed code
fragments that we mine by analyzing the evolution history of
a software system. Here we should note that association rules
have been used to represent co-change tendencies between
program artifacts [22], [37]. From a particular pair of code
fragments (CF1, CF2) we can determine two association rules,
CF1 => CF2 and CF2 => CF1. These two rules have the

Ctags QMail. Freecol jEdit Carol Jabref
0

0.5

1

1.5

2

Average support of the Clone-Non-clone-Rules

Average support of the Same-Class-Rules

Fig. 4. Comparison regarding average support of the association rules

Ctags QMail. Freecol jEdit Carol Jabref

0
0
.5

1

Average confidence of the Clone-Non-clone-Rules

Average confidence of the Same-Class-Rules

Fig. 5. Comparison regarding average confidence of the association rules.

same support value. However, their confidence values can
be different. We determine association rules with support
and confidence values from all the pairs of co-changed code
fragments of a subject system. From these rules, we determine
two sets of rules as defined below.

● Clone-Non-clone-Rules: The Set of Rules each con-
sisting of a Clone fragment and a Non-clone fragment.

● Same-Class-Rules: The Set of Rules each consisting
of Clone fragments from the Same clone class.

Mondal et al. [22] report that clone fragments within a
clone class have co-change tendencies. We wanted to see
whether co-change tendencies between clone and non-clone
fragments are comparable to the co-change tendencies between
clone fragments from the same clone class. We performed the
following four comparisons on the sets Clone-Non-clone-Rules
and Same-Class-Rules.

● Comparison between the percentage of rules in the
two sets with respect to all rules in the system.

● Comparison between the percentage of clone frag-
ments involved in the rules in the two sets with respect
to all the clone fragments involved in all the rules in
the system.

● Comparison between the average supports of the rules
in the two sets.

● Comparison between the average confidences of the
rules in the two sets.

These four comparisons for each of the subject systems
are presented in Figures 2, 3, 4, and 5 respectively. Fig. 2
and 3 indicate that the percentage of rules as well as the
percentage of clone fragments involved in the rules in the first
set (Clone-Non-clone-Rules) are generally higher compared to
the other set Same-Class-Rules. From Fig. 4 and 5 we see
that for most of the subject systems the average support and
confidence of the Clone-Non-clone-Rules are smaller than the
corresponding values of the Same-Class-Rules. However, the
average supports as well as the average confidences from the
two sets are comparable to each other for each of the systems.

From these comparisons we can state that a clone fragment
from a particular clone class not only can co-change with other
clones in the same class but also can co-change with non-
clone fragments. Moreover, the percentage of clone fragments
having co-change tendency with non-clone fragments can be



Fig. 6. Example of a corresponding co-change of a fully cloned method and a fully non-cloned method in the commit operation applied on revision 1148 of
our candidate system Freecol.

higher compared to the percentage of clone fragments that co-
change from the same clone class. Thus, we can say that the
co-change tendencies between clone and non-clone fragments
are comparable to the co-change tendencies between clone
fragments from the same clone class.

As clone fragments exhibit co-change tendencies with non-
clone fragments, we were interested to investigate whether they
co-change correspondingly or not. We perform our investiga-
tion in the following way.

For each of the subject systems we select the Clone-Non-
clone-Rules and sort them in descending order of the support
values of the rules, because higher support value indicates a
higher possibility that the changes to the code fragments were
related. We manually examined the co-change history of the
constituent code fragments of each of the top 20 rules from
each of the subject systems. We determine whether the code
fragments co-changed by receiving related changes or not (i.e.,
whether they co-changed correspondingly or not). According
to our manual analysis on 120 rules from all candidate systems,
in the case of 85.83% rules (103 rules), the constituent code
fragments (a clone fragment and a non-clone fragment) co-
changed correspondingly.

We also manually investigate 20 rules with the lowest
support (support = 1) from each of the subject systems. If a
rule has the lowest support, then it means that the constituent
code fragments in the rule co-changed only once during
the whole period of evolution. We manually investigated the
lowest support rules, because we wanted to see whether the
constituent code fragments even in these rules co-changed cor-
respondingly. Promisingly, in case of around 51.25% of these
lowest support rules the two constituent code fragments (i.e., a
clone and a non-clone fragment) co-changed correspondingly.
Thus, whether a clone fragment and a non-clone fragment co-
change frequently or not, their changes can be corresponding.
So, co-change detection (whether frequent or infrequent) and
tracking of clone and non-clone fragments should be given a
great importance not only for improving the clone tracking
techniques but also for better analysis of change impacts [13].

As an example of a corresponding co-change, we mention
two methods: Method 1 (showScoutIndianSettlementDialog,
start line = 646, end line = 657) and Method 2 (showUseMis-
sionaryDialog, start line = 675, end line = 706) from the same
file src/net/sf/freecol/client/gui/Canvas.java of revision 1148 of
our subject system Freecol. While Method 2 is a fully non-
cloned method, Method 1 is a fully cloned method. Method 1
has three other clones in the same clone class (as of Method
1) in revision 1148. These clones also remain in the same file.

Method 1 and Method 2 co-changed in three commits
applied on revisions: 1148, 1216, and 1341. In each of
these commits these methods received related changes. Fig. 6
presents the changes occurred to these methods in the commit
on revision 1148. We see that the second line of each method
was changed in the same way. An extra parameter freeCol-
Client.getMyPlayer() was added beside the previous parameter
settlement. The other three clone fragments residing in the
same clone class as of Method 1 did not change in this commit.

During our manual investigation, we also identify the major
change types that a clone fragment and a non-clone fragment
receive while co-changing correspondingly. The dominating
changes occurred to them include: (1) addition of the same
parameter to the similar called methods (Fig. 6 shows an
example), (2) addition, deletion, or changing of parameters
to the same called methods, (3) addition or deletion of the
same condition, (4) changing of the same condition in the same
way, (5) changing variable names in similar ways, (6) removal
and/or addition of the same method calls, and (7) addition of
named constants.

Answer to RQ 1: According to our analysis and dis-
cussion we come to the conclusion that a clone fragment
from a particular clone class not only can co-change with
the other clone fragments in the same class, but also can
co-change correspondingly (i.e., co-change by receiving
related changes) with non-clone fragments.

The existing clone tracking techniques [7], [8], [12], [20],
[34] only focus on remembering clone fragments from the



Ctags QMail. Freecol jEdit Carol Jabref
0

20

40

% of Different-Class-Rules % of Same-Class-Rules

Fig. 7. Comparison regarding the percentage of association rules.

Ctags QMail. Freecol jEdit Carol Jabref
0

20
40
60
80

100

% of clone fragments involved in the Different-Class-Rules

% of clone fragments involved in the Same-Class-Rules

Fig. 8. Comparison regarding the percentage of clone fragments.

same clone class. However, our findings from this research
question imply that clone tracking techniques should also be
able to infer and remember co-change tendencies between
clone and non-clone fragments so that while changing a
particular clone fragment from a particular clone class, a pro-
grammer can also get automatic suggestions about which non-
clone fragments might need to be co-changed correspondingly
with that particular clone fragment.

B. RQ 2: Do clone fragments from different clone classes have
co-change tendencies? If so, are the changes corresponding?

In this research question we investigate whether clone frag-
ments from different clone classes have co-change tendencies,
and if so, whether they co-change correspondingly. We perform
our investigation in a similar way as described in RQ 1. We
at first determine the following two sets of association rules
from all the rules in a subject system.

● Different-Class-Rules: The Set of Rules each consist-
ing of Clone fragments from Different clone classes.

● Same-Class-Rules: The Set of Rules each consisting
of Clone fragments from the Same clone class.

We perform four comparisons between these two sets
as was done in RQ 1. The comparison graphs regarding:
the percentage of association rules, the percentage of clone
fragments involved in the rules, and the average support and
confidence of the rules are presented in Figures 7, 8, 9 and
10. Fig. 7 and 8 imply that the percentage of rules as well as
the percentage of clone fragments involved in the rules in the
first set Different-Class-Rules are generally higher compared
to the corresponding percentages of the other set (Same-Class-
Rules). From Fig. 9 and 10 we see that for most of the subject
systems, the average support and confidence of the Different-
Class-Rules are smaller than the corresponding values of the
Same-Class-Rules. However, the average supports as well as
the average confidences regarding the two sets are most of the
cases very near to each other and thus, they are comparable.

From the above comparisons we can state that clone
fragments from different clone classes can have co-change
tendencies and these tendencies are comparable to the co-
change tendencies between clone fragments from the same
clone class. Moreover, the percentage of clone fragments
showing co-change tendencies from different clone classes
can even be higher compared to the the percentage of clone

Ctags QMail. Freecol jEdit Carol Jabref
0

0.5

1

1.5

2

Average support of the Different-Class-Rules

Average support of the Same-Class-Rules

Fig. 9. Comparison regarding average support of the association rules.

Ctags QMail. Freecol jEdit Carol Jabref
0

0.2
0.4
0.6
0.8
1

Average confidence of the Different-Class-Rules

Average confidence of the Same-Class-Rules

Fig. 10. Comparison regarding average confidence of the association rules.

fragments each having co-change tendencies with the other
clone fragments in its own class.

As clone fragments from different clone classes have co-
change tendencies, we were interested to investigate whether
they co-change correspondingly. We perform manual investi-
gation in a similar way as described in RQ 1. For each of the
subject systems, we select all the rules between clone frag-
ments from different clone classes, sort the rules in decreasing
order of their support values, and then manually investigate
the top 20 rules to determine whether the constituent clone
fragments in each of the rules co-changed correspondingly.
According to our analysis, in the case of around 71.43%
of the rules, the two constituent clone fragments from two
different clone classes co-changed correspondingly. We also
investigate 20 rules with the lowest support value from each
of the subject systems as we did in RQ 1 and observe that
in the case of around 45.94% of these rules the changes to
the clone fragments were corresponding. Thus, whether clone
fragments from different clone classes co-change frequently
or not, they can receive corresponding changes. Therefore,
detection as well as tracking of clone fragments that co-change
from different clone classes (whether having strong co-change
tendencies or not) are important for better clone management.

As an example of a corresponding co-change, we mention
two clone fragments from two clone classes from our subject
system Carol. These clone fragments belong to two different
source code files: File 14 and File 25. They co-changed in four
commit operations applied on revisions: 36, 51, 54, and 58. At
revision 36, the start and end lines of these clone fragments
are (1) 101 (start line), 108 (end line) in File 1 and (2) 138,
154 in File 2 respectively. The changes occurred to the clone
fragments in each of the four commits are related according
to our manual investigation. For example, in the commit on
revision 36, each of these fragments dealt with throwing and
catching exceptions. In the commit on revision 51, similar if-
statements were added to these two clone fragments.

During manual investigation, we also examined which
types of changes mainly occurred to the two clone fragments
(from two different classes) when they co-changed correspond-

4File 1: carol/src/org/objectweb/carol/jndi/spi/MultiOrbInitialContext.java
5File 2: carol/src/org/objectweb/carol/rmi/multi/MultiPRODelegate.java



ingly. We found all those changes that we have reported while
answering RQ 1. The additional change types that frequently
occurred during this investigation include: (1) changing the
names of the same called methods. (2) addition or deletion of
the same try/catch blocks, (3) addition or deletion of the same
statements, and (4) addition or deletion of similar if-blocks.

Answer to RQ 2. From our analysis and discussion
we can come to the conclusion that clone fragments from
different clone classes can have tendencies of co-changing
correspondingly.

From our investigation we believe that a clone tracker
should not only focus on tracking and predicting co-change
candidates from the same clone class but also should focus
on inferring co-change tendencies between clone fragments
from different clone classes so that while changing a particular
clone fragment from a particular clone class it can also suggest
possible co-change candidates that are the clone fragments
from other clone classes rather than its own clone class.

C. RQ 3: Can evolutionary coupling help us predict: (i)
which non-cloned fragments, and (ii) which clone fragments
from other clone classes might need to be co-changed while
changing a clone fragment from a particular clone class?

Rationale. Answering this research question is the primary
goal of our research work. From our answers to the previous
two research questions we understand that a clone fragment
from a particular clone class can correspondingly co-change
with non-clone fragments as well as with clone fragments from
the other clone classes. In this research question we investigate
whether we can infer these evolutionary couplings to predict
which non-clone fragments as well as which clone fragments
from the other clone classes might need to be co-changed while
changing a particular clone fragment from a particular clone
class. However, we also investigate the predictability of co-
change candidates from the same clone class as was studied
by Mondal et al. [25]. Finally, we show a comparative scenario
about predicting all three types of co-change candidates for a
particular clone fragment.

Here, we should note that Mondal et al. [25] investigated
evolutionary coupling of clone fragments within a clone class
in order to predict co-change candidates from the same clone
class only. Thus, we believe that our study provides further
insight into the evolutionary coupling of cloned code.

For predicting co-change candidates we use a technique
which is a variant of n-fold cross validation technique6. In this
technique, the commits are examined from the very beginning
one. Prediction of co-change candidates in a particular commit
c is done by analyzing the evolution history in the past
commits (i.e., the commits from 1 to c − 1). Zimmermann
et al. [37] used such a technique and it complies with the
underlying philosophy of evolutionary coupling. We describe
the technique in the following way.

Prediction Methodology. We consider a particular commit
c where one or more clone fragments were changed. Some
non-clone fragments might also be changed in this commit.
We consider a particular clone fragment CF that changed in
this commit c. As we automatically examine this commit,
we determine which other code fragments co-changed with
CF in this commit. However, our goal is to determine how

6http://en.wikipedia.org/wiki/Cross-validation (statistics)

TABLE V. PRECISION AND RECALL (IN PERCENTAGE) IN PREDICTING
DIFFERENT CO-CHANGE CANDIDATES FOR CLONE FRAGMENTS

Carol Jabref Freecol jEdit Ctags QMailAdmin Overall

Prediction of non-clone co-change candidates
Recall 15.36 35.47 20.09 9.48 46.43 49.31 27.07

Precision 9.59 22.27 20.83 4.055 45.81 62.59 16.5
Prediction of co-change candidates that are clone fragments from different classes

Recall 44.84 32.71 17.65 8.13 38.97 18.88 30.74
Precision 41.18 20.73 20.46 3.17 15.80 25.70 20.67

Prediction of co-change candidates that are clone fragments from the same clone class
Recall 88.32 77.03 53.59 64.15 40 55.56 80.46

Precision 81.93 67.27 58.99 45.95 33.33 83.33 74.24
Prediction of all co-change candidates

Recall 46.96 37.48 23.13 9.96 43.32 42.57 33.73
Precision 38.97 24.18 23.74 4.15 25.89 52.75 22

accurately we can predict these other code fragments that co-
changed with CF in commit c by analyzing the evolutionary
coupling exhibited by CF during the past commits 1 to c-1.
These other code fragments that actually co-changed with CF
can be of three types. These are: (1) non-clone fragments, (2)
clone fragments from the other clone classes rather than the
clone class of CF, and (3) some other clone fragments from
the same clone class as of CF.

From the past commits 1 to c-1 we determine all possible
pairs of co-changed code fragments as is described in Section
III-B. From these pairs we select those pairs each of which
contains CF. From these selected pairs we determine the other
code fragments beside CF. These other code fragments are the
suggested co-change candidates for CF in commit c, because
each of these other code fragments co-changed with CF at least
once (i.e., exhibited evolutionary coupling with CF) during
the past commits 1 to c-1. Suggested co-change candidates
can also be of three types as we mentioned in the previous
paragraph. If we see that a suggested co-change candidate
actually co-changed with CF in commit c, then we can say that
our prediction system has correctly predicted this candidate to
be a co-change candidate for CF in the commit operation c.

We determine which of the suggested co-change candidates
actually co-changed with CF in commit c. These are the
candidates (i.e., code fragments) that are correctly predicted
by our prediction system to be the co-change candidates
for CF. We call these candidates the correctly predicted co-
change candidates for CF in commit c. Correctly predicted co-
change candidates can also be of three types as we mentioned
in the previous two paragraphs. We can easily understand
that the higher the number of correctly predicted co-change
candidates, the higher is the accuracy of our prediction system.
We determine the prediction accuracy of our implemented
system in terms of precision and recall calculated using the
following equations.

Precision = ∣CPCCS ∣ ∗ 100 / ∣SCCS ∣ (3)
Recall = ∣CPCCS ∣ ∗ 100 / ∣ACCS ∣ (4)

Here, CPCCS, and SCCS are respectively the sets of
correctly predicted co-change candidates, and suggested co-
change candidates for CF in commit c. ACCS is the set of
candidates (i.e., code fragments) that actually co-changed with
CF in the commit operation c.

Considering each of the clone fragments (CF) changed in
each of the commit operations of a particular subject system,
we determine the overall precision and recall in predicting
each of the three types of co-change candidates separately.



We also determine the overall combined precision and recall
in predicting all three types of co-change candidates. These
precision and recall results are reported in Table V.

From Table V we see that for most of the subject systems
except Ctags, the precision and recall in predicting co-change
candidates that are clones from the same clone class are the
highest ones. However, the precision and recall in predicting
non-cloned co-change candidates as well as in predicting co-
change candidates that are clone fragments from other clone
classes are also considerable for most of the systems except
jEdit. Finally, looking at the overall (considering all subject
systems) precision and recall results in the last column of Table
V we realize that we can predict each of the three types of
co-change candidates for clones with considerable accuracy.

Answer to RQ 3. From our analysis and discussion
we can state that by analyzing evolutionary coupling of
cloned code we can predict: (i) which non-clone frag-
ments, and (ii) which clone fragments from other clone
classes might need to be co-changed while changing a
particular clone fragment from a particular class with
considerable accuracy in terms of precision and recall.

Our investigation and analysis in this research question
indicates that the existing clone tracking techniques should not
only focus on tracking (or remembering) and predicting co-
change candidates from the same clone class, but also should
be able to infer and store evolutionary coupling between clone
and non-clone fragments as well as between clone fragments
from different clone classes so that while making changes
to a particular clone fragment from a particular clone class,
a programmer can get automatic suggestions about its all
three types co-change candidates (non-clone fragments, clone
fragments from other clone classes, and other clone fragments
from its own clone class). Our implemented prediction system
can help the existing clone trackers to predict these all three
types of co-change candidates with considerable accuracy in
terms of precision and recall.

V. THREATS TO THE VALIDITY
We used the NiCad clone detector [4] for detecting clones.

For different settings of NiCad, the statistics that we present
in this paper might be different. Wang et al. [35] defined this
problem as the confounding configuration choice problem and
conducted an empirical study to ameliorate the effects of the
problem. However, the settings that we have used for NiCad
are considered standard [30] and with these settings NiCad can
detect clones with high precision and recall [31], [32].

In our experiment we did not study enough subject systems
to be able to generalize our findings regarding the prediction
of co-change candidates for clones. However, our candidate
systems were diverse variety in terms of application domains,
sizes and revisions. Thus, we believe that our findings are
important and can help us to better manage code clones in
particular can help build a better clone tracking system.

VI. RELATED WORK
A great many studies have already been conducted on the

detection, evolution [2], [15], [33], impact analysis [3], [11],
[14], [16]–[19], [23], [24], and maintenance [8], [12], [20],
[22], [34] of code clones. Although there are some positive
impacts [11], [14], [16], [17] of cloning on both software
development and maintenance, a number of studies [3], [18],
[19], [23] have shown empirical evidence of some strong

negative impacts of clones on software evolution. Focusing
on the negative impacts of clones, software researchers have
emphasized on properly maintaining code clones through clone
refactoring [22] or tracking [7], [8], [12], [20], [34]. As clone
refactoring is not always possible [15], tracking of clones
becomes very important for better software maintenance. As
our research work is focused on clone tracking, we discuss the
existing clone tracking techniques and studies.

The most related study on clone tracking was conducted by
Duala-Ekoko and Robillard [8]. They introduced the concept
of clone region descriptor. On the basis of this concept they
proposed a technique for tracking clones in evolving software.
They implemented a tool called ‘CloneTracker’ [7] as an
Eclipse plug-in for tracking clones. The tool provides support
for two tasks: (1) change notifications, and (2) simultaneous
editing of clones. After modifying a particular clone fragment
CF tracked by CloneTracker, the programmer is notified about
the other clone fragments in the same clone class that contains
CF, because these other clone fragments from the same
class might need to be co-changed correspondingly with CF.
However, CloneTracker cannot suggest which non-cloned frag-
ments as well as which clone fragments from different clone
classes might also need to be co-changed correspondingly
with CF. Our research focuses on automatically identifying
these two categories of co-change candidates (i.e., non-clone
fragments, and clone fragments from other clone classes)
which are ignored by existing studies, techniques, and tools.

Jablonski and Hou [12] developed a tool called CReN to
track copy-paste code clones and support consistent renaming
of identifiers. Miller and Myer [20] proposed a technique for
simultaneous editing in multiple clone fragments in the same
clone class to minimize the task of repetitive editing. They im-
plemented their technique in a text editor called LAPIS. There
is also another clone tracking tool called Codelink developed
by Toomin et al. [34]. However, none of these existing clone
trackers is capable of suggesting possible non-clone co-change
candidates as well as possible co-change candidates that are
clone fragments from the other clone classes while changing
a particular clone fragment from a particular class.

In a recent study Mondal et al. [25] conducted an empirical
study on predicting and ranking of co-change candidates that
are the other clone fragments from the same class while
changing a particular clone fragment from that class. However,
this study neither focused on predicting non-clone co-change
candidates nor on predicting co-change candidates that are
clone fragments from the other clone classes when changing a
clone fragment from a particular class. Our study is different in
the sense that we analyze the evolutionary coupling of cloned
code to predict these two categories of co-change candidates
(non-clone candidates, and clone fragments from other clone
classes) that are ignored by the existing studies.

From our discussion above we believe that our study pre-
sented in this paper is important and unique. Our experimental
results indicate that a clone fragment from a particular clone
class not only can exhibit evolutionary coupling with the other
clone fragments from the same clone class, but also can exhibit
evolutionary coupling with non-clone fragments as well as with
clone fragments from the other clone classes. Our implemented
system can automatically infer these evolutionary couplings by
analyzing clone evolution history. We believe that our findings
have the potential to assist in the better management of code
clones by strengthening existing clone trackers.



VII. CONCLUSION
In this research we primarily focus on investigating whether

a clone fragment from a particular clone class exhibits evo-
lutionary coupling with non-clone fragments as well as with
clone fragments from the other clone classes. The existing
studies and clone tracking techniques have ignored these
couplings and only focused on evolutionary coupling between
clone fragments within a clone class. Our experimental results
on thousands of revisions of six diverse subject systems cov-
ering two different programming languages and considering
both exact and near-miss clones indicate the presence of these
couplings. We implement a prediction system that can infer the
evolutionary couplings of the clone fragments in a software
system and use these couplings to predict their future co-
change candidates. According to our experimental results we
can state that while changing a particular clone fragment from
a particular clone class, we can predict its all three types of co-
change candidates (non-clone fragments, clone fragments from
other clone classes rather than its own class, and other clone
fragments from its own class) with considerable accuracy in
terms of precision and recall.

Considering the recent studies on evolutionary coupling,
our reported precision and recall results (focused on predicting
co-change candidates for clones only) are promising and are of
significant importance. According to our experimental results
and analysis, we can improve existing clone trackers so that
they can also suggest possible non-clone co-change candidates
as well as possible co-change candidates that are clone frag-
ments from other clone classes when making changes to a
clone fragment of a particular clone class. Thus, our study has
the potential to assist in software maintenance.

As future work we plan to incorporate our clone co-change
prediction technique as a plug-in for the Eclipse IDE to pro-
vide developers with continuous suggestions about co-change
candidates during both software development and maintenance.

REFERENCES

[1] R. Agrawal, T. Imieliski, A. Swami, “Mining association rules between
sets of items in large databases”, ACM SIGMOD, 1993, 22(2):207–216.

[2] L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained:
An empirical study”, Proc. CSMR, 2007, pp. 81-90.

[3] L. Barbour, F. Khomh, Y. Zou, “Late Propagation in Software Clones”,
Proc. ICSM, 2011, pp. 273 – 282.

[4] J .R. Cordy and C.K. Roy, “The NiCad Clone Detector”, Proc. ICPC
Tool Demo, 2011, pp. 219 – 220.

[5] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi-Linguistic
Token-based Code Clone Detection System for Large Scale Source
Code”, IEEE Trans. Software Engineering, 2002, 28(7):654 – 670.

[6] Cross Cutting Concerns: http://en.wikipedia.org/wiki/Cross-cutting
concern.

[7] E. Duala-Ekoko, and M. P. Robillard, “CloneTracker: Tool Support for
Code Clone Management”, Proc. ICSE, 2008, pp. 843 – 846.

[8] E. Duala-Ekoko, and M. P. Robillard, “Tracking Code Clones in Evolving
Software”, Proc. ICSE, 2007, pp. 158 - 167.

[9] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” Proc. ICSM, 1998, pp. 190–199.

[10] N. Göde, Rainer Koschke, “Frequency and risks of changes to clones”,
Proc. ICSE, 2011, pp. 311 – 320.

[11] N. Göde, J. Harder, “Clone Stability”, Proc. CSMR, 2011, pp. 65-74.
[12] P. Jablonski, and D. Hou, “CReN: A tool for tracking copy-and-paste

code clones and renaming identifiers consistently in the IDE”, Proc.
Eclipse Technology Exchange at OOPSLA, 2007.

[13] H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard,“Blending Con-
ceptual and Evolutionary Couplings to Support Change Impact Analysis
in Source Code”, Proc. WCRE, 2010, pp. 119 – 128.

[14] C. Kapser and M. W. Godfrey, ““Cloning considered harmful” con-
sidered harmful: patterns of cloning in software”, Empirical Software
Engineering, 2008, 13(6): 645-692.

[15] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study
of code clone genealogies”, Proc. ESEC-FSE, 2005, pp. 187-196.

[16] J. Krinke, “A study of consistent and inconsistent changes to code
clones”, Proc. WCRE, 2007, pp. 170-178.

[17] J. Krinke, “Is cloned code more stable than non-cloned code?”, Proc.
SCAM, 2008, pp. 57-66.

[18] A. Lozano and M. Wermelinger, “Tracking clones’ imprint”, Proc.
IWSC, 2010, pp. 65-72.

[19] A. Lozano, and M. Wermelinger, “Assessing the effect of clones on
changeability”, Proc. ICSM, 2008, pp. 227-236.

[20] R. C. Miller, and B. A.Myers. “Interactive simultaneous editing of mul-
tiple text regions.”, Proc. USENIX 2001 Annual Technical Conference,
2001, pp. 161 – 174.

[21] M. Mondal, C. K. Roy, and K. A. Schneider, “Connectivity of Co-
changed Method Groups: A Case Study on Open Source Systems”, Proc.
CASCON, 2012, pp. 205-219.

[22] M. Mondal, C. K. Roy, and K. A. Schneider, “Automatic Ranking of
Clones for Refactoring through Mining Association Rules”, Proc. CSMR-
WCRE, 2014, pp. 114 - 123.

[23] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K.
A. Schneider, “Comparative Stability of Cloned and Non-cloned Code:
An Empirical Study”, Proc. SAC, 2012, pp. 1227 – 1234.

[24] M. Mondal, C. K. Roy, and K. A. Schneider, “An Empirical Study on
Clone Stability”, ACM SIGAPP Applied Computing Review, 2012, 12(3):
20 – 36.

[25] M. Mondal, C. K. Roy, and K. A. Schneider, “Prediction and Ranking
of Co-change Candidates for Clones”, Proc. MSR, 2014, pp. 32 – 41.

[26] M. Mondal, C. K. Roy, and K. A. Schneider, “Insight into a method co-
change pattern to identify highly coupled methods: An empirical study”,
Proc. ICPC, 2013, pp. 103 – 112.

[27] M. Mondal, C. K. Roy, and K. A. Schneider, “Improving the detection
accuracy of evolutionary coupling by measuring change correspondence”,
Proc. CSMR-WCRE, 2014, pp. 358 – 362.

[28] D. Rattan, R. Bhatia, M. Singh, “Software Clone Detection: A System-
atic Review”, Information and Software Technology, 2013, 55(7): 1165
– 1199.

[29] C. K. Roy, “Detection and analysis of near-miss software clones”, Proc.
ICSM, 2009, pp. 447 – 450.

[30] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion”, Proc. ICPC, 2008, pp. 172 – 181.

[31] C. K. Roy, J. R. Cordy and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
Science of Computer Programming, 2009, 74 (2009): 470 – 495.

[32] C. K. Roy, J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Code Clone Detection Tools”, Proc. Mutation,
2009, pp. 157 – 166.

[33] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, “An
empirical study on the maintenance of source code clones”, Empirical
Software Engineering, 2009, 15(1): 1-34.

[34] M. Toomim, A. Begel, and S. L. Graham. “Managing duplicated code
with linked editing”, Proc. IEEE Symposium on Visual Languages and
Human Centric Computing, 2004, pp. 173 – 180.

[35] T. Wang, M. Harman, Y. Jia, J. Krinke, “Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation”, Proc. ESEC/SIGSOFT
FSE, 2013, pp. 455 – 465.

[36] M. F. Zibran, and C. K. Roy, “Conflict-aware Optimal Scheduling of
Code Clone Refactoring”, IET Software, 2013, 7(3): 167 – 186.

[37] T. Zimmermann, P. Weisgerber, S. Diehl, A. Zeller, “Mining version
histories to guide software changes”, Proc. ICSE, 2004, pp. 563–572.


