
Detecting Clones across Microsoft .NET
Programming Languages

Farouq Al-omari±, Iman Keivanloo*, Chanchal K. Roy±, Juergen Rilling*

±Department of Computer Science
University of Saskatchewan

Saskatoon, Canada
 {faa634, ckr353}@mail.usask.ca

*Department of Computer Science
Concordia University,

Montreal, Canada
{i_keiv, rilling}@cse.concordia.ca

Abstract—The Microsoft .NET framework and its language
family focus on multi-language development to support
interoperability across several programming languages. The
framework allows for the development of similar applications
in different languages through the reuse of core libraries. As a
result of such a multi-language development, the identification
and traceability of similar code fragments (clones) becomes a
key challenge. In this paper, we present a clone detection
approach for the .NET language family. The approach is based
on the Common Intermediate Language, which is generated by
the .NET compiler for the different languages within the .NET
framework. In order to achieve an acceptable recall while
maintaining the precision of our detection approach, we define
a set of filtering processes to reduce noise in the raw data. We
show that these filters are essential for Intermediate Language-
based clone detection, without significantly affecting the
precision of the detection approach. Finally, we study the
quantitative and qualitative performance aspects of our clone
detection approach. We evaluate the number of reported
candidate clone-pairs, as well as the precision and recall (using
manual validation) for several open source cross-language
systems, to show the effectiveness of our proposed approach.

Index Terms—cross-language clone detection, intermediate
language, binary, multi-language, similarity component.

I. INTRODUCTION

Large software systems contain 10-15% of duplicated
code which is also referred to as code clone [1]. Clones occur
due to several reasons, such as software developers
intentionally practice cloning to save time during software
development, especially when reusing complete functional
units. On the other hand, developers also unintentionally
produce clones, by re-implementing similar functionality
(code fragments) that already exists in the same system or
another existing system.

In general, code clones are considered harmful and can
reduce the quality of software [2, 3]. For example, when a
modification is performed to a cloned fragment, all other
instances of this fragment may require the same
modification. This task duplication requires not only
additional maintenance effort but also results often in
additional cost for the software project. On the other hand,
not all clones are considered as bad smells. Some cloning
patterns can benefit development and maintenance [1] and
are therefore sometimes even considered as essential or
unavoidable [4].

As software systems become larger, more complex, and
are being developed using more than one programming
language, clone management becomes an essential part of
the maintenance process. One approach to clone
management is the use of clone detection tools, which
discover the presence or absence of clones in a software
system. While single language clone detection has been
widely addressed and matured [5], only limited tool support
exists for clone detection in multi-language/cross-language
software development.

More recently there has been an ongoing trend towards
multi-language software development, to take advantage of
different programming languages [6] specifically in
the .NET context. For multi-language development, two key
usage scenarios can be distinguished: (1) combining different
programming languages within a single, often large and
complex system, and (2) use of several languages for re-
implementation of a current system to support new client,
application, or due to non-technical reasons (e.g. [7]). As a
result, the ability to detect and manage similar code reuse
patterns that might exist in these multiple languages systems
becomes essential.

Over the last decade a variety of detection tools have
been introduced [5, 8] which are typically based on parsing
Abstract Syntax Trees (AST) or dependency graphs. These
techniques use different matching approaches such as: string
(token) similarity, vector similarity, sub-graph isomorphism
or frequent set [8]. In addition, some clone detection tools do
not rely on source code. They [9, 10, 11] instead use
bytecode or intermediate representations as their input.

While many clone detection tools are capable of
supporting different programming languages, they lack
actual cross-language support during detection time.
Consequently, these tools only detect clones in one program
language at the time, and do not detect clones that span over
multiple programming languages. Few studies have been
conducted on multi-language clone detection. For example,
in [12] a unified representation for the .NET is used to detect
clones between VB .NET and C# at source code level.

Unlike early efforts, in this paper we focus on detecting
clones across all Microsoft .NET programming languages
(C#, C++ .NET, Visual Basic .NET, J# and F#) using
Microsoft’s Common Intermediate Language (CIL), as an
intermediate representation of the disassembled binary .NET
content.

In this research, we first highlight the importance of
cross-language clone detection for Intermediate Languages.
Second, since CIL is a low level human readable language,
one has to deal with a larger amount of code which leads to
additional textually variations and therefore new detection
challenges. We established several preprocessing steps for
the CIL code to optimize it for clone detection and to reduce
its content dissimilarity. Applying these different filtering
and optimizations techniques allows us to improve the
overall accuracy and performance of the clone detection. As
a result our research addresses several fundamental research
questions which are listed below.

RQ1: Are “the selected filters” useful? In this

experiment we observe how much it is likely that the
filtering approach contributes to the true positive ratio.

RQ2: Are “the filters” a major threat to the precision by
making non-cloned fragments similar to the actual clone
pairs (because of filtering some critical data)?

RQ3: Is our “clone detection approach” able to detect
cross-language clones on .NET using IL?

RQ4: How successful is the “clone detection approach”
in terms of precision and recall?

We conducted several case studies on four datasets

created from open source software systems written in C#, J#,
and VB.NET. We used one of the datasets as our oracle for
objective recall measurement. We applied three clone
detection algorithms to avoid algorithm-dependent
observation as much as possible. We manually investigated
~2K clone-pairs (randomly selected) to measure our
approach’s precision and recall. Finally, we observed that
our approach is able to detect high quality cross-language
clones successfully at method level granularity using
Intermediate Language.

The remainder of the paper is organized as follows. In
section 2 and 3 we provide the motivation and background
about CIL and adopted clone detection tools and algorithm.
Section 4 describes our proposed process and the filter set
details. Section 5 studies the necessity of using filters (RQ1).
We investigate the potential filters’ negative effect on
precision (RQ2) in Section 6. Finally, in Sections 7, 8 and 9
performance evaluation (RQ3 and 4), related work, and
paper conclusion are presented.

II. MOTIVATION - THE NECESSITY FOR UNIFIED

REPRESENTATION

In order to evaluate the necessity of using a unified
representation (e.g., CIL or Kraft et al. [12] approach) as an
intermediate representation for cross-language clone
detection, we conducted some case studies. The objective of
these studies is to establish a comparison between selected
unified source code representation (CIL in the context of our
research) and source code-based clone detection for cross-
language clone detection.

For the case study, we adopt a language-independent
comparison engine (the clone detection tool). Second, we
feed source code from different languages to the function.

Finally, we repeated the clone detection process on the
corresponding CIL content. We analyze the effect of the
cross-language clone detection, by replacing CIL with the
actual source code written in different programming
languages. We conducted a quantitative study to evaluate
and compare the detection results. For the study we detect
cross-language clones in the different Mono compiler [13]
versions (implemented either in C# or VB.NET), as well as
the ASXGUI [14] C# and VB.NET versions. We then
analyzed the reported clone clusters for both CIL and source
code (Table 1).

TABLE I. COMPARISON BETWEEN CLONE DETECTED USING CIL OR
SOURCE CODE AS INPUT

Dataset

Input Data Type
CIL Source Code

Clone
Class

Clone
Fragment

Clone Class # Clone
Fragment

ASXGUI 9 393 69 261
Mono 37 4373 369 1523

Observations. Compared to source code, using CIL

more cloned code fragments can be detected. Second, our
manual validation of the reported clones showed that many
of the missed clones at the source code level were actually
near-miss clones, with these clones containing more than one
line differences. In conclusion, CIL based clone clusters
always contained a larger number of code fragments with
low cohesion. However, the overall recall and precision at
the clone-pair level (not clone class) is higher compared to a
source code approach and therefore shows that an
intermediate language improves clone detection in a cross-
language setting.

III. BACKGROUND

In this section, first, we provide an overview of
Microsoft’s .NET Common Intermediate Language (CIL).
Second, we review the code clone concept and the
comparison algorithms used for this study.

A. Common Intermediate Language (CIL)

The .NET Framework1 is a software development
platform developed by Microsoft that runs primarily on
Windows. It consists of several components such as, (1) a
comprehensive library of commonly used functionalities, (2)
a runt-time management environment (language
independent), and (3) a set of programming languages.
Contrary to Java, which targets application development
using one language on several platforms, .NET aims for
multi-language development on a single platform. It provides
language interoperability, with each program module being
able to use code written in the other languages.

The source code of various .NET programming
languages (C#, Visual Basic .NET, Visual C++ .NET, J#, F#
etc.) is compiled into the CIL. When the .NET managed code
is compiled, the compiler first converts it into Common
Intermediate Language (CIL), a machine independent

1 http://www.microsoft.com/net

intermediate language, before compiling it into .NET
portable executable (PE). Visual Studio SDK includes a
disassembler “ildasm.exe” that takes the Portable Executable
(PE) file(s) and generates the CIL in human readable formats
such as plain text (e.g. Fig.1–Column #2).

CIL is an object-oriented, stack-based like assembly
language. It is also referred to as Microsoft Intermediate
Language (MSIL) or Intermediate Language (IL). CIL is a
platform independent language that can be executed in any
environment that supports the Common Language
Infrastructure. CIL itself is also a .NET programming
language, which can be in combination with the CIL .Net
compiler “ilasm.exe” also be used directly to develop
applications in CIL.

Examples and Challenges. Being a lower level

representation, CIL code size tends to be much larger than
traditional high-level source code. Figure 1 (the first two
columns) shows a comparison between a VB code fragment
(a small VB method), and its corresponding CIL
representation. In this example the method body with five
lines of code has been transformed to more than twenty lines
of code in CIL. This creates an additional challenge, making
clone detection on binary rather different from source code.

Nevertheless, given this common representation of code
fragments written in different programming languages
provides the ability to use CIL for clone detection
across .NET languages. However, a key challenge is the fact
that it is possible to have some dissimilarity at CIL level,
even in cases of semantically identical source code fragments
(written in different .Net languages). The first four columns
of Fig. 1 (the Raw Data section) provide an example for such
dissimilarities. Both the VB and C# methods implement the
same program following similar coding pattern and structure
as much as possible. However, when we compare the CIL
pairs, there are three key sections clearly distinguishable: (1)
identical CIL content which is marked by the first dashed
area, (2) the first point of dissimilarity which is flagged by
the italic font style, and (3) the rest of the content marked by
the second dashed box that covers CIL content with
considerable dissimilarity. In general, this example
highlights the key challenge in binary clone detection, the
possibility of facing dissimilarity by exploiting .NET
Intermediate Language even for semantically (and almost
syntactically) identical fragments in cross-language context.

B. Source Code Clones

Two code fragments that share some degree of similarity
are typically considered a clone pair. Based on their actual
similarity, clone pairs can be categorized [5, 8] as Type-1,
Type-2, Type-3, and Type-4 clones. Type-1 clones are exact
copies of each other, except for possible differences in
whitespaces, layouts and comments. Type-2 clones are
syntactically identical fragments except for variations in
identifiers, literals, data types, whitespace, layouts and
comments. Copied fragments (e.g., Type-1 and Type-2
clones) with further modifications such as additions,
deletions and changes of statements are called Type-3
clones. Type-2 and Type-3 clones are also known as near-

miss clones. Code fragments that perform the same
computation (e.g., semantically similar) but implemented
through different syntactic variations are called Type-4
clones. Note that all of these definitions were originally
introduced for clone-pairs implemented in the same
programming language. In our cross-language clone research
these definitions are no longer applicable as-is, and have to
be refined to meet our research context. For example, the VB
and C# fragments in Fig. 1 would be considered Type-1
clones in the cross-language clone detection since they are
essentially performing the same task implemented in
different programming languages.

C. Clone Detection Algorithms

In our research we use SimHash [15], Longest Common
Subsequence (LCS) [16], and Levenshtein Distance [17]
algorithms to detect clone-pairs. Note that the first two
techniques are adopted from SimCad [18] and NiCad [19]
respectively. Our primary research goal is to address clone
detection challenges in the .NET Intermediate Language by
providing solutions which are general applicable and
independent of a specific clone detection algorithm. We
therefore selected three dominant algorithms for modeling
edit distance in this paper to avoid an algorithm specific
solution.

1) LCS-Based Clone Detection
The Longest Common Subsequence (LCS) [16]

algorithm detects the longest common subsequence between
two strings. For example, consider the following two
sequences of characters.

S1 = AABBBCDABCDDAABD
S2 = DDABCCCDAABBBDAC

For the above example, the LCS among the S1 and S2
sequence is ABCDABDA. For our cross-language clone
detection we applied LCS to the CIL instruction sequences in
order to determine the LCS similarity of CIL code fragments
(e.g. highlighted part in Fig. 1). The LCS size is important
since it is the similarity measure we use to decide if two
fragments form a candidate clone-pair in our research.

2) Levenshtein Distance-based Clone Detection
Levenshtein Distance (LEV) [17] is one of most widely

used algorithms to calculate the edit distance. Contrary to
LCS (where the actual output is a string), LEV provides as
output the dissimilarity between two string sequences as a
single number value. We use LevSim (Eq. 1) and its output is
compared against a constant threshold value, to decide
whether two fragments (i.e. will be reported as
candidate clone-pairs.

 (

 (((
 (

3) SimHash-based Clone Detection

SimHash algorithm constitutes the core of SimCad. It
generates a 64-bit fingerprint, which we use to detect clones
based on their fingerprint similarities. The algorithm uses
Charikar's [20] hash function where the Hamming Distance
is used as the crucial configuration parameter.

Raw Data Processed Data (Filtered) & Sample Output (LCS)
VB CIL From VB C# CIL From C# CIL After Filtering LCS Result

 VB C# Using Raw Data Using Filtered Data

 Sub Main()

Dim x As Integer
 x = 10

 If x < 0 Then

x += 1

 Else
Console.WriteLine("Positive
number")
 End If

 End Sub

.method public static void Main() cil managed
{
 .entrypoint
 .custom instance void
[mscorlib]System.STAThreadAttribute::.ctor() = (01
00 00 00)
 // Code size 39 (0x27)
 .maxstack 2
 .locals init ([0] int32 x,
 [1] bool VBCGt_bool$S0)
 IL_0000: nop

 IL_0001: ldc.i4.s 10
 IL_0003: stloc.0

 IL_0004: ldloc.0
 IL_0005: ldc.i4.0
 IL_0006: clt
 IL_0008: stloc.1
 IL_0009: ldloc.1
 IL_000a: brfalse.s IL_0012

 IL_000c: ldloc.0
 IL_000d: ldc.i4.1
 IL_000e: add.ovf
 IL_000f: stloc.0
 IL_0010: br.s IL_0024
 IL_0012: nop

 IL_0013: ldstr "Positive number"
 IL_0018: call void
[mscorlib]System.Console::WriteLine(string)
 IL_001d: nop
 IL_001e: call valuetype
[mscorlib]System.ConsoleKeyInfo
[mscorlib]System.Console::ReadKey()
 IL_0023: pop
 IL_0024: nop
 IL_0025: nop
 IL_0026: ret
} // end of method Module1::Main

static void
main(string[] args)
{

int x=10;

if(x<0)

x++;

else
console.WriteLine
("Positive number");
}

.method private hidebysig static void Main(string[]
args) cil managed
{
 .entrypoint
 // Code size 33 (0x21)
 .maxstack 2
 .locals init ([0] int32 x,
 [1] bool CS$4$0000)

IL_0000: nop

 IL_0001: ldc.i4.s 10
 IL_0003: stloc.0

 IL_0004: ldloc.0
 IL_0005: ldc.i4.0
 IL_0006: clt
 IL_0008: ldc.i4.0
 IL_0009: ceq
 IL_000b: stloc.1
 IL_000c: ldloc.1
 IL_000d: brtrue.s IL_0015

 IL_000f: ldloc.0
 IL_0010: ldc.i4.1
 IL_0011: add
 IL_0012: stloc.0
 IL_0013: br.s IL_0020

 IL_0015: ldstr "Positive number"
 IL_001a: call void
[mscorlib]System.Console::WriteLine(string)
 IL_001f: nop
 IL_0020: ret
} // end of method Program::Main

 nop

 ldc
 stloc

 ldloc
 ldc
 clt
 stloc
 ldloc
 brfalse

 ldloc
 ldc
 add
 stloc
 br.s
 nop

 ldstr
 call

 nop
 call

 pop
 nop
 nop
 ret

 nop

 ldc
 stloc

 ldloc
 ldc
 clt
 ldc
 ceq
 stloc
 ldloc
 brtrue

 ldloc
 ldc
 add
 stloc
 br.s

 ldstr
 call

 nop
 ret

 .entrypoint

 .maxstack 2
 .locals init ([0] int32 x,

 IL_0000: nop

 IL_0001: ldc.i4.s 10
IL_0003: stloc.0

 IL_0004: ldloc.0
 IL_0005: ldc.i4.0
 IL_0006: clt

 nop

 ldc
 stloc

 ldloc
 ldc
 clt

 stloc

 ldloc
 ldc
 add
 stloc
 br.s

 ldstr
 call

 nop
 ret

Similarity Ratio (size)
 9 16

Fig. 1. First Part (Left Section): A C#/VB methods including their corresponding CIL – The example shows the challenges in clone detection using
Intermediate Language (e.g., larger size, unexpected dissimilarities in CIL). Second Part (Right Section): An example to show how our filtering proposal

contributes to the clone detection by improving the similarity (e.g., LCS) between fragments.

The Hamming Distance represents the number of positions
at which the corresponding bits are different between two
fingerprints. A Hamming distance of zero corresponds to
identical fingerprints and therefore also to Type-1 clones, while
a Hamming distance larger than zero reflects near-miss clones.

IV. CLONE DETECTION PROCESS (ACROSS .NET LANGUAGES)

Figure 2 shows the overall processing steps for detecting
clones across Visual Studio .NET programming languages.
First, the .NET language source code is collected and compiled,
to obtain the .NET portable executable files. During the second
processing step, the disassembling of corresponding executable
files takes place through the Microsoft’s Intermediate
Language Disassembler (ildasm.exe). The disassembler
generates the CIL code as plain text files. The CIL files are
then parsed to extract all method/function bodies. In the next
step, we apply our filters on the CIL code. They play a key role
in our approach since they eliminate undesirable noise and
improve the overall quality of the CIL files. After applying the
filters on the CIL, we run the selected comparison algorithms
to detect clone-pair candidates. As part of this clone detection
phase, we use, (1) LCS, (2) Levenshtein Distance and (3)
SimHash-based algorithms. Finally, a clone-pair report will be
generated for both CIL and source code (by mapping the CIL
clones to their corresponding source code).

A. The Motivation for the Filter Set

Figure 1 shows an example of a program snippet written in
C# and VB including their corresponding CIL representations.
The key challenge (as discussed earlier): although both
methods implement the same program and are compiled into
the same Intermediate Language, still there is some
dissimilarity in their intermediate representations which can
affect the clone detection process. We address this challenge by
creating a set of cleaning and filtering steps for CIL to improve
the performance of Type-1, Type-2, Type-3 and Type-4 clone
detection in the CIL code. The filters are designed to improve
the detection rate (i.e., recall) since the CIL data contains a
significant amount of noise (e.g., reference numbers to string
tables, which are compilation context dependent). Due to such
noise in the CIL files, two semantically identical source code
fragments might no longer be considered as highly similar at
the CIL level (e.g., content similar VB and C# methods might
have less than 50% similarity at the CIL level, see Fig. 1).

B. Overview of the Proposed Filters

Prior to the actual filtering process a pre-processing step
takes place that removes all directives
(e.g., .method, .entrypoint, and .maxstack) that
appear at the beginning of the CIL representation of a particular
method. After this preprocessing step, the actual CIL code
sequences are analyzed and filtered accordingly. In what
follows we provide a summary of the eight filters we create
(Table 2) and provide an example for each filter.

Id
e

n
tic

a
l C

IL

S
im

ila
r C

IL
 p

a
tte

rn

w
ith

 d
is

s
im

ila
rity

F
irs

t p
o

in
t o

f
d

is
s

im
ila

rity

(C
IL

)

Input: .Net Code

Source Code

MS .NET

EXE & DLL

CIL Manipulation
for Clone Detection

Proposed Filtering
Mechanism

Clone Detection
Algorithms

SimHash-based
(from SimCad)

Levenshtein
Distance-based

Clone Analysis

Clone Clusters

Merging

Source Code
Mapping

Reporting

Report (CIL)

Report (Src Code)

LCS-based
(from NiCad)

IlDasm.exe

CIL (plain text)

Fig. 2. Schematic diagram for the proposed cross-language clone detection and result evaluation

TABLE II. EXAMPLES OF CIL FILTERS

 Before
Filtering

After
Filtering

Example
Description

Filter 1 IL_0003: stloc.0 stloc.0 Where IL_0003 is the
instruction address

Filter 2 brtrue.s IL_0015 brtrue.s The IL_0015 address of the
branch destination

Filter 3 ldarg 3
starg 1

ldarg
starg

The value 3&1 represent
argument number

Filter 4 ldc.i4.s 10 ldc.i4.s 10 is the number (pushed to
the stack)

Filter 5 ldstr "Positive number" ldstr “positive number” is the

printed string constant
Filter 6 stloc 7

stloc

7 represents variable index

Filter 7 ldc.i4.s 10 ldc i4 represent the int32 data
type in CIL and s for Short

Filter 8 IL_0011: add
IL_0012: stloc.0
IL_0013: br.s IL_0020
IL_001a: call void
[mscorlib]System.Console:
:WriteLine (string)

add
stloc

br
call

Note that Filter 8 is just a
nick name. Refer to the

Filter 8 description section
for more details.

Filter 1: Removal of the instruction address (IL_xxxx:) at

the begin of each CIL instruction, eliminating dissimilarities
due to application/environment specific variations.

Filter 2: Removal of instruction address (IL_xxxx:) for
branching statement. As part of this filtering step we cover all
33 branching statements (e.g. beq, beq.s, bge).

Filter 3: Removal of integer values that represent argument
number in CIL. e.g. ldarg 3 is interpreted in CIL as load the
argument number 3 onto the stack. Instructions included in this
filter are: starg, starg.s, ldrag, ldrag.s, ldrags,
and ldraga.s.

Filter 4: This filter eliminates constants in the CIL code,
e.g. “ldc.i4 num” which corresponds to a Push num of type
int32 onto the stack as int32. Instructions covered by this filter
are ldc.i4, ldc.i8, ldc.r4, ldc.r8, and ldc.i4.s.

Filter 5: This filter removes all print literals in the CIL
code, which are identified through ldstr statements.

Filter 6: This filter removes all variable indexes like stloc
index, which correspond to popping a value from stack into a
local variable. Among the instructions removed by this filter
are: ldloc, ldloc.s, ldloca.s, stloc and stloc.s.

Filter 7: This filter removes some additional data types
and constant integers such as i4 from “ldc.i4. 1”. The complete
command pushes 1 as an int32 onto the stack.

Filter 8: Is not actually a new filter, it combines all seven
filtering techniques mentioned above, including the
preprocessing tasks in one single filter.

V. FILTERS’ CONTRIBUTION EVALUATION

As discussed earlier, we propose this filter set to increase
the recall (by reducing noise and dissimilarity in the CIL code)
and to be able to detect other valuable clone types such as type-
3 clones. For example in Fig. 1, we were able to successfully
increase the similarity ratio of the clone-pair from 9 (before
filtering) to 16 (after applying filtering). In order to answer in
more detail our first research question (RQ1), we conduct an
experimental evaluation to determine how much our filtering
approach actually contributes to the true positive ratio and its
benefits to the overall detection process.

To answer this question, we defined a metric called Filter
Contribution that measures the effectiveness of each filter. The
underlying idea is to measure the similarity degree of candidate
clone-pairs before and after applying different filters. The
measure will indicate how much a particular filter increases the
similarity value between two fragments. Note that in the ideal
case, we expect that a filter would increase the similarity values
of true positive cases significantly more than the ones for false
positive cases. Otherwise, a particular filter would not be useful
to discriminate (with high confidence) against false positives.
The Filter Contribution (FltrCntrb) function is defined in Eq.
(2), which is based on LCS-based similarity. denotes the
participant fragments in the clone-pair under investigation and
 presents the filter function with x being the filter number.

 (
 (

[((] ⁄
 (

 (((((

The challenging part of this experiment was to identify

proper input data, due to external constraints caused by the
availability of .NET source code on the Internet. More
specifically, the challenge was that we had to identify similar
systems written in more than one .NET language. Fortunately,
the iText.NET package [21] (note that it is different from iText
project [7]), met our input constraint. Although iText.NET is
originally written in J#, it includes C#, VB, and J# methods for
its 25 major use cases. Therefore, our first dataset (a.k.a.
Cloned Fragments Dataset) contains 25 clone classes, with
each clone class having three clone fragments, with a code
fragments being implemented using in three different .NET
programming languages (C#, VB and J#). Note that we
mutually created three true positive clone pairs by following
the VB-C#, VB-J#, and C#-J# patterns for each use case using
the iText.NET API usage code [21] (Example Code Section).

This approach resulted in 75 distinct clone pairs (i.e., actual
true positive clone-pairs). The second dataset (a.k.a., Non-
cloned Fragments Dataset) contains 25 non-clone classes and
75 false positive clone-pair candidates created in the same
manner as clone classes. We want both tagged datasets to be
able to answer RQ1 (i.e. whether filtering has any
positive/negative effects on cross-language clone detection).

We then measured the Filter Contribution value for each
filter when applied on both datasets. The result for each data set
is shown in Fig. 4 and Fig. 5. We excluding Filter 8, since this
filter does not introduce a new threat (i.e., no negative effect) to
our clone detection approach, since this filter only engages all
other filters. In most cases the filters increased the similarity up
to ~0.2 (max) for non-cloned pairs while improving the
similarity of cloned pairs by at least ~0.3. This result supports
our research hypothesis that filtering increases the similarity
values for true positive cases (the cloned dataset) with a higher
ratio than the false positive cases (the non-cloned dataset).
Comparing the results of Filter 8 between Fig. 4 and 5, it is
observable that the answer to RQ1 is positive since the overall
contribution of the filters improves the similarity degree on
actual cloned pairs much more than for non-cloned fragments
(non-cloned pairs less than 0.5, while for the majority of cloned
pairs the similarity increases between 0.5 and 0.8.

To support our claim, we conducted another case study on
the same dataset to determine if our filters can be used to
identify an appropriate similarity threshold. Figure 3
summarizes the findings, showing that before applying our
filters, there was no clear distinction between similarity values
of actual clone-pairs (true positives) and false positives.
Therefore it is impossible to determine an adequate threshold
that allows separating actual clones from false positives. In
contrast, Fig. 3 shows that filters address this problem by
increasing the distance between the two groups (tagged on the
right side of Fig. 3). For example, using our filters, a threshold
from 0.4 to 0.55 can separate true positives from false positives
with high confidence. Our analysis therefore supports the
usefulness and necessity of the proposed filter set (RQ1) for
cross-language clone detection on CIL.

VI. DOES FILTERING MAKE ACTUAL CLONE-PAIRS AND NON-
CLONED PAIRS SIMILAR?

A major threat to any filter-based approach is the loss of
precision by filtering out essential data. As a result, excessive
or improper loss of data (due to filtering) can lead to situation
where non-answers and actual answers become similar to the
decision making algorithm, which eventually leads to an
increase in the false positive ratio.

In this research, we are interested to observe the similarity
between actual clones and non-cloned fragments after filtering
(to answer RQ2). Apparently, we prefer to have fewer similar
entities when we compare members of actual clone-pairs with
other paired fragments (i.e. non-cloned fragments) to support
the applicability of our filtering approach.

In order to observe the similarity/dissimilarity of code
fragments we adopt the Chernoff face [22] visualization
approach. The Chenoff face visualization represents data as
glyphs similar to human faces while each dimension is being
mapped to a specific feature of the face (e.g., the Filter #5
similarity contribution value determines the distance between

eyes for each clone-pair). We application of glyphs in software
visualization is a well-established research area (e.g. [23]).

For our controlled experiment, we produced seven face
features for each pair by calculating Filter Contribution on all
seven filters separately. That is, each pair can be modeled using
a vector in a multi-dimensional space (in our case, seven
dimensions). Based on this assumption, two sub research
questions arose (RQ2 breakdown): (RQ2-a) “do filters make
actual clone-pairs similar to non-cloned pairs?”. In other words,
“is the filtering approach misleads the clone detection approach
to report a false positive as clone-pair?” or “is filtering a major
threat to false positive ratio of cross-language clone detection
using CIL?”, and (RQ-b) “is filtering neutral to the
participating programming languages of clone-pairs (in cross-
language clone detection context)?”.

Figures 6(a) and 6(b) show the result for two datasets
(similar data as in Section IV). By comparing the faces
between Figs. 6(a) and 6(b), it is possible to answer the RQ2-a:
filtering does not make non-cloned pairs similar to actual
clones. Therefore filtering becomes not a major threat for the
precision in our research. For example, we can observe that
there are more distorted and super tiny faces (i.e., pairs - e.g.
the second face of Fig. 6(a)) available in Fig. 6(a) which
contains non-cloned pairs than Fig. 6(b). The issue can be
attributed to Filter 1, 2, and 5 since they are mapped to: (1) the
face size, (2) distance between forehead and jaw, and (3)
distance between eyes respectively. Therefore, it is also
possible to intuitively observe that Filter 1, 2, and 5 (including
Filter 7 observed in Fig. 5) play the major role in
characterization of true positives.

To answer RQ2-b, we categorized the clone pairs based on
the programming language. Figs. 6(c) and 6(d) illustrate the
result. For example, the top category in Fig. 6(c) contains all
pairs where the first fragment is written in VB and the other
fragment is in C#. As it is obvious C#-J# pairs in Fig. 6(d)
(cloned pairs) are different. That is most of the faces are not
round shaped comparing to the two other groups in Fig. 6(d).
The same pattern is observable in Fig. 6(c) C#-J# category
which contains mostly non-rounded shaped faces. Therefore,
we can confirm RQ2-b, filters are independent of the
programing language. This observation can be attributed to the
resemblance between C# and J# languages and their history
where the IL content becomes highly similar where we filter
out the line numbers (i.e., Filter 1 and 2).

Fig. 3. Filters’ contribution to discriminate between actual clone pairs and
non-cloned pairs

Fig. 4. Filtering Effects on the Cloned Dataset Fig. 5. Filtering Effects on the Non-cloned Dataset

Fig. 6. Filter Contribution data are mapped to multi-dimensional space to investigate the importance of filters and language dependency using glyph

visualization. Note that numbers are used for referencing purposes in this figure (i.e. there is no ordering relation between faces etc. specifically between faces in
the left and right hand sides – in short each face represents just one candidate clone-pair)

VII. EVALUATION

In this section, we present the evaluation results from our
cross-language clone detection using Intermediate Language on
four .NET systems. We analyze the clone detection results
from a qualitative and quantitative perspective, using three edit
distance methods (LCS, LEV, SimHash) to answer RQ3 and
RQ4. Note, all datasets used for the evaluation include at least
two .NET languages.

The first dataset contains two versions of the ASXGUI [14]
open source GUI encoder. The dataset contains Version 3.0 and
2.5 since its current version (Ver. 3.0) is developed in C#,
while the earlier implementation was based on VB.NET.
ASXGUI Ver. 2.5 consists of 47 VB.NET files with a total of
32594 lines of source code and 303 functions. ASXGUI v 3.0
on the other hand, consists of 19 C# files with 2088 lines of
source code, and 78 functions. The combined number of files
being analyzed is 66 files with a total of 34682 lines of source
code. The noticeable difference in project metrics (e.g., LOC)
can be attributed to the (1) dissimilarities in the programming
languages, and (2) re-engineering and refactoring tasks.

The second dataset is based on the C# and VB.NET
compilers from Mono [13], version 2.10. The C# compiler
consists of 57 C# files and the VB.NET compiler of 375 files,
with a combined number of 432 files and 4998 functions.

The other two systems used in iyr study are two PDF
libraries called iText and iText.NET. While their project names
are similar, both projects are completely independent from each
other. We created our third dataset from the iText (C# branch)
and iText.NET (J#) source code. The dataset contains more
than 600K LOC and 2.5K files.

We used part of iText.NET library to create our last dataset.
This dataset contains source code related iText.NET API usage
written in three languages (C#, J#, and VB.NET). This feature
makes the dataset an important resource for our study since it
allowed us to create a small (75 clone pairs) but controlled
dataset (i.e., all actual clones are aligned, tagged and known in
the cross-language), creating a unique oracle for further
analysis. We use this oracle to obtain precise recall and
precision measures, since the number of actual clones is
known. This is contrast to the other datasets, where recall and
precision measure cannot be computed as precisely, since the
actual number of clone-pairs is unknown.

A. Quantitative Evaluation

Figure 7 shows the total number of detected candidate
clone-pairs from the filter datasets using the three selected
distance measure algorithms. The results from this experiment
can be summarized as follows: (1) it is possible to detect
numerous candidate clone-pairs even for cross-language case
regardless of the underlying algorithm, (2) no candidate clone-
pair is detected for cross-language using 1.0 as the Similarity
Factor (i.e., the decision making threshold), which would only
report clone-pairs with complete identical content. Therefore,
even using filtering on highly similar cross-language clone-
pairs (e.g., Fig. 1), some dissimilarities will have to be handled
by by the clone detection approach. However, this is not the
case for single language clone detection (shown in Fig. 7), (3)
for all dataset, we can observe a major decrease in the number
of candidates when the threshold value is set to a range
between 0.6 and 0.8 (marked by ovals). Therefore, we can

conclude that the detected range can be recommended to the
end-user to provide an acceptable recall and precision (the
supporting argument is given in the qualitative evaluation
section). The only exception is SimHash, which reports for the
same thresholds a lower number of candidate clone-pairs. This
is due to the fact that SimHas uses a different threshold schema
compared to the other distance measure algorithms.

B. Qualitative Evaluation

Since a noticeable number of candidate clone-pairs have
been detected (Fig. 7) using the filtering approach, it is
necessary to evaluate the quality of our approach, by manually
validating the results (RQ4). We manually examine candidate
clone-pairs to determine whether they are true or false
positives. We investigated three distinct thresholds from the
selected range discussed in the previous section, which we
refer to as Extreme (threshold = 0.6), High (threshold 0.7), and
Normal (threshold – 0.8) configurations. The objective is to
observe the best and worst achievable true positive ratio using
the Normal, High and Extreme configurations. We also applied
random sampling since the total number of candidates even for
the chosen thresholds was considerably large (e.g., 10K clone-
pair). Finally, we evaluated ~2K candidate clone-pairs which
were selected randomly.

1) Challenges in Quality Assessment for Cross Language
Clone Detection.

 Quality evaluation is inherently challenging in our research
since there is no clear agreement on what constitutes true
positives (TP) and the various clone types definitions.
Therefore, we applied in our qualitative evaluation the
following approach: (1) since it is possible to easily locate with
confidence false positives among candidate clone-pairs, we
first tag all false positives; (2) we assume the rest as true
positive. However, in order to provide a more in depth quality
assessment, we also analyze the quality of the reported true
positives. One of the interesting example which we identified
in the ASXGUI dataset is the true positive shown in Fig. 8. For
this example it easy to select an appropriate corresponding
clone type based on the existing defacto clone definitions (e.g.
[8, 5]). Regardless of dissimilarities introduced by different
languages (e.g., VB.NET vs. C#), it is obvious that: (1) both
methods in this example are implementing the same
functionality, and (2) most importantly they are following the
same algorithm. Therefore, although we cannot select the clone
type, we consider such clone-pair candidates as strong true
positive in our qualitative evaluation. Therefore, we consider
all clone pairs similar to this example as strong TPs and label
them with E , and the remaining TPs are being labeled as S.

2) Quality Evaluation Result
Figure 9 reviews the findings of our quality evaluation from

manually assessing ~2K candidate clone-pairs (answering
RQ4). In general, using the Normal threshold all candidate
clone-pairs that were reported are true positive (100% TP). The
quality decreases with less restrictive thresholds. For example
using SimHash and the Extreme threshold, the reported TP
reduces to ~40%. The optimum, considering the trade-off
between precision and recall, was achieved using Levenshtein
Distance-based comparison with the High threshold (80% TP).
Nevertheless, this result is not 100% precise (threats to
validity) due to the sampling process and data dependency.

Fig. 7. Number of clone-pair candidates per (1) dataset, and (2) clone detection algorithm. Note that the Similarity Factor varies between 0 and 1. For example 1
is the strictest threshold which leads to detection of only exact content. The thin black lines show the linear trend for the corresponding case study. However they

appear as curved lines since the horizontal axis is logarithmic on purpose. Following this approach, it is possible to observe the major drop area (threshold) in
number of detected candidate clone-pair which is between 0.6 and 0.8 for almost all datasets and algorithms (with few exceptions).

*J# language only appears in iText & iText.NET dataset. +Note that the fluctuation in SimHash-based result is due to the internal SimCad logic

 private static string filename_nodir(string name)
 {
 int slash = -1, len = name.Length;
 for (int i = 0; i < len; i++)
 {
 string sub = name.Substring(i, 1);
 if (sub == "\\" || sub == "/")
 slash = i;
 }
 slash++;
 return name.Substring(slash, len - slash);
 }

 Function Filename_Nodir() As String
 Dim intFileName As Integer, intSlash As Integer, strFilename As String
 strFileName = editvid.video
 For intFilename = 1 To len(strFileName)
 If mid(strfilename, intfilename, 1) = "\" Or mid(strfilename, intfilename, 1) = "/" Then
 intslash = intFilename
 End If
 Next
 Return mid(strFileName, intSlash + 1, len(strFilename) - intSlash)
 End Function

*The matching algorithm was limited to the content available
within the boxes (it was NOT aware of same method names)

C
#

V
B

.N
ET

Fig. 8. An example of two strongly similar clone-pair detected by our approach from ASXGUI. Even in case of major dissimilarity such as occurrence of mid

method in the VB section for several times, still our approach successfully detected the clone-pair.

Fig. 9. Result of true/false positive (within candidate clone-pairs) evaluation using manual analysis. Normal, High, and Extreme stand for corresponding

threshold from the selected range in the Quantitative Evaluation Section.

The other major aspect of our quality evaluation is the recall measurement (RQ4 recall section), which we calculated on our
only available oracle (iText.NET API). In our evaluation, we observed a recall of 76% using High threshold between three

languages (C#, J#, and VB.NET). Note, we did not compute the recall for the other datasets, due to the lack of an objective
assessment of what constitutes an actual TP for these dataset and consequently, would make any recall computation for these
datasets prone to subjectivity.

VIII. RELATED WORK

While there are numerous well-established clone detection tools available to support different programming languages [5, 8],
there exist only very limited research related to (1) cross language or (2) binary-level clone detection. In our review of previous
work we focus on these two research domains, since they are the closest related to our research. To the best of our knowledge,
C2D2 [12] is the only tool capable of detecting cross-language clones. It uses NRefactory Library to generate the Unified
CodeDOM graph for both C# and VB.NET. A string is generated by traversing this graph and targeted to string matching
algorithm.

There are a few but diverse approaches on Intermediate Language-based clone detection (focusing on single language clone
detection, mostly Java). One of the first studies on Intermediate Language clone detection is by Baker [10]. After some
preprocessing (e.g., remapping offsets), she uses three comparison techniques (e.g. Diff [24]) to find similar fragments. Davis et al.
[9] use the disassembler for both Java and C/C++ to detect clones in single language. They provide a public framework [25] for
pretty-printing of disassembled code which constitutes the baseline of the clone detection phase. The most interesting aspect of their
research is the proposed search algorithm for content matching which has two greedy and hill-climbing analysis steps. In [27] Selim
et al introduce “Jimple” [26] to detect clones using an intermediate representation. The motivation is to exploit Jimple
characteristics (comparing to stack-based Java native IL). Recently, Juricic [28] uses Intermediate Language code to detect
plagiarism and similarities. The approach is based on Levenshtein Distance as the similarity measure to compare disassembled C#
binary, and applies some primitive preprocessing techniques which are comparable to two of our filters. There are also some formal
approaches, such as by Santone [29] that transform Java bytecode to mathematical models for clone detection.

To the best of our knowledge, our study presents the first comprehensive research focusing on, (1) .NET clone detection, (2)
across programming languages, and (3) using Intermediate Language. Moreover, we not only proposed the approach, but also
evaluated its major potential threats using diverse statistical and intuitive analyses. Finally, we evaluated its performance using
manual validation to measure precision and recall. We observed a promising result in terms of both quantity and quality using three
clone detection techniques for C#, J#, and VB.NET cross language clone-pairs.

IX. CONCLUSIONS AND FUTURE WORK

With the globalization of the software industry and introduction of new programming languages, there has been an ongoing
trend towards combining or re-implementing systems using different programming languages. This poses a new challenge for
software comprehension, maintenance, clone management, and refactoring.

In this paper, we study a novel approach to detect cross-language clones in the Microsoft.NET Environment. In our research, we
exploit CIL an intermediate representation generated by .NET compiler from all .NET programming languages. We established a
filter set (containing 7 filters) which are applied to CIL prior to the actual clone detection process to remove noise in the dataset and
establish threshold values for the detection algorithms. Using face glyphs, we showed that the filters do not remove crucial data
from CIL and therefore have no negative effect on the clone detection. Finally, we performed a qualitative and quantitative study of
a clone detection approach on four datasets. We used three widely used edit-distance functions to allow for a generalization of our
observations and study results. In our evaluation, we observed that it is possible to detect a reasonable number (quantity) of clone-
pairs with acceptable precision (based on the configuration) and recall (quality).

As future work, we will further expand our study to include additional platform. We also plan to investigate the use of other
intermediate representations found in other frameworks, such as the unified bytecode generated by LLVM [30] compiler to detect
clones across LLVM programming languages. Moreover, we are going to start a comprehensive usability study using our clone
detection approach in an enterprise software development environment to observe the unexplored characteristics of multi-language
clone detection in software maintenance process.

REFERENCES
[1] C. Kapser and M. W. Godfrey. ““Cloning Considered Harmful” Considered Harmful: patterns of cloning in software”, J. Empirical Software Engineering,

Vol. 13, 2008, pp. 645-692.

[2] C. J. Kapser and M. W. Godfrey. “Supporting the analysis of clones in software systems”, J. Software Maintenance and Evolution: Research and Practice,
Vol. 18, 2006, pp. 61–82.

[3] B. S. Baker, “On Finding Duplication and Near-Duplication in Large Software System”, Proc. WCRE, 1995, pp. 86-95.

[4] M. Toomim, A. Begel, and S. L. Graham. “Managing duplicated code with linked editing”, Proc. VLHCC, 2004, pp 173–180.

[5] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code clone detection techniques and tools: A qualitative approach”, Science of
Com. Prog., vol. 74, no. 7, 2009, pp. 470-495.

[6] K. Kontogiannis, P. Linos, and K. Wong, “Comprehension and maintenance of large-scale multi-language software applications,” Proc. ICSM, 2006, pp.
497–500.

[7] iText. Website: http://itextpdf.com/, (Jul, 2012).

[8] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo. “Comparison and Evaluation of Clone Detection Tools”, IEEE TSE, Vol. 33 no. 9, 2007, pp.
577-591.

[9] I. Davis and M. Godfrey. “Clone detection by exploiting assembler”, Proc. IWSC, 2010, pp. 77-78.

[10] B. S. Baker and U. Manber, “Deducing similarities in Java source from bytecodes”, Proc. ATEC, 1998, pp. 179-190.

[11] B. S. Baker. “On finding duplication and near-duplication in large software systems”, Proc. WCRE, 1995, pp. 86-95.

[12] N. Kraft, B. Bonds, and R. Smith. “Cross-language clone detection”, Proc. SEKE, 2008, pp 54 – 59.

[13] Mono. Website: http://www.mono-project.com/, (APR, 2012).

[14] ASXGUI. Website: http://sourceforge.NET/projects/asxgui/, (APR, 2012).

[15] C. Sadowski and G. Levin. “SimHash: Hash-based Similarity Detection”. Technical report, Google, December 2007.

[16] J. W. Hunt and T. G. Szymanski. “A fast algorithm for computing longest common cubsequences.” Communications of the ACM, Vol. 20, no. 5, 1977, pp.
350-353.

[17] V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and reversals", DAN, vol. 163, no. 4, pp. 845-848, 1965 (in Russian). English
translation in Soviet Phys. - DokI., vol. 10, no. 8, pp. 707-710, 1966.

[18] S. Uddin, C.K. Roy, K.A. Schneider, and A. Hindle, “On the Effectiveness of Simhash for Detecting Near-Miss Clones in Large Scale Software Systems”,
Proc. WCRE, 2011, pp. 13-22.

[19] C. K. Roy and J. R. Cordy. “NiCad: Accurate Detection of NearMiss Intentional Clones Using Flexible Pretty-Printing and Code Normalization", Proc.
ICPC, 2008, pp. 172-18.

[20] M. S. Charikar, “Similarity estimation techniques from rounding algorithms”. Proc. STOC, 2002, pp. 380-388.

[21] iText.NET. Website: http://www.ujihara.jp/iTextdotNET/en/index.html, (APR 2012).

[22] H. Chernoff, “The use of faces to represent points in kdimensional space graphically”, Journal of the American Statistical Association, Vol. 68, no. 342,
1973, pp. 361-368.

[23] M. C. Chuah, S.G. Eick, “Glyphs for software visualization”, Proc. IWPC, 1997, pp. 183 – 191.

[24] J. W. Hunt and M. D. McIlroy. "An Algorithm for Differential File Comparison", Computing Science Technical Report, Bell Laboratories. 1975.

[25] I. J. Davis and M. W. Godfrey, “From Whence It Came: Detecting Source Code Clones by Analyzing Assembler”, Proc. WCRE, 2010, pp. 242–246.

[26] Soot Framework. Website: http://www.sable.mcgill.ca/soot, (APR 2012).

[27] G. M. K. Selim, K. C. Foo and Y. Zou. “Enhancing Source-Based Clone Detection Using Intermediate Representation”, Proc. WCRE, 2010, pp. 227-236.

[28] V. Juricic, “Detecting source code similarity using low-level language”, Proc. ITI, 2011, pp. 597-602.

[29] A. Santone, “Clone detection through process algebras and Java bytecode”, Proc. IWSC, 2011, pp. 73-74.

[30] The LLVM compiler infastructure. Website: http://www.llvm.org/, (APR, 2012).

