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Abstract—The Microsoft .NET framework and its language 
family focus on multi-language development to support 
interoperability across several programming languages. The 
framework allows for the development of similar applications 
in different languages through the reuse of core libraries. As a 
result of such a multi-language development, the identification 
and traceability of similar code fragments (clones) becomes a 
key challenge. In this paper, we present a clone detection 
approach for the .NET language family. The approach is based 
on the Common Intermediate Language, which is generated by 
the .NET compiler for the different languages within the .NET 
framework. In order to achieve an acceptable recall while 
maintaining the precision of our detection approach, we define 
a set of filtering processes to reduce noise in the raw data. We 
show that these filters are essential for Intermediate Language-
based clone detection, without significantly affecting the 
precision of the detection approach. Finally, we study the 
quantitative and qualitative performance aspects of our clone 
detection approach. We evaluate the number of reported 
candidate clone-pairs, as well as the precision and recall (using 
manual validation) for several open source cross-language 
systems, to show the effectiveness of our proposed approach. 

Index Terms—cross-language clone detection, intermediate 
language, binary, multi-language, similarity component. 

I.  INTRODUCTION 

Large software systems contain 10-15% of duplicated 
code which is also referred to as code clone [1]. Clones occur 
due to several reasons, such as software developers 
intentionally practice cloning to save time during software 
development, especially when reusing complete functional 
units. On the other hand, developers also unintentionally 
produce clones, by re-implementing similar functionality 
(code fragments) that already exists in the same system or 
another existing system.  

In general, code clones are considered harmful and can 
reduce the quality of software [2, 3]. For example, when a 
modification is performed to a cloned fragment, all other 
instances of this fragment may require the same 
modification. This task duplication requires not only 
additional maintenance effort but also results often in 
additional cost for the software project. On the other hand, 
not all clones are considered as bad smells. Some cloning 
patterns can benefit development and maintenance [1] and 
are therefore sometimes even considered as essential or 
unavoidable [4].  

As software systems become larger, more complex, and 
are being developed using more than one programming 
language, clone management becomes an essential part of 
the maintenance process. One approach to clone 
management is the use of clone detection tools, which 
discover the presence or absence of clones in a software 
system. While single language clone detection has been 
widely addressed and matured [5], only limited tool support 
exists for clone detection in multi-language/cross-language 
software development.  

More recently there has been an ongoing trend towards 
multi-language software development, to take advantage of 
different programming languages [6] specifically in 
the .NET context. For multi-language development, two key 
usage scenarios can be distinguished: (1) combining different 
programming languages within a single, often large and 
complex system, and (2) use of several languages for re-
implementation of a current system to support new client, 
application, or due to non-technical reasons (e.g. [7]). As a 
result, the ability to detect and manage similar code reuse 
patterns that might exist in these multiple languages systems 
becomes essential. 

Over the last decade a variety of detection tools have 
been introduced [5, 8] which are typically based on parsing 
Abstract Syntax Trees (AST) or dependency graphs. These 
techniques use different matching approaches such as: string 
(token) similarity, vector similarity, sub-graph isomorphism 
or frequent set [8]. In addition, some clone detection tools do 
not rely on source code. They [9, 10, 11] instead use 
bytecode or intermediate representations as their input.    

While many clone detection tools are capable of 
supporting different programming languages, they lack 
actual cross-language support during detection time. 
Consequently, these tools only detect clones in one program 
language at the time, and do not detect clones that span over 
multiple programming languages. Few studies have been 
conducted on multi-language clone detection. For example, 
in [12] a unified representation for the .NET is used to detect 
clones between VB .NET and C# at source code level.  

Unlike early efforts, in this paper we focus on detecting 
clones across all Microsoft .NET programming languages 
(C#, C++ .NET, Visual Basic .NET, J# and F#) using 
Microsoft’s Common Intermediate Language (CIL), as an 
intermediate representation of the disassembled binary .NET 
content. 



In this research, we first highlight the importance of 
cross-language clone detection for Intermediate Languages. 
Second, since CIL is a low level human readable language, 
one has to deal with a larger amount of code which leads to 
additional textually variations and therefore new detection 
challenges. We established several preprocessing steps for 
the CIL code to optimize it for clone detection and to reduce 
its content dissimilarity. Applying these different filtering 
and optimizations techniques allows us to improve the 
overall accuracy and performance of the clone detection. As 
a result our research addresses several fundamental research 
questions which are listed below. 

 
RQ1: Are “the selected filters” useful? In this 

experiment we observe how much it is likely that the 
filtering approach contributes to the true positive ratio.  

RQ2: Are “the filters” a major threat to the precision by 
making non-cloned fragments similar to the actual clone 
pairs (because of filtering some critical data)? 

RQ3: Is our “clone detection approach” able to detect 
cross-language clones on .NET using IL?  

RQ4: How successful is the “clone detection approach” 
in terms of precision and recall?  

 
We conducted several case studies on four datasets 

created from open source software systems written in C#, J#, 
and VB.NET. We used one of the datasets as our oracle for 
objective recall measurement. We applied three clone 
detection algorithms to avoid algorithm-dependent 
observation as much as possible. We manually investigated 
~2K clone-pairs (randomly selected) to measure our 
approach’s precision and recall. Finally, we observed that 
our approach is able to detect high quality cross-language 
clones successfully at method level granularity using 
Intermediate Language.  

The remainder of the paper is organized as follows. In 
section 2 and 3 we provide the motivation and background 
about CIL and adopted clone detection tools and algorithm. 
Section 4 describes our proposed process and the filter set 
details. Section 5 studies the necessity of using filters (RQ1). 
We investigate the potential filters’ negative effect on 
precision (RQ2) in Section 6. Finally, in Sections 7, 8 and 9 
performance evaluation (RQ3 and 4), related work, and 
paper conclusion are presented. 

II. MOTIVATION - THE NECESSITY FOR UNIFIED 

REPRESENTATION  

In order to evaluate the necessity of using a unified 
representation (e.g., CIL or Kraft et al. [12] approach) as an 
intermediate representation for cross-language clone 
detection, we conducted some case studies. The objective of 
these studies is to establish a comparison between selected 
unified source code representation (CIL in the context of our 
research) and source code-based clone detection for cross-
language clone detection. 

For the case study, we adopt a language-independent 
comparison engine (the clone detection tool). Second, we 
feed source code from different languages to the function. 

Finally, we repeated the clone detection process on the 
corresponding CIL content. We analyze the effect of the 
cross-language clone detection, by replacing CIL with the 
actual source code written in different programming 
languages. We conducted a quantitative study to evaluate 
and compare the detection results. For the study we detect 
cross-language clones in the different Mono compiler [13] 
versions (implemented either in C# or VB.NET), as well as 
the ASXGUI [14] C# and VB.NET versions. We then 
analyzed the reported clone clusters for both CIL and source 
code (Table 1).  

TABLE I.  COMPARISON BETWEEN CLONE DETECTED USING CIL OR 
SOURCE CODE AS INPUT 

Dataset 

Input Data Type 
CIL Source Code 

# Clone 
Class 

# Clone 
Fragment 

# Clone Class # Clone 
Fragment 

ASXGUI 9 393 69 261 
Mono 37 4373 369 1523 

 
Observations. Compared to source code, using CIL 

more cloned code fragments can be detected. Second, our 
manual validation of the reported clones showed that many 
of the missed clones at the source code level were actually 
near-miss clones, with these clones containing more than one 
line differences. In conclusion, CIL based clone clusters 
always contained a larger number of code fragments with 
low cohesion. However, the overall recall and precision at 
the clone-pair level (not clone class) is higher compared to a 
source code approach and therefore shows that an 
intermediate language improves clone detection in a cross-
language setting. 

III. BACKGROUND 

In this section, first, we provide an overview of 
Microsoft’s .NET Common Intermediate Language (CIL). 
Second, we review the code clone concept and the 
comparison algorithms used for this study.  

A. Common Intermediate Language (CIL) 

The .NET Framework1 is a software development 
platform developed by Microsoft that runs primarily on 
Windows. It consists of several components such as, (1) a 
comprehensive library of commonly used functionalities, (2) 
a runt-time management environment (language 
independent), and (3) a set of programming languages. 
Contrary to Java, which targets application development 
using one language on several platforms, .NET aims for 
multi-language development on a single platform. It provides 
language interoperability, with each program module being 
able to use code written in the other languages. 

The source code of various .NET programming 
languages (C#, Visual Basic .NET, Visual C++ .NET, J#, F# 
etc.) is compiled into the CIL. When the .NET managed code 
is compiled, the compiler first converts it into Common 
Intermediate Language (CIL), a machine independent 

                                                           
1       http://www.microsoft.com/net 



intermediate language, before compiling it into .NET 
portable executable (PE). Visual Studio SDK includes a 
disassembler “ildasm.exe” that takes the Portable Executable 
(PE) file(s) and generates the CIL in human readable formats 
such as plain text (e.g. Fig.1–Column #2). 

CIL is an object-oriented, stack-based like assembly 
language. It is also referred to as Microsoft Intermediate 
Language (MSIL) or Intermediate Language (IL). CIL is a 
platform independent language that can be executed in any 
environment that supports the Common Language 
Infrastructure. CIL itself is also a .NET programming 
language, which can be in  combination with the CIL .Net 
compiler “ilasm.exe” also be used directly to develop 
applications in CIL. 

 
Examples and Challenges. Being a lower level 

representation, CIL code size tends to be much larger than 
traditional high-level source code. Figure 1 (the first two 
columns) shows a comparison between a VB code fragment 
(a small VB method), and its corresponding CIL 
representation. In this example the method body with five 
lines of code has been transformed to more than twenty lines 
of code in CIL. This creates an additional challenge, making 
clone detection on binary rather different from source code. 

Nevertheless, given this common representation of code 
fragments written in different programming languages 
provides the ability to use CIL for clone detection 
across .NET languages. However, a key challenge is the fact 
that it is possible to have some dissimilarity at CIL level, 
even in cases of semantically identical source code fragments 
(written in different .Net languages). The first four columns 
of Fig. 1 (the Raw Data section) provide an example for such 
dissimilarities. Both the VB and C# methods implement the 
same program following similar coding pattern and structure 
as much as possible. However, when we compare the CIL 
pairs, there are three key sections clearly distinguishable: (1) 
identical CIL content which is marked by the first dashed 
area, (2) the first point of dissimilarity which is flagged by 
the italic font style, and (3) the rest of the content marked by 
the second dashed box that covers CIL content with 
considerable dissimilarity. In general, this example 
highlights the key challenge in binary clone detection, the 
possibility of facing dissimilarity by exploiting .NET 
Intermediate Language even for semantically (and almost 
syntactically) identical fragments in cross-language context. 

B.  Source Code Clones 

Two code fragments that share some degree of similarity 
are typically considered a clone pair. Based on their actual 
similarity, clone pairs can be categorized [5, 8] as Type-1, 
Type-2, Type-3, and Type-4 clones. Type-1 clones are exact 
copies of each other, except for possible differences in 
whitespaces, layouts and comments. Type-2 clones are 
syntactically identical fragments except for variations in 
identifiers, literals, data types, whitespace, layouts and 
comments. Copied fragments (e.g., Type-1 and Type-2 
clones) with further modifications such as additions, 
deletions and changes of statements are called Type-3 
clones. Type-2 and Type-3 clones are also known as near-

miss clones. Code fragments that perform the same 
computation (e.g., semantically similar) but implemented 
through different syntactic variations are called Type-4 
clones. Note that all of these definitions were originally 
introduced for clone-pairs implemented in the same 
programming language. In our cross-language clone research 
these definitions are no longer applicable as-is, and have to 
be refined to meet our research context. For example, the VB 
and C# fragments in Fig. 1 would be considered Type-1 
clones in the cross-language clone detection since they are 
essentially performing the same task implemented in 
different programming languages. 

C. Clone Detection Algorithms 

In our research we use SimHash [15], Longest Common 
Subsequence (LCS) [16], and Levenshtein Distance [17] 
algorithms to detect clone-pairs. Note that the first two 
techniques are adopted from SimCad [18] and NiCad [19] 
respectively. Our primary research goal is to address clone 
detection challenges in the .NET Intermediate Language by 
providing solutions which are general applicable and 
independent of a specific clone detection algorithm. We 
therefore selected three dominant algorithms for modeling 
edit distance in this paper to avoid an algorithm specific 
solution. 

1) LCS-Based Clone Detection 
The Longest Common Subsequence (LCS) [16] 

algorithm detects the longest common subsequence between 
two strings. For example, consider the following two 
sequences of characters. 

S1 = AABBBCDABCDDAABD 
S2 = DDABCCCDAABBBDAC 

For the above example, the LCS among the S1 and S2 
sequence is ABCDABDA. For our cross-language clone 
detection we applied LCS to the CIL instruction sequences in 
order to determine the LCS similarity of CIL code fragments 
(e.g. highlighted part in Fig. 1). The LCS size is important 
since it is the similarity measure we use to decide if two 
fragments form a candidate clone-pair in our research.  

2) Levenshtein Distance-based Clone Detection 
Levenshtein Distance (LEV) [17] is one of most widely 

used algorithms to calculate the edit distance. Contrary to 
LCS (where the actual output is a string), LEV provides as 
output the  dissimilarity between two string sequences as a 
single number value. We use LevSim (Eq. 1) and its output is 
compared against a constant threshold value, to decide 
whether two fragments (i.e.            will be reported as 
candidate clone-pairs. 
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3) SimHash-based Clone Detection 

SimHash algorithm constitutes the core of SimCad. It 
generates a 64-bit fingerprint, which we use to detect clones 
based on their fingerprint similarities. The algorithm uses 
Charikar's [20] hash function where the Hamming Distance 
is used as the crucial configuration parameter. 



Raw Data  Processed Data (Filtered) & Sample Output (LCS) 
VB CIL From VB C# CIL From C#  CIL After Filtering  LCS Result 

 VB C#  Using Raw Data Using Filtered Data 

    Sub Main() 
         
 
 
 
 
 
 
 
 
 
 
 
 
Dim x As Integer 
        x = 10 
 
 
 If x < 0 Then 
 
 
 
 
 
 
x += 1 
 
 
 
 
 
 
        Else      
Console.WriteLine("Positive 
number") 
        End If 
 
 
    End Sub 
 

.method public static void  Main() cil managed 
{ 
  .entrypoint 
  .custom instance void 
[mscorlib]System.STAThreadAttribute::.ctor() = ( 01 
00 00 00 )  
  // Code size       39 (0x27) 
  .maxstack  2 
  .locals init ([0] int32 x, 
           [1] bool VB$CG$t_bool$S0) 
  IL_0000:  nop 
 
  IL_0001:  ldc.i4.s   10 
  IL_0003:  stloc.0 
  
  IL_0004:  ldloc.0 
  IL_0005:  ldc.i4.0 
  IL_0006:  clt 
  IL_0008:  stloc.1 
  IL_0009:  ldloc.1 
  IL_000a:  brfalse.s  IL_0012 
   
 
 
  IL_000c:  ldloc.0 
  IL_000d:  ldc.i4.1 
  IL_000e:  add.ovf 
  IL_000f:  stloc.0 
  IL_0010:  br.s       IL_0024 
  IL_0012:  nop 
 
  IL_0013:  ldstr      "Positive number" 
  IL_0018:  call       void 
[mscorlib]System.Console::WriteLine(string) 
  IL_001d:  nop 
  IL_001e:  call       valuetype 
[mscorlib]System.ConsoleKeyInfo 
[mscorlib]System.Console::ReadKey() 
  IL_0023:  pop 
  IL_0024:  nop 
  IL_0025:  nop 
  IL_0026:  ret 
} // end of method Module1::Main 

static void 
main(string[] args) 
{ 
 
 
 
 
 
 
 
 
 
 
int x=10; 
 
 
 
 
if(x<0) 
 
 
 
 
 
 
x++; 
 
 
 
 
 
 
else 
console.WriteLine 
("Positive number"); 
} 

.method private hidebysig static void  Main(string[] 
args) cil managed 
{ 
  .entrypoint 
  // Code size       33 (0x21) 
  .maxstack  2 
  .locals init ([0] int32 x, 
   [1] bool CS$4$0000) 
   
 
IL_0000:  nop 
 
  IL_0001:  ldc.i4.s   10 
  IL_0003:  stloc.0 
 
  IL_0004:  ldloc.0 
  IL_0005:  ldc.i4.0 
  IL_0006:  clt 
  IL_0008:  ldc.i4.0 
  IL_0009:  ceq 
  IL_000b:  stloc.1 
  IL_000c:  ldloc.1 
  IL_000d:  brtrue.s   IL_0015 
 
  IL_000f:  ldloc.0 
  IL_0010:  ldc.i4.1 
  IL_0011:  add 
  IL_0012:  stloc.0 
  IL_0013:  br.s       IL_0020 
 
 
  IL_0015:  ldstr      "Positive number" 
  IL_001a:  call       void 
[mscorlib]System.Console::WriteLine(string) 
  IL_001f:  nop 
  IL_0020:  ret 
} // end of method Program::Main 

  
 
 
 
 
 
 
 
 
 
  nop 
 
  ldc 
  stloc 
  
  ldloc 
  ldc 
  clt 
  stloc 
  ldloc 
  brfalse 
   
 
 
  ldloc 
  ldc 
  add 
  stloc 
  br.s       
  nop 
 
  ldstr      
  call     
   
  nop 
  call        
 
 
  pop 
  nop 
  nop 
  ret 
 

 
 
 
 
 
 
 
 
 
 
   nop 
 
   ldc 
   stloc 
 
   ldloc 
   ldc 
   clt 
   ldc 
   ceq 
   stloc 
   ldloc 
   brtrue 
 
   ldloc 
   ldc 
   add 
   stloc 
   br.s    
 
 
   ldstr      
   call        
 
 
 
 
 
 
 
   nop 
   ret 
 

 
 
 
  .entrypoint 
   
 .maxstack  2 
 .locals init ([0]  int32 x, 
 
 
   
 IL_0000:  nop 
 
 IL_0001:  ldc.i4.s   10 
IL_0003:  stloc.0 
 
 IL_0004:   ldloc.0 
 IL_0005:   ldc.i4.0 
 IL_0006:  clt 
 
   
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
   nop 
 
   ldc 
   stloc 
 
   ldloc 
   ldc 
   clt 
   
   
   stloc 
 
 
 
   ldloc 
   ldc 
   add 
   stloc 
   br.s    
 
 
   ldstr      
   call        
 
 
 
 
 
 
 
   nop 
   ret 
 

Similarity Ratio (size) 
  9 16 

Fig. 1.  First Part (Left Section): A C#/VB methods including their corresponding CIL – The example shows the challenges in clone detection using 
Intermediate Language (e.g., larger size, unexpected dissimilarities in CIL). Second Part (Right Section): An example to show how our filtering proposal 

contributes to the clone detection by improving the similarity (e.g., LCS) between fragments.

The Hamming Distance represents the number of positions 
at which the corresponding bits are different between two 
fingerprints. A Hamming distance of zero corresponds to 
identical fingerprints and therefore also to Type-1 clones, while 
a Hamming distance larger than zero reflects near-miss clones. 

IV. CLONE DETECTION PROCESS (ACROSS .NET LANGUAGES) 

Figure 2 shows the overall processing steps for detecting 
clones across Visual Studio .NET programming languages. 
First, the .NET language source code is collected and compiled, 
to obtain the .NET portable executable files. During the second 
processing step, the disassembling of corresponding executable 
files takes place through the Microsoft’s Intermediate 
Language Disassembler (ildasm.exe). The disassembler 
generates the CIL code as plain text files. The CIL files are 
then parsed to extract all method/function bodies. In the next 
step, we apply our filters on the CIL code. They play a key role 
in our approach since they eliminate undesirable noise and 
improve the overall quality of the CIL files. After applying the 
filters on the CIL, we run the selected comparison algorithms 
to detect clone-pair candidates. As part of this clone detection 
phase, we use, (1) LCS, (2) Levenshtein Distance and (3) 
SimHash-based algorithms. Finally, a clone-pair report will be 
generated for both CIL and source code (by mapping the CIL 
clones to their corresponding source code). 

A. The Motivation for the Filter Set 

Figure 1 shows an example of a program snippet written in 
C# and VB including their corresponding CIL representations. 
The key challenge (as discussed earlier): although both 
methods implement the same program and are compiled into 
the same Intermediate Language, still there is some 
dissimilarity in their intermediate representations which can 
affect the clone detection process. We address this challenge by 
creating a set of cleaning and filtering steps for CIL to improve 
the performance of Type-1, Type-2, Type-3 and Type-4 clone 
detection in the CIL code. The filters are designed to improve 
the detection rate (i.e., recall) since the CIL data contains  a 
significant amount of noise (e.g., reference numbers to string 
tables, which are compilation context dependent). Due to such 
noise in the CIL files, two semantically identical source code 
fragments might no longer be considered as highly similar at 
the CIL level (e.g., content similar VB and C# methods might 
have less than 50% similarity at the CIL level, see Fig. 1). 

B. Overview of the Proposed Filters 

Prior to the actual filtering process a pre-processing step 
takes place that removes all directives 
(e.g., .method, .entrypoint, and .maxstack) that 
appear at the beginning of the CIL representation of a particular 
method. After this preprocessing step, the actual CIL code 
sequences are analyzed and filtered accordingly. In what 
follows we provide a summary of the eight filters we create 
( Table 2) and provide an example for each filter. 
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Fig. 2.  Schematic diagram for the proposed cross-language clone detection and result evaluation 

TABLE II.  EXAMPLES OF CIL FILTERS 

 Before 
Filtering 

After 
Filtering 

Example 
Description 

Filter 1 IL_0003:  stloc.0 stloc.0 Where IL_0003 is the 
instruction address 

Filter 2 brtrue.s   IL_0015 brtrue.s The  IL_0015 address of the 
branch destination 

Filter 3 ldarg 3 
starg 1 

ldarg 
starg 

The value 3&1 represent 
argument number 

Filter 4 ldc.i4.s   10 ldc.i4.s 10 is the number (pushed to 
the stack) 

Filter 5 ldstr "Positive number" ldstr “positive number” is the 

printed string constant 
Filter 6 stloc 7 

 
stloc 

7 represents variable index 

Filter 7 ldc.i4.s   10 ldc i4 represent the int32 data 
type in CIL and s for Short  

Filter 8 IL_0011:  add 
IL_0012:  stloc.0 
IL_0013:  br.s       IL_0020 
IL_001a:  call       void 
[mscorlib]System.Console:
:WriteLine (string) 

add 
stloc 

br 
call 

 

Note that Filter 8 is just a 
nick name. Refer to the 

Filter 8 description section 
for more details. 

 
Filter 1: Removal of the instruction address (IL_xxxx:) at 

the begin of each CIL instruction, eliminating dissimilarities 
due to application/environment specific variations.  

Filter 2: Removal of instruction address (IL_xxxx:) for 
branching statement. As part of this filtering step we cover all 
33 branching statements (e.g. beq, beq.s, bge). 

Filter 3: Removal of integer values that represent argument 
number in CIL. e.g. ldarg 3 is interpreted in CIL as load the 
argument number 3 onto the stack. Instructions included in this 
filter are: starg, starg.s, ldrag, ldrag.s, ldrags, 
and ldraga.s. 

Filter 4: This filter eliminates constants in the CIL code, 
e.g. “ldc.i4 num” which corresponds to a Push num of type 
int32 onto the stack as int32. Instructions covered by this filter 
are ldc.i4, ldc.i8, ldc.r4, ldc.r8, and ldc.i4.s. 

Filter 5: This filter removes all print literals in the CIL 
code, which are identified through ldstr statements. 

Filter 6: This filter removes all variable indexes like stloc 
index, which correspond to popping a value from stack into a 
local variable. Among the instructions removed by this filter 
are: ldloc, ldloc.s, ldloca.s, stloc and stloc.s. 

Filter 7:  This filter removes some additional data types 
and constant integers such as i4 from “ldc.i4. 1”. The complete 
command pushes 1 as an int32 onto the stack.  

Filter 8: Is not actually a new filter, it combines all seven 
filtering techniques mentioned above, including the 
preprocessing tasks in one single filter. 

V. FILTERS’ CONTRIBUTION EVALUATION 

As discussed earlier, we propose this filter set to increase 
the recall (by reducing noise and dissimilarity in the CIL code) 
and to be able to detect other valuable clone types such as type-
3 clones. For example in Fig. 1, we were able to successfully 
increase the similarity ratio of the clone-pair from 9 (before 
filtering) to 16 (after applying filtering). In order to answer in 
more detail our first research question (RQ1), we conduct an 
experimental evaluation to determine how much our filtering 
approach actually contributes to the true positive ratio and its 
benefits to the overall detection process.  

To answer this question, we defined a metric called Filter 
Contribution that measures the effectiveness of each filter. The 
underlying idea is to measure the similarity degree of candidate 
clone-pairs before and after applying different filters. The 
measure will indicate how much a particular filter increases the 
similarity value between two fragments. Note that in the ideal 
case, we expect that a filter would increase the similarity values 
of true positive cases significantly more than the ones for false 
positive cases. Otherwise, a particular filter would not be useful 
to discriminate (with high confidence) against false positives. 
The Filter Contribution (FltrCntrb) function is defined in Eq. 
(2), which is based on LCS-based similarity.    denotes the 
participant fragments in the clone-pair under investigation and 
   presents the filter function with x being the filter number.  
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The challenging part of this experiment was to identify 

proper input data, due to external constraints caused by the 
availability of .NET source code on the Internet. More 
specifically, the challenge was that we had to identify similar 
systems written in more than one .NET language. Fortunately, 
the iText.NET package [21] (note that it is different from iText 
project [7]), met our input constraint. Although iText.NET is 
originally written in J#, it includes C#, VB, and J# methods for 
its 25 major use cases. Therefore, our first dataset (a.k.a. 
Cloned Fragments Dataset) contains 25 clone classes, with 
each clone class having three clone fragments, with a code 
fragments being implemented using in three different .NET 
programming languages (C#, VB and J#). Note that we 
mutually created three true positive clone pairs by following 
the VB-C#, VB-J#, and C#-J# patterns for each use case using 
the iText.NET API usage code [21] (Example Code Section). 



This approach resulted in 75 distinct clone pairs (i.e., actual 
true positive clone-pairs). The second dataset (a.k.a., Non-
cloned Fragments Dataset) contains 25 non-clone classes and 
75 false positive clone-pair candidates created in the same 
manner as clone classes. We want both tagged datasets to be 
able to answer RQ1 (i.e. whether filtering has any 
positive/negative effects on cross-language clone detection).  

We then measured the Filter Contribution value for each 
filter when applied on both datasets. The result for each data set 
is shown in Fig. 4 and Fig. 5. We excluding Filter 8, since this 
filter does not introduce a new threat (i.e., no negative effect) to 
our clone detection approach, since this filter only engages all 
other filters. In most cases the filters increased the similarity up 
to ~0.2 (max) for non-cloned pairs while improving the 
similarity of cloned pairs by at least  ~0.3.  This result supports 
our research hypothesis that filtering increases the similarity 
values for true positive cases (the cloned dataset) with a higher 
ratio than the false positive cases (the non-cloned dataset). 
Comparing the results of Filter 8 between Fig. 4 and 5, it is 
observable that the answer to RQ1 is positive since the overall 
contribution of the filters improves the similarity degree on 
actual cloned pairs much more than for non-cloned fragments 
(non-cloned pairs less than 0.5, while for the majority of cloned 
pairs the similarity increases between 0.5 and 0.8.  

To support our claim, we conducted another case study on 
the same dataset to determine if our filters can be used to 
identify an appropriate similarity threshold. Figure 3 
summarizes the findings, showing that before applying our 
filters, there was no clear distinction between similarity values 
of actual clone-pairs (true positives) and false positives. 
Therefore it is impossible to determine an adequate threshold 
that allows separating actual clones from false positives. In 
contrast, Fig. 3 shows that filters address this problem by 
increasing the distance between the two groups (tagged on the 
right side of Fig. 3). For example, using our filters, a threshold 
from 0.4 to 0.55 can separate true positives from false positives 
with high confidence. Our analysis therefore supports the 
usefulness and necessity of the proposed filter set (RQ1) for 
cross-language clone detection on CIL.  

VI. DOES FILTERING MAKE ACTUAL CLONE-PAIRS AND NON-
CLONED PAIRS SIMILAR? 

A major threat to any filter-based approach is the loss of 
precision by filtering out essential data. As a result, excessive 
or improper loss of data (due to filtering) can lead to situation 
where non-answers and actual answers become similar to the 
decision making algorithm, which eventually leads to an 
increase in the false positive ratio. 

In this research, we are interested to observe the similarity 
between actual clones and non-cloned fragments after filtering 
(to answer RQ2). Apparently, we prefer to have fewer similar 
entities when we compare members of actual clone-pairs with 
other paired fragments (i.e. non-cloned fragments) to support 
the applicability of our filtering approach. 

In order to observe the similarity/dissimilarity of code 
fragments we adopt the Chernoff face [22] visualization 
approach. The Chenoff face visualization represents data as 
glyphs similar to human faces while each dimension is being 
mapped to a specific feature of the face (e.g., the Filter #5 
similarity contribution value determines the distance between 

eyes for each clone-pair). We application of glyphs in software 
visualization is a well-established research area (e.g. [23]). 

For our controlled experiment, we produced seven face 
features for each pair by calculating Filter Contribution on all 
seven filters separately. That is, each pair can be modeled using 
a vector in a multi-dimensional space (in our case, seven 
dimensions). Based on this assumption, two sub research 
questions arose (RQ2 breakdown): (RQ2-a) “do filters make 
actual clone-pairs similar to non-cloned pairs?”. In other words, 
“is the filtering approach misleads the clone detection approach 
to report a false positive as clone-pair?” or “is filtering a major 
threat to false positive ratio of cross-language clone detection 
using CIL?”, and (RQ-b) “is filtering neutral to the 
participating programming languages of clone-pairs (in cross-
language clone detection context)?”. 

Figures 6(a) and 6(b) show the result for two datasets 
(similar data as in Section IV). By comparing the faces 
between Figs. 6(a) and 6(b), it is possible to answer the RQ2-a: 
filtering does not make non-cloned pairs similar to actual 
clones. Therefore filtering becomes not a major threat for the 
precision in our research. For example, we can observe that 
there are more distorted and super tiny faces (i.e., pairs - e.g. 
the second face of Fig. 6(a)) available in Fig. 6(a) which 
contains non-cloned pairs than Fig. 6(b). The issue can be 
attributed to Filter 1, 2, and 5 since they are mapped to: (1) the 
face size, (2) distance between forehead and jaw, and (3) 
distance between eyes respectively. Therefore, it is also 
possible to intuitively observe that Filter 1, 2, and 5 (including 
Filter 7 observed in Fig. 5) play the major role in 
characterization of true positives.  

To answer RQ2-b, we categorized the clone pairs based on 
the programming language. Figs. 6(c) and 6(d) illustrate the 
result. For example, the top category in Fig. 6(c) contains all 
pairs where the first fragment is written in VB and the other 
fragment is in C#. As it is obvious C#-J# pairs in Fig. 6(d) 
(cloned pairs) are different. That is most of the faces are not 
round shaped comparing to the two other groups in Fig. 6(d). 
The same pattern is observable in Fig. 6(c) C#-J# category 
which contains mostly non-rounded shaped faces. Therefore, 
we can confirm RQ2-b, filters are independent of the 
programing language. This observation can be attributed to the 
resemblance between C# and J# languages and their history 
where the IL content becomes highly similar where we filter 
out the line numbers (i.e., Filter 1 and 2).  

 

Fig. 3.  Filters’ contribution to discriminate between actual clone pairs and 
non-cloned pairs



 
Fig. 4.  Filtering Effects on the Cloned Dataset Fig. 5.   Filtering Effects on the Non-cloned Dataset 

 

 
Fig. 6.  Filter Contribution data are mapped to multi-dimensional space to investigate the importance of filters and language dependency using glyph 

visualization. Note that numbers are used for referencing purposes in this figure (i.e. there is no ordering relation between faces etc. specifically between faces in 
the left and right hand sides – in short each face represents just one candidate clone-pair)  



VII. EVALUATION 

In this section, we present the evaluation results from our 
cross-language clone detection using Intermediate Language on 
four .NET systems. We analyze the clone detection results 
from a qualitative and quantitative perspective, using three edit 
distance methods (LCS, LEV, SimHash) to answer RQ3 and 
RQ4. Note, all datasets used for the evaluation include at least 
two .NET languages.  

The first dataset contains two versions of the ASXGUI [14] 
open source GUI encoder. The dataset contains Version 3.0 and 
2.5 since its current version (Ver. 3.0) is developed in C#, 
while the earlier implementation was based on VB.NET. 
ASXGUI Ver. 2.5 consists of 47 VB.NET files with a total of 
32594 lines of source code and 303 functions. ASXGUI v 3.0 
on the other hand, consists of 19 C# files with 2088 lines of 
source code, and 78 functions. The combined number of files 
being analyzed is 66 files with a total of 34682 lines of source 
code. The noticeable difference in project metrics (e.g., LOC) 
can be attributed to the (1) dissimilarities in the programming 
languages, and (2) re-engineering and refactoring tasks. 

The second dataset is based on the C# and VB.NET 
compilers from Mono [13], version 2.10. The C# compiler 
consists of 57 C# files and the VB.NET compiler of 375 files, 
with a combined number of 432 files and 4998 functions. 

The other two systems used in iyr study are two PDF 
libraries called iText and iText.NET. While their project names 
are similar, both projects are completely independent from each 
other. We created our third dataset from the iText (C# branch) 
and iText.NET (J#) source code. The dataset contains more 
than 600K LOC and 2.5K files. 

We used part of iText.NET library to create our last dataset. 
This dataset contains source code related iText.NET API usage 
written in three languages (C#, J#, and VB.NET). This feature 
makes the dataset an important resource for our study since it 
allowed us to create a small (75 clone pairs) but controlled 
dataset (i.e., all actual clones are aligned, tagged and known in 
the cross-language), creating a unique oracle for further 
analysis. We use this oracle to obtain precise recall and 
precision measures, since the number of actual clones is 
known. This is contrast to the other datasets, where recall and 
precision measure cannot be computed as precisely, since the 
actual number of clone-pairs is unknown. 

A. Quantitative Evaluation 

Figure 7 shows the total number of detected candidate 
clone-pairs from the filter datasets using the three selected 
distance measure algorithms. The results from this experiment 
can be summarized as follows: (1) it is possible to detect 
numerous candidate clone-pairs even for cross-language case 
regardless of the underlying algorithm, (2) no candidate clone-
pair is detected for cross-language using 1.0 as the Similarity 
Factor (i.e., the decision making threshold), which would only  
report clone-pairs with complete identical content. Therefore, 
even using filtering on highly similar cross-language clone-
pairs (e.g., Fig. 1), some dissimilarities will have to be handled 
by by the clone detection approach. However, this is not the 
case for single language clone detection (shown in Fig. 7), (3) 
for all dataset, we can observe a major decrease in the number 
of candidates when the threshold value is set to a range 
between 0.6 and 0.8 (marked by ovals). Therefore, we can 

conclude that the detected range can be recommended to the 
end-user to provide an acceptable recall and precision (the 
supporting argument is given in the qualitative evaluation 
section). The only exception is SimHash, which reports for the 
same thresholds a lower number of candidate clone-pairs. This 
is due to the fact that SimHas uses a different threshold schema 
compared to the other distance measure algorithms. 

B. Qualitative Evaluation 

Since a noticeable number of candidate clone-pairs have 
been detected (Fig. 7) using the filtering approach, it is 
necessary to evaluate the quality of our approach, by manually 
validating the results (RQ4). We manually examine candidate 
clone-pairs to determine whether they are true or false 
positives. We investigated three distinct thresholds from the 
selected range discussed in the previous section, which we   
refer to as Extreme (threshold = 0.6), High (threshold 0.7), and 
Normal (threshold – 0.8) configurations. The objective is to 
observe the best and worst achievable true positive ratio using 
the Normal, High and Extreme configurations. We also applied 
random sampling since the total number of candidates even for 
the chosen thresholds was considerably large (e.g., 10K clone-
pair). Finally, we evaluated ~2K candidate clone-pairs which 
were selected randomly. 

1) Challenges in Quality Assessment for Cross Language 
Clone Detection. 

 Quality evaluation is inherently challenging in our research 
since there is no clear agreement on what constitutes true 
positives (TP) and the various clone types definitions. 
Therefore, we applied in our qualitative evaluation the 
following approach: (1) since it is possible to easily locate with 
confidence false positives among candidate clone-pairs, we 
first tag all false positives; (2) we assume the rest as true 
positive. However, in order to provide a more in depth quality 
assessment, we also analyze the quality of the reported true 
positives. One of the interesting example which we identified 
in the ASXGUI dataset is the true positive shown in Fig. 8. For 
this example it easy to select an appropriate corresponding 
clone type based on the existing defacto clone definitions (e.g. 
[8, 5]). Regardless of dissimilarities introduced by different 
languages (e.g., VB.NET vs. C#), it is obvious that: (1) both 
methods in this example are implementing the same 
functionality, and (2) most importantly they are following the 
same algorithm. Therefore, although we cannot select the clone 
type, we consider such clone-pair candidates as strong true 
positive in our qualitative evaluation. Therefore, we consider 
all clone pairs similar to this example as strong TPs and label 
them with E , and the remaining TPs are being labeled as S. 

2) Quality Evaluation Result 
Figure 9 reviews the findings of our quality evaluation from 

manually assessing ~2K candidate clone-pairs (answering 
RQ4). In general, using the Normal threshold all candidate 
clone-pairs that were reported are true positive (100% TP). The 
quality decreases with less restrictive thresholds. For example 
using SimHash and the Extreme threshold, the reported TP 
reduces to ~40%. The optimum, considering the trade-off 
between precision and recall, was achieved using Levenshtein 
Distance-based comparison with the High threshold (80% TP). 
Nevertheless, this result is not 100% precise (threats to 
validity) due to the sampling process and data dependency.  



 
Fig. 7.  Number of clone-pair candidates per (1) dataset, and (2) clone detection algorithm. Note that the Similarity Factor varies between 0 and 1. For example 1 
is the strictest threshold which leads to detection of only exact content. The thin black lines show the linear trend for the corresponding case study. However they 

appear as curved lines since the horizontal axis is logarithmic on purpose. Following this approach, it is possible to observe the major drop area (threshold) in 
number of detected candidate clone-pair which is between 0.6 and 0.8 for almost all datasets and algorithms (with few exceptions). 

*J# language only appears in iText & iText.NET dataset.                                 +Note that the fluctuation in SimHash-based result is due to the internal SimCad logic

    private static string filename_nodir(string name)
         {
             int slash = -1, len = name.Length;
             for (int i = 0; i < len; i++)
             {
                 string sub = name.Substring(i, 1);
                 if (sub == "\\" || sub == "/")
                     slash = i;
             }
             slash++;
             return name.Substring(slash, len - slash);
         }

 

 
     Function Filename_Nodir() As String
         Dim intFileName As Integer, intSlash As Integer, strFilename As String
         strFileName = editvid.video
         For intFilename = 1 To len(strFileName)
             If mid(strfilename, intfilename, 1) = "\" Or mid(strfilename, intfilename, 1) = "/" Then
                 intslash = intFilename
             End If
         Next
         Return mid(strFileName, intSlash + 1, len(strFilename) - intSlash)
     End Function

*The matching algorithm was limited to the content available 
within the boxes (it was NOT aware of same method names)
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Fig. 8.  An example of two strongly similar clone-pair detected by our approach from ASXGUI. Even in case of major dissimilarity such as occurrence of mid 

method in the VB section for several times, still our approach successfully detected the clone-pair. 

 
Fig. 9.   Result of true/false positive (within candidate clone-pairs) evaluation using manual analysis. Normal, High, and Extreme stand for corresponding 

threshold from the selected range in the Quantitative Evaluation Section. 

The other major aspect of our quality evaluation is the recall measurement (RQ4 recall section), which we calculated on our 
only available oracle (iText.NET API). In our evaluation, we observed a recall of 76% using High threshold between three 



languages (C#, J#, and VB.NET). Note, we did not compute the recall for the other datasets, due to the lack of an objective 
assessment of what constitutes an actual TP for these dataset and consequently, would make any recall computation for these 
datasets prone to subjectivity. 

VIII. RELATED WORK 

While there are numerous well-established clone detection tools available to support different programming languages [5, 8], 
there exist only very limited research related to (1) cross language or (2) binary-level clone detection. In our review of previous 
work we focus on these two research domains, since they are the closest related to our research. To the best of our knowledge, 
C2D2 [12] is the only tool capable of detecting cross-language clones. It uses NRefactory Library to generate the Unified 
CodeDOM graph for both C# and VB.NET. A string is generated by traversing this graph and targeted to string matching 
algorithm.  

There are a few but diverse approaches on Intermediate Language-based clone detection (focusing on single language clone 
detection, mostly Java). One of the first studies on Intermediate Language clone detection is by Baker [10]. After some 
preprocessing (e.g., remapping offsets), she uses three comparison techniques (e.g. Diff [24]) to find similar fragments. Davis et al. 
[9] use the disassembler for both Java and C/C++ to detect clones in single language. They provide a public framework [25] for 
pretty-printing of disassembled code which constitutes the baseline of the clone detection phase. The most interesting aspect of their 
research is the proposed search algorithm for content matching which has two greedy and hill-climbing analysis steps. In [27] Selim 
et al introduce “Jimple” [26] to detect clones using an intermediate representation. The motivation is to exploit Jimple 
characteristics (comparing to stack-based Java native IL). Recently, Juricic [28] uses Intermediate Language code to detect 
plagiarism and similarities. The approach is based on Levenshtein Distance as the similarity measure to compare disassembled C# 
binary, and applies some primitive preprocessing techniques which are comparable to two of our filters. There are also some formal 
approaches, such as by Santone [29] that transform Java bytecode to mathematical models for clone detection.  

To the best of our knowledge, our study presents the first comprehensive research focusing on, (1) .NET clone detection, (2) 
across programming languages, and (3) using Intermediate Language. Moreover, we not only proposed the approach, but also 
evaluated its major potential threats using diverse statistical and intuitive analyses. Finally, we evaluated its performance using 
manual validation to measure precision and recall. We observed a promising result in terms of both quantity and quality using three 
clone detection techniques for C#, J#, and VB.NET cross language clone-pairs. 

IX. CONCLUSIONS AND FUTURE WORK 

With the globalization of the software industry and introduction of new programming languages, there has been an ongoing 
trend towards combining or re-implementing systems using different programming languages. This poses a new challenge for 
software comprehension, maintenance, clone management, and refactoring.  

In this paper, we study a novel approach to detect cross-language clones in the Microsoft.NET Environment. In our research, we 
exploit CIL an intermediate representation generated by .NET compiler from all .NET programming languages. We established a 
filter set (containing 7 filters) which are applied to CIL prior to the actual clone detection process to remove noise in the dataset and 
establish threshold values for the detection algorithms. Using face glyphs, we showed that the filters do not remove crucial data 
from CIL and therefore have no negative effect on the clone detection. Finally, we performed a qualitative and quantitative study of 
a clone detection approach on four datasets. We used three widely used edit-distance functions to allow for a generalization of our 
observations and study results. In our evaluation, we observed that it is possible to detect a reasonable number (quantity) of clone-
pairs with acceptable precision (based on the configuration) and recall (quality).  

As future work, we will further expand our study to include additional platform. We also plan to investigate the use of other 
intermediate representations found in other frameworks, such as the unified bytecode generated by LLVM [30] compiler to detect 
clones across LLVM programming languages. Moreover, we are going to start a comprehensive usability study using our clone 
detection approach in an enterprise software development environment to observe the unexplored characteristics of multi-language 
clone detection in software maintenance process. 
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