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Abstract—In this research, we present a novel approach that 

allows existing state of the art clone detection tools to scale to 

very large datasets. A key benefit of our approach is that the 

improved tools scalability is achieved using standard hardware 

and without modifying the original implementations of the 

subject tools. We use a hybrid approach comprising of 

shuffling, repetition, and random subset generation of the 

subject dataset. As part of the experimental evaluation, we 

applied our shuffling and randomization approach on two 

state of the art clone detection tools. Our experience shows that 

it is possible to scale the classical tools to a very large dataset 

using standard hardware, and without significantly affecting 

the overall recall while exploiting all the strengths of the 

original tools including the precision. 
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I.  INTRODUCTION 

SeCold (secold.org) is an online Linked Data project that 
provides a hub for source code related facts using Semantic 
Web technologies. For its first release, we extracted about 
two billion facts from our IJaDataset, which contains about 
1.5 million Java files (266 MLOC) from 18,000 projects.  

The objective of SeCold is to establish a “DBpedia” 
equivalent (service) for the software mining community. 
Recently, we started to enrich the SeCold repository with 
additional clone facts, by publishing result sets obtained 
from several state of the art clone detection tools. The input 
is the source code from all indexed projects (i.e., the 
IJaDataset) and the output, all the clones it contains. 
However, key challenges for applying some of the existing 
clone detection tools on our SeCold dataset are: (1) The size 
of the dataset itself, which we expect to significantly grow in 
the next releases, with the inclusion of additional open 
source code repositories, and (2) enabling existing clone 
detection tools to scale to our SeCold dataset using standard 
hardware (one multi-core CPU and 24 GB of RAM), without 
modifying the original implementations of the subject tools.  

II. SOLUTION 

While scalable, distributed clone detection approaches 
(e.g., [1, 2]) require significant computational resources and 
attempt to achieve 100% recall (tool specific gold standards).  
In contrast, our objective is to allow existing clone detection 
tools to scale to very large datasets, while using limited 
computational resources and achieving an acceptable overall 
recall. For the SeCold dataset and its global code analysis 
context, we consider 85% recall as an acceptable objective. 
Our approach is based on a simplified divide and conquer 
(DC) paradigm without feedback or recursion loop used by 

other approaches (e.g., MapReduce). We (1) split the corpus 

into � subsets, which are manageable in size by existing 
clone detection tools, (2) execute the detection tools on each 
subset independently, and (3) upload the results from the 
subsets into our central clone pair repository (i.e., SeCold).  

In what follows, we assume that all subsets, denoted by s, 
are of equal size. Therefore, if � represents the total corpus 
size, the relation � = � × � must be satisfied. We further 
assume that the default unit of measurement for � is the 
number of files. However, if a tool requires a complete 
compilation unit (i.e., a software project) as the smallest 
input, then the unit (�) corresponds to the number of 
projects. This approach will generate the highest recall only 
if  � = 1 (i.e., the corpus is not split in subsets). That is, the 
complete corpus is treated as a uniform dataset, containing 
all potential clones, and resulting in the highest recall of the 
individual tools. If  � ≥ 2, recall decreases, since the tool has 
no longer access at detection time to all potential clone pairs, 
as they might be located in different subsets (e.g., Subset	
 
and Subset �, where 
 ≠ �).  

We require large � values to reduce the size of the 
individual subsets so that they can be handled by existing 
clone detection tools (i.e., � = 15 for the IJaDataset). 
However, achieving an acceptable overall recall (i.e., ~85%) 
becomes a challenge for a large number of subsets (n). 

As part of our research, we have derived a heuristic that 
repeats several times the same three-step process for 
partitioning the dataset, executing the clone detection tools, 
and uploading the results to our repository. As part of our 
heuristic, for each round (r) we apply a shuffling function to 
create random subsets that differ from the subsets of the 
previous rounds. Figure 1 illustrates the shuffling and 
randomization approach. Rather than using recursion 
typically used by divide and conquer algorithms (e.g. 
MapReduce), we rely on repetition (up to � rounds), to 
increase the overall cumulative recall.  

 
 

Figure 1.  Overview of the shuffling approach. Arrows represent data 

flow. There is no ordering or dependency between rounds and subsets.



 

Figure 2.  Experimental results overview. The horizontal and vertical axes are the number of rounds and the missed clones (%) respectively.

III. EXPERIMENTAL RESULTS 

We conducted an experimental evaluation to determine 
the actual recall of our shuffling approach for a given dataset 
(i.e., IJaDataset), using the following three steps: (1) execute 
each detection tool on the complete (single) dataset to create 
a gold standard for the number of clones it can detect; (2) 
perform the randomize shuffling and divide approach on the 
complete dataset to create a fixed number of subsets; and (3) 
execute the clone detection tool on all subsets and calculate 

the total recall (tr) achieved, with ��(�, �) =
∑ (∑ ��������	�������

� )�
�

������	��	� !���	
. 

Steps 2 and 3 are repeated for a fixed number of times, to 
determine the actual improvement in recall and therefore, the 
reduction in % of missed clones. 

Preliminary observations. For the initial experiment, 
we applied the random shuffling approach on six small 
datasets. We used two clone detection tools, Simian [3] (line-
level) and NiCad [4] (method-level granularity) on them (no 
subsets) to establish the tool specific gold standard. For steps 
2 and 3, we created 15 subsets. We performed a total of 30 
shuffling rounds (Fig 2-A and 2-B), with NiCad detecting 
97.8% and Simian 96.6% of total recall. Moreover, NiCad 
achieved ~90% recall after 10 shuffling rounds, whereas 
Simian needed 20 rounds. This variation can be attributed to 
the different granularity of the tools.  

IJaDataset. For the final part of the evaluation, we 
repeated the experiment on our complete IJaDataset (1.5 
million files). Given our limited hardware, Simian was the 
only tool to complete the actual clone detection on the 
IJaDataset and create its gold standard. We further 
differentiate two setups, one with 15 and the other with 8 
subsets of the IJaDataset. For the 15-subset experiment, the 
run-time for each round was approximately 32 hours. In both 
cases, we performed 10 rounds of shuffling (Fig. 2-C) and 
achieved 74% and 88% recalls for 15 and 8 subsets 
respectively. Note that, we believe that higher recall is 
achievable using our shuffling idea and NiCad according to 
our preliminary observations (Fig 2-A and 2-B). Since they 

show using a medium-granularity tool, we can achieve 
higher recall in less number of rounds (50% less).  

Randomization effect. Since our shuffling approach is 
based on a random creation of subsets, we analyzed the 
effect of this random selection on the overall performance 
(recall) of our approach. We extracted two datasets, with the 
second dataset being three times the size of the first one. We 
then created 15 subsets per dataset and executed 30 shuffling 
rounds. The randomization effect was analyzed by repeating 
each shuffling round 10 times. Fig. 2-D (large dataset) and 
Fig. 2-E (small dataset) show the fluctuation due to the 
randomization. The result clearly shows that for a larger 
dataset (e.g., IJaDataset), the fluctuation has almost no effect 
and can therefore be neglected. 

IV. CONCLUSION AND FUTURE WORK 

Our experience shows that the proposed shuffling 
approach can be effectively used to scale existing clone 
detection tools for large data using limited hardware with an 
acceptable loss of recall (without sacrificing precision). The 
approach may outperform (run-time) existing tools even in 
cases when they process IJaDataset without partitioning. As 
future work, we plan to (1) apply shuffling to other tools and 
devise a heuristic to estimate the recall, and (2) combine our 
approach with the sampling technique earlier [5].  
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