
Shuffling and Randomization for Scalable Source Code Clone Detection

±
Iman Keivanloo,

*
Chanchal K. Roy,

±
Juergen Rilling,

×
Philippe Charland

±
Department of Computer Science

Concordia University, Canada

{i_keiv, rilling@cse.concordia.ca}

*
Department of Computer Science

University of Saskatchewan, Canada

croy@cs.usask.ca

×
System of Systems Section

Defence R&D Canada – Valcartier

philippe.charland@drdc-rddc.gc.ca

Abstract—In this research, we present a novel approach that

allows existing state of the art clone detection tools to scale to

very large datasets. A key benefit of our approach is that the

improved tools scalability is achieved using standard hardware

and without modifying the original implementations of the

subject tools. We use a hybrid approach comprising of

shuffling, repetition, and random subset generation of the

subject dataset. As part of the experimental evaluation, we

applied our shuffling and randomization approach on two

state of the art clone detection tools. Our experience shows that

it is possible to scale the classical tools to a very large dataset

using standard hardware, and without significantly affecting

the overall recall while exploiting all the strengths of the

original tools including the precision.

Keywords-Clone detection; scalability; shuffling; sampling

I. INTRODUCTION

SeCold (secold.org) is an online Linked Data project that
provides a hub for source code related facts using Semantic
Web technologies. For its first release, we extracted about
two billion facts from our IJaDataset, which contains about
1.5 million Java files (266 MLOC) from 18,000 projects.

The objective of SeCold is to establish a “DBpedia”
equivalent (service) for the software mining community.
Recently, we started to enrich the SeCold repository with
additional clone facts, by publishing result sets obtained
from several state of the art clone detection tools. The input
is the source code from all indexed projects (i.e., the
IJaDataset) and the output, all the clones it contains.
However, key challenges for applying some of the existing
clone detection tools on our SeCold dataset are: (1) The size
of the dataset itself, which we expect to significantly grow in
the next releases, with the inclusion of additional open
source code repositories, and (2) enabling existing clone
detection tools to scale to our SeCold dataset using standard
hardware (one multi-core CPU and 24 GB of RAM), without
modifying the original implementations of the subject tools.

II. SOLUTION

While scalable, distributed clone detection approaches
(e.g., [1, 2]) require significant computational resources and
attempt to achieve 100% recall (tool specific gold standards).
In contrast, our objective is to allow existing clone detection
tools to scale to very large datasets, while using limited
computational resources and achieving an acceptable overall
recall. For the SeCold dataset and its global code analysis
context, we consider 85% recall as an acceptable objective.
Our approach is based on a simplified divide and conquer
(DC) paradigm without feedback or recursion loop used by

other approaches (e.g., MapReduce). We (1) split the corpus

into � subsets, which are manageable in size by existing
clone detection tools, (2) execute the detection tools on each
subset independently, and (3) upload the results from the
subsets into our central clone pair repository (i.e., SeCold).

In what follows, we assume that all subsets, denoted by s,
are of equal size. Therefore, if � represents the total corpus
size, the relation � = � × � must be satisfied. We further
assume that the default unit of measurement for � is the
number of files. However, if a tool requires a complete
compilation unit (i.e., a software project) as the smallest
input, then the unit (�) corresponds to the number of
projects. This approach will generate the highest recall only
if � = 1 (i.e., the corpus is not split in subsets). That is, the
complete corpus is treated as a uniform dataset, containing
all potential clones, and resulting in the highest recall of the
individual tools. If � ≥ 2, recall decreases, since the tool has
no longer access at detection time to all potential clone pairs,
as they might be located in different subsets (e.g., Subset	

and Subset �, where
 ≠ �).

We require large � values to reduce the size of the
individual subsets so that they can be handled by existing
clone detection tools (i.e., � = 15 for the IJaDataset).
However, achieving an acceptable overall recall (i.e., ~85%)
becomes a challenge for a large number of subsets (n).

As part of our research, we have derived a heuristic that
repeats several times the same three-step process for
partitioning the dataset, executing the clone detection tools,
and uploading the results to our repository. As part of our
heuristic, for each round (r) we apply a shuffling function to
create random subsets that differ from the subsets of the
previous rounds. Figure 1 illustrates the shuffling and
randomization approach. Rather than using recursion
typically used by divide and conquer algorithms (e.g.
MapReduce), we rely on repetition (up to � rounds), to
increase the overall cumulative recall.

Figure 1. Overview of the shuffling approach. Arrows represent data

flow. There is no ordering or dependency between rounds and subsets.

Figure 2. Experimental results overview. The horizontal and vertical axes are the number of rounds and the missed clones (%) respectively.

III. EXPERIMENTAL RESULTS

We conducted an experimental evaluation to determine
the actual recall of our shuffling approach for a given dataset
(i.e., IJaDataset), using the following three steps: (1) execute
each detection tool on the complete (single) dataset to create
a gold standard for the number of clones it can detect; (2)
perform the randomize shuffling and divide approach on the
complete dataset to create a fixed number of subsets; and (3)
execute the clone detection tool on all subsets and calculate

the total recall (tr) achieved, with ��(�, �) =
∑ (∑ ��������	�������

�)�
�

������	��	� !���	
.

Steps 2 and 3 are repeated for a fixed number of times, to
determine the actual improvement in recall and therefore, the
reduction in % of missed clones.

Preliminary observations. For the initial experiment,
we applied the random shuffling approach on six small
datasets. We used two clone detection tools, Simian [3] (line-
level) and NiCad [4] (method-level granularity) on them (no
subsets) to establish the tool specific gold standard. For steps
2 and 3, we created 15 subsets. We performed a total of 30
shuffling rounds (Fig 2-A and 2-B), with NiCad detecting
97.8% and Simian 96.6% of total recall. Moreover, NiCad
achieved ~90% recall after 10 shuffling rounds, whereas
Simian needed 20 rounds. This variation can be attributed to
the different granularity of the tools.

IJaDataset. For the final part of the evaluation, we
repeated the experiment on our complete IJaDataset (1.5
million files). Given our limited hardware, Simian was the
only tool to complete the actual clone detection on the
IJaDataset and create its gold standard. We further
differentiate two setups, one with 15 and the other with 8
subsets of the IJaDataset. For the 15-subset experiment, the
run-time for each round was approximately 32 hours. In both
cases, we performed 10 rounds of shuffling (Fig. 2-C) and
achieved 74% and 88% recalls for 15 and 8 subsets
respectively. Note that, we believe that higher recall is
achievable using our shuffling idea and NiCad according to
our preliminary observations (Fig 2-A and 2-B). Since they

show using a medium-granularity tool, we can achieve
higher recall in less number of rounds (50% less).

Randomization effect. Since our shuffling approach is
based on a random creation of subsets, we analyzed the
effect of this random selection on the overall performance
(recall) of our approach. We extracted two datasets, with the
second dataset being three times the size of the first one. We
then created 15 subsets per dataset and executed 30 shuffling
rounds. The randomization effect was analyzed by repeating
each shuffling round 10 times. Fig. 2-D (large dataset) and
Fig. 2-E (small dataset) show the fluctuation due to the
randomization. The result clearly shows that for a larger
dataset (e.g., IJaDataset), the fluctuation has almost no effect
and can therefore be neglected.

IV. CONCLUSION AND FUTURE WORK

Our experience shows that the proposed shuffling
approach can be effectively used to scale existing clone
detection tools for large data using limited hardware with an
acceptable loss of recall (without sacrificing precision). The
approach may outperform (run-time) existing tools even in
cases when they process IJaDataset without partitioning. As
future work, we plan to (1) apply shuffling to other tools and
devise a heuristic to estimate the recall, and (2) combine our
approach with the sampling technique earlier [5].

REFERENCES

[1] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-
based code clone detection: incremental, distributed, scalable”, Proc.
ICSM, 2010, pp. 1-9.

[2] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs using
distributed CCFinder: D-CCFinder”, Proc. ICSE, 2007, pp. 106-115.

[3] Simian, http://www.harukizaemon.com/simian/, Visited Jan. 2012.
[4] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-

Miss Intentional Clones Using Flexible Pretty-Printing and Code
Normalization”, Proc. ICPC, 2008, pp. 172-181.

[5] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale Real-time
Code Clone Search via Multi-level Indexing”, Proc. WCRE, 2011,
pp. 23-27.

