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Abstract—While finding clones in source code has drawn 

considerable attention, there has been only very little work in 

finding similar fragments in binary code and intermediate 

languages, such as Java bytecode. Some recent studies showed 

that it is possible to find distinct sets of clone pairs in bytecode 

representation of source code, which are not always detectable 

at source code-level. In this paper, we present a bytecode clone 

detection approach, called SeByte, which exploits the benefits 

of compilers (the bytecode representation) for detecting a 

specific type of semantic clones in Java bytecode. SeByte is a 

hybrid metric-based approach that takes advantage of   both, 

Semantic Web technologies and Set theory. We use a two-step 

analysis process: (1) Pattern matching via Semantic Web 

querying and reasoning, and (2) Content matching, using 

Jaccard coefficient for set similarity measurement. Semantic 

Web-based pattern matching helps us to find method blocks 

which share similar patterns even in case of extreme 

dissimilarity (e.g., numerous repetitions or large gaps). 

Although it leads to high recall, it gives high false positive rate. 

We thus use the content matching (via Jaccard) to reduce false 

positive rate by focusing on content semantic resemblance. Our 

evaluation of four Java systems and five other tools shows that 

SeByte can detect a large number of semantic clones that are 

either not detected or supported by source code based clone 

detectors. 
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I. INTRODUCTION 

Two code fragments that share some degree of similarity 
are considered typically a clone pair. The major similarity 
types that can be distinguished are: (1) Syntactic and (2) 
Semantic similarities. Syntactical similarity refers to the 
situation where clone pairs share similar code pattern which 
leads to type-1, 2, and 3 clone types [1, 2]. Semantic 
similarities focus on pairings’ functionality [2] regardless of 
their code patterns. Different definitions exist on what 
constitutes such semantic clones in the literature, e.g. Roy et 
al. [1] considered them to be type-4 clones. Yoshioka et al. 
[3] proposed a more general definition, with semantic clones 
being code fragments which are semantically identical or 
syntactically (i.e. pattern) similar.  

Fig. 1 shows a snapshot of two similar method blocks, 
each block shown in one column. Although the first 30 lines 
of the both methods are the same and therefore easy to detect 
as similar code fragments, code similarities in the remaining 
part of the methods are much more difficult to detect. For 
example, there is an offset (gap) of 45 lines within the two 

code fragments, before the second similarity occurs. This 
second similarity within the method is based on semantically 
similar sub-blocks which are not only once but twice 
repeated in the right code fragment. The last similarity can 
be found at the end of the two method blocks, involving two 
similar blocks which have some dissimilarity due to 
repetition and re-ordering. The arrows show the similarity 
relationships among the method sub-blocks. 

Classical clone detection tool might be able to detect that 
the two methods in Fig. 1 are a type-3 clone by using 
extreme thresholds settings in these tools (e.g. set the gap 
threshold to 45 lines). However, such extreme configuration 
will decrease the precision drastically due to the high number 
of false positives it will generate. Alternatively, it is possible 
to call the clone pair in Fig. 1 a semantic clone according to 
Yoshioka et al.’s definition [3], since these two method 
blocks are both semantically and to some extent also 
syntactically similar.  

This example shows clearly that humans can quite easily 
detect both syntactic and semantic similarities of these two 
methods. However, automated detection of semantic 
similarities at method level is a non-trivial task, especially 
for semantic clones being an undecidable problem [2]. 

In this paper, we present SeByte, a Java binary code 
clone detection approach that classifies two method blocks as 
clones if they are either similar in their patterns or 
functionalities or both. Our objective is to find semantically 
similar methods (based on Yoshioka et al.’s semantic clone 
definition [3]) by comparing their functionality and pattern 
similarities. 
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Figure 1.  Two cloned method blocks that share both sytactic (i.e. pattern) 

and semantic (i.e. functionality) similarities. 
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Figure 2.  Our approach overview 

Fig. 2 shows a schematic diagram of our approach. First 
it converts binary files to textual format (step A). To achieve 
high recall, we introduce two heuristics for Java bytecode 
clone detection. First relaxation on code fingerprint, which 
means only certain token types, will be considered for the 
clone detection (step B). Second, the clone detection method 
will be applied independently on each token type (a.k.a. 
dimension) previously saved in the knowledge bases (step 
C), which is referred as multi-dimensional matching. 

Matching extreme dissimilarities such as large gaps or 
repetitions (Fig. 1) is a major challenge. We address this 
issue using Semantic Web based transitive closure querying 
and reasoning. As a result, our pattern matching mechanism 
(Fig. 2 step D) can handle extreme dissimilarities. Moreover, 
in order to guarantee the semantic relevancy of the candidate 
clone pairs, we use a Set theory function (Jaccard coefficient) 
to apply semantic comparison (semantic matching), which is 
shown in Fig. 2 step D (the bottom process). At the end, the 
combination of two data sources (i.e. dimensions in step C) 
and two clone detection types (step D) will result in four 
similarity values for each candidate clone-pair. SeByte  is 
considered to be a metric-based clone detection approach 
(according to Roy et al.’s [1] definition), which uses 
Semantic Web for pattern matching to achieve high recall 
and Set theory for similarity matching to keep the precision 
(step D) high as well. Therefore, we use similarity matching 
to cancel out the pattern matching deficiency (high false 
positive rate). Like Juergens et al. [4] pointed out, the 
reduction of false positives is often essential to increase the 
usability and acceptance of a clone detection approach. 

 Our research questions being addressed in this paper are 
as follows: 
1. Can semantic clones at method blocks be detected using 

code fingerprint relaxation and the metric-based 
matching on Java bytecode? 

2. What is the performance of the approach with respect to 
precision and recall? 

3. What are the limitations of the presented approach?  

The remainder of this paper is organized as follows: 
Section II discusses basic challenges. Section III reviews 
Java bytecode. Heuristics, our approach, Semantic Web-
based pattern matching, and evaluation results are presented 
in Sections IV, V, VI and VII respectively. Related Work is 
reviewed in Section VIII with conclusions in Section IX. 

II. CHALLENGES: MAJOR PATTERNS IN METHOD 

LEVEL CLONE MATCHING 

In this research, we are interested to find semantic clone-
pairs which also share some degrees of syntactical 
resemblance. Fig. 3 illustrates seven examples of such clone-
pairs.  
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Figure 3.  Seven interesting parings matched with the target method. Note 

the extreme differences due to repetitions, slidings, and gaps. 

The seven clone-pairs are chosen and categorized based 
on their sources of syntactical dissimilarities. The major 
sources are repetition, sliding, and gaps (marked by 
asterisk). We use ordered bag and ordered set to denote the 
presence or absence of repetitions. Note that in this paper, 
sliding indicates upwards or downwards block shifting in the 
source code between a pairing which leads to finding the 
matching points.  For example in Fig. 3 code block A is an 
exact copy (i.e. ordered bag with no gap) of a part of the 
target method. It is possible to match the two blocks, by 



sliding block A through the target method. Block B requires 
not only the sliding but also ignoring of repetitions (i.e. 
ordered set with no gap) to establish the similarity. Code 
block E illustrates a case where both blocks have the same 
ordered set of statements, whereas in block F we have 
distinct set of commands from the beginning and ending of 
the target method including a gap in between. Blocks C, D, 
and G represent some possible combinations of blocks A, B, 
E and F. Further, we aim to detect not only these seven 
patterns but also all their possible combinations, making the 
detection method an inherently more challenging task.   

III. JAVA BYTECODE OVERVIEW 

Similar to other low level languages (i.e., machine level), 
Java bytecode uses machine instructions to simulate basic 
functionalities such as conditions and loops. There exist 
several approaches to convert Java bytecode to a structured 
format from which facts can easily be extracted. These 
approaches include, (1) Java’s environment native 
commands (used in our approach), (2) Jimple [5] which 
provides a three address code presentation, and (3) Davis et 
al.’s Javap2 [6]. Fig. 2 shows an example output of the first 
approach that we used. Different types of tokens such as Java 
virtual machine instructions, strings, method names and Java 
type names are available in the bytecode representation. 
These tokens form the code fingerprint in our case. In the 
following, we use Java bytecode, bytecode, and binary 
keywords interchangeably to refer to any content similar to 
the one in Fig. 2 (output from step A). 

Opportunity. Clone detection at bytecode level can 
detect clone pairs, which might not be syntactically similar at 
source code level but are in fact semantically similar. Since 
through the compilation of the source code to a binary format 
a unified representation of source code is generated. At the 
bytecode level (1) method inlining has taken place, and (2) 
syntactic dissimilarities of various loops and conditional 
blocks in the source code have been transformed to unified 
format. As a result, bytecode can eliminate some of the 
challenges for semantic clone detection. 

Challenge. While compilation techniques such as 
method inlining are useful in semantic clone detection, they 
also introduce new challenges. Fig. 4 shows one of these 
clone detection challenges caused by method inlining in 
bytecode. In this example, the size of the method send() in 
the first fragment is large in terms of lines of code and it has 
been considered for inlining. The resulting dissimilarity 
between the two fragments at bytecode level will increase by 
several folds, making the detection of these methods as clone 
pairs inherently difficult. 

IV. FROM CODE FINGERPRINTING RELAXATION TO 

MULTI-DIMENSIONAL COMPARISON 

A major part of the clone detection involves matching 
source code content (e.g., from AST). The state of the art is 
to consider the sequence of source code statements as a 
single fused information source to be compared.  

Contrary to the state of the art in clone detection and 
search, we established in our approach a novel heuristic 

called Relaxation on Code Fingerprint which leads to a 
Multi-dimensional Comparison approach (2-dimensional in 
our case). Instead of comparing code content as sole fused 
fact sequence, we extract two data families (i.e., sequences), 
each of which constitutes a dimension. Each dimension 
represents only part of the method block’s characteristics. 
We then compare these generated dimensions independently 
using the clone detection algorithm to detect candidate clone-
pairs. Clone-pairs detected for each dimensions are then used 
as input to a decision making function for final results.  

Fig. 2 step B shows an example for such a relaxation on 
code fingerprinting. In the bytecode column, Java type 
fingerprints are marked as bold and method names are 
underlined. The first dimension contains the names of 
accessed Java types denoted by  . The second dimension 
only contains the name of called methods denoted by  . 
Both dimensions contain ordered sequences, based on their 
actual appearances in the bytecode (e.g., Fig. 2). Due to our 
relaxation heuristic, we ignore everything else such as strings 
and virtual machine instructions. 

The underlying rationale of the relaxation on code 
fingerprint is to develop a robust clone detection approach 
that can survive even extreme dissimilarities. Using our 2-
dimensional matching, we can increase the recall for 
semantic clones by comparing each data family 
independently. 

Our 2-dimensional approach also reduces input data size 
for the clone detection process since for each dimension only 
a subset of the available data is considered for comparison – 
either the names of the called methods or Java types. Fig. 5 
shows the effectiveness (i.e. reduction) of our approach in 
terms of number of token to be analyzed. Using this 
fingerprinting approach for our bytecode datasets (Table 1), 
we were able to achieve a reduction in data size of 50-80%. 
The size reduction is an important for our approach, since its 
computation complexity is high (e.g.,      ). Therefore, our 
2-dimensional approach not only allows for the (1) detection 
of clone-pairs with extreme pattern dissimilarity but also (2) 
increases performance of our approach by several folds. 

 

Void method_original(){

a.copy(a);

send(a);

a.flush();

a.close();

}

Void method_cloned(){

a.copy(b);

a.flush();

b.close();

}

Suppose, send() is a static method 
which will be considered for 
inlining during compilation

 

Figure 4.  The dissimilarity at source code level is only one line, at the 
binary level due to method inlining, it depends on the size of method send() 
  

TABLE I.  DATASETS 

Dataset Size (#file) Application Context 

Bytecode Source code  

EIRC 83 64 Network-based comm. client 

Freecol (server) 220 79 Server application 

Freecol (full) 1120 570 A strategy-based game 

Apache (DB) 1093 448 Database system 

 

 
Figure 5.  Effects of the code fingerprint relaxation on data reduction (with 

respect to the number of tokens) 

0 100000 200000 300000 

ERIC 

Freecol (srv) 

Freecol 

hbase 
Method name fingerprint 

Java type fingerprint 

Regular ByteCode 



V. OUR APPROACH  

In what follows we introduce SeByte, our novel hybrid 
approach for Java bytecode clone detection. SeByte 
combines metric-based clone detection [1] with pattern based 
clone detection. This approach computes the similarity 
independent measures [7, 8] (e.g. LOC) to find clone pairs 
and then use a similarity threshold to determine the actual 
clone pairs. In pattern-based clone detection (e.g., [9]), on 
the other hand, dissimilarity thresholds (e.g., number of 
consecutive dissimilar tokens) play a major role in the 
detection of clones. SeByte takes advantage of both metric 
and pattern based approaches, by engaging the pattern-based 
clone detection as one of the similarity metrics. The major 
steps being applied by SeByte are: 

Repository Preparation. Based on our fingerprinting 
relaxation and 2-dimensional heuristics, we extract 
fingerprints for Java types and names of called methods, 
which we publish to two Semantic Web repositories (Fig. 2). 

Pattern Similarity. Using Semantic Web based 
techniques, we find candidate clone-pairs based on their 
pattern resemblance. Note, we consider patterns as similar, if 
their order of tokens is identical. The objective of this phase 
is to detect clone pairs that share similar code patterns (i.e. 
fingerprints). As a result of our Semantic Web-based 
approach, SeByte can detect clone-pairs even in scenarios 
with very gapped clones such as, method pair 
                      and              . Our approach 
also can survive repetitions with high frequency within a 
code block, such as                   and          . It 
also supports sliding for clone detection such as 
                  and               More importantly, 
its search power is not limited to these three separated 
examples, but also supports combinations of them for every 
single token in the sequence (similar to Fig. 3 samples and 
their combinations thereof). The resulting search (detection) 
approach is very comprehensive and finds various types of 
similar method blocks based on these patterns. However, due 
to the number of possible matches, it also increases the false 
positive rate. 

Content Similarity. As part of our detection of semantic 
clones, we also consider content similarity values, to allow 
for the removal of false positive results detected during the 
pattern matching step. Instead of using primitive measures 
such as LOC, we utilize Set theory functions. We measure 
the content resemblance among two method blocks using the 
Jaccard Coefficient (1) as a comparison function. We denote 
  and    as the method dimension   or type dimension   for 
the two subject code fragments respectively. Note    is a set 
therefore neither repeated elements nor orderings between 
elements exist.  The key responsibility of content similarity 
process is to calculate the semantic resemblance of two 
method blocks based on their contents (e.g., tokens) 
regardless of the order of the elements in them. We should 
note that the ordering of elements has already been addressed 
in the pattern match part of our approach above.  

          
       

       
                              (1) 

Metric-based Clone Detection. In this step, we combine 

the Jaccard and pattern similarity results for each of the two 

dimensions (the Java types and method calls) to detect final 

clone pairs. We thus have four metrics (presented in the last 

column of Fig. 2) for detecting the similarity between two 

code fragments, which are either numerical (content 

similarity) or ordinal (pattern matching). In particular, we 

calculate the overall similarity of two code fragments,    and 

  using the               function (2) where we use the 

intersection of four sub-functions for each of the metrics.    
denotes the input method block, with its extracted dimension 

method    and Java type   . In our approach we calculate 

approximately twenty pattern similarity values for each of 

the clone pair candidates in order to cover the cases shown in 

Fig. 3, and their combinations thereof. The number of 

queries is denoted by q in (2). The first boolean function 

considers clone pair as candidates, as long as one of the 

queries using the union operator returns a positive value. We 

designed our Jaccard similarity functions (i.e., js) to report its 

final result as a boolean. It means that the degree of 

similarity of the candidate parings must be more than a static 

value denoted by  , and   to be detected as clone pair by js 

functions. Finally, the intersection of boolean values for js 

and query functions determines whether the candidate clone 

pair is selected or discarded. The computation complexity of 

this approach is          where   is the largest method size. 

However,   can be considered as a constant therefore our 

actual complexity is      . 
 

                            
 
                  

 
          (2) 

                         

VI. TRANSITIVITY VIA SEMANTIC WEB QUERYING AND 

REASONING 

The Semantic Web
1
 provides an open scalable logic-

based computation platform, which has evolved over the last 
10 years from a pure research to an actual industrial strength 
technology. Its primary goal is to bring openness to 
knowledge modeling and reasoning. Based on its theoretical 
aspects, several data modeling languages for graphs and 
querying languages have been proposed, implemented, and 
standardized. OWL is the primary modeling language which 
supports up to First-Order logic with SPARQL being the 
standard OWL compatible graph-based query language. One 
of the unique features of the Semantic Web compared to 
relational databases is its native support for transitive closure 
computation. Significant progress has been made in the last 
couple of years in enhancing the performance of Semantic 
Web reasoners by optimizing them both for in-memory and 
disk-based computation of scalable transitive closure. 

In this section, we discuss how the Semantic Web can be 
applied towards pattern matching in clone detection. The use 
of Semantic Web technologies simplifies not only the 
creation of queries to model patterns in a target code block, 
but also queries can also be executed against an existing 

                                                 
1   http://www.w3.org/standards/semanticweb/ 



pattern knowledge base. A sample query code fragment and 
its corresponding simplified SPARQL query are shown in 
Fig. 6. By default, the query finds all blocks with the same 
nodes {RootBCE} (considering their order).  

In order to detect similar patterns with minor or extreme 
dissimilarities, the query engine (including the inference 
engine) takes advantage of the transitive property (i.e., 

hasConnectionTo). Executing the same query with 
reasoning enabled configuration will detect approximately 
similar code blocks with gaps, repetitions and sliding (e.g., 
Fig. 6 Root_2 method block). Note that in this example we 
only used single query to model some aspects of exact and 
approximate code pattern matching to illustrate the power of 
the Semantic Web. In order to support all possible 
dissimilarities, a combination of several queries is required. 
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Figure 6.  Code pattern matching using Semantic Web reasoning 

VII. CALIBRATION AND EVALUATION 

For the evaluation of our bytecode clone detection 
approach, we selected projects from different application 
domains and of different sizes (Table 1). Datasets were 
manually extracted and checked for completeness. For each 
dataset, we created two equivalent subsets, (1) the bytecode 
and (2) the source code collections. Given the compilation 
effects, the corresponding collections contain different 
number of files, but their overall contents remain very 
similar. Note that, we adopted the EIRC source code set 
from Bellon et al.’s [10] oracle.   

A. Calibration 

In SeByte, we used two different thresholds to evaluate 
the resemblance of method content. The two thresholds are 
(1)   (Jaccard threshold for method similarity) and (2)   
(Jaccard threshold for Java type similarity). The objective of 
our calibration process is to determine the values for   and 
  through an empirical analysis such as that the precision 
and recall can be optimized. In what follows we describe the 
major steps of this calibration approach. 

Step 1. We manually created an oracle for bytecode 
clones, by annotating 700 candidate semantic pairings 
(including both true and false positives) using EIRC’s binary 
representation. The similarities of these pairings were then 
verified against EIRC’s source code level similarities. From 
this analysis we then manually determined if a clone pair 

should be considered a semantic clone pair (true positive) or 
not (false positive).  

Step 2. In order to determine the optimum combination 
values for    and  , we calculated the F-measure for all 
observed combinations (~ 6400 cases) based on        
     and             with our window size being equal 
to 0.01. Fig. 7 shows the F-measure from the front and back.  

From the calibration experiment, we were able to identify 
the values for the   and   where the F-measure peaked in 
Fig. 7 (both precision and recall were optimized). The 
optimum combination for the dimension thresholds are 
             . It means that if the pairing’s contents 
are ~50% and ~20% similar (according to the comparison 
function) for method calls and Java type dimensions 
respectively, the candidate is true positive from the semantic 
similarity point of view with high confidence.   

Step 3. As a part of the validation phase, we further 
validated the selected range for thresholds by random clone-
pair checking on three other datasets (Table 1). We evaluated 
around 500 clone pairs manually, in order to determine if we 
can find a configuration (other than the one in Step 2), which 
might lead to better results, and experienced that Step 2 
combination was the best. 

w

F-measure (front)
The peak

w

F-measure (back) 

Recall
w

φ
φ

wφ φ
Precision  

Figure 7.  The F-measure, precision and recall using all combinations of 

two thresholds based on the manually made clone oracle for Java bytecode 

B. Evaluation  

Run-time. After determining the threshold settings, we 
conducted some performance evaluation in terms of run-time 
performance and agreements on the results. Fig. 8 shows the 
processing time for some major queries (with and without 
reasoning enabled), and processing steps including Jaccard 
similarity computation. The results show that for medium 
size projects, our approach can complete the clone detection 
process within a few minutes. Moreover, it also shows that 
the bottleneck is not the computation of the transitive closure 
for pattern matching, which is an essential observation to 
support our Semantic Web approach to clone detection. 

Scalability. Apparently, the semantic similarity could be 
a potential threat to SeByte (Fig. 8). For the investigation of 
our approach we used several large enterprise Java projects 



as input data. We successfully used SeByte to detect clones 
on binary code as large as 300 KLOC on a desktop computer 
with single core CPU and 3 GB RAM. For larger projects, 
additional memory is required and our built-in reasoner 
should be replaced with a Semantic Web inference engine 
that scales well up to tera-byte data (e.g., [11]). 

 

 
Figure 8.  Processing time report categorized based on the computation 

type. It shows that the time increases significantly for semantic similarity. 
 

Comparison. In the next step of our evaluation, we 
assessed the performance of SeByte in terms of agreements. 
The goal was to see whether SeByte is able to detect clones 
that are missed by other clone detection tools and vice versa. 
We compared its result with the tools listed in Table 2.  

 

 

TABLE II.  SUMMARY OF CLONE DETECTION TOOLS AND 

COMPARISON METHOD DETAILS 

Tool Input 

Data 

Given Input 

Type 

Comparison 

Method 

Tool 

Granularity 

Tool Original Purpose 

NiCad [9]  Table 1 Source Code Automatic 
Method-

level 

Near-Miss Source Code 

Detection 

Merlo dataset 

(From Bellon 

Dataset [10])  

 Bellon 

 Oracle 
Source Code Automatic 

Method-

level 

Metric-based Method-

Level Type-3 Source 

Code Clone Detection 

Scorpio [12] 

 
 Table 1 Source Code 

Manual 

(sampling) 

Line-level 

(token) 

Gapped Clones on 

Source Code PDG 

JCD [13]  Table 1 Binary 
Manual 

(sampling) 

Line-level 

(pcode) 

Type-3 Binary Clone 

Detection 

SimCad [14] 
 Table 1 Binary 

Automatic 
Method-

level 

Near-Miss Source Code 

Detection 

 
Note that, we have used NiCad (near-miss clone detector) 

and Scorpio (semantic clone detector) on the source code 
level, and JCD (type-3 on Java binary) and SimCad (source 
code based near-miss clone detector) on bytecode level. Note 
that, SeByte detects clone-pairs at method-level, so in theory 
it is only feasible to compare its result automatically with 
tools working at the same granularity. Therefore, NiCad, 
Merlo’s clone set from Bellon et al. [10], and SimCad are 
only options for automatic comparisons. However, we 
attempted to manually compare with other tools with their 
different capabilities. 

The agreements/disagreements with NiCad including a 
detailed report is shown in Table 3. As expected the 
agreement percentage is not so high, since each one has been 
designed to detect different types of clones. Moreover, this 
observation complies with earlier studies both by Selim et al. 
[15] and Davis and Godfrey [13], that the disagreement in 
clones is due to differences between binary and source code. 
Table 3 also shows that there are no relations between 
agreement values and project size in this experiment. 
Moreover, SeByte detects usually large number of clone-
pairs since it does not filter out very small-size method 
blocks. We also used SimCad, originally designed for source 

code clone detection on binary (based on the approach by 
Selim et al. and Baker and Manber [16]). Again, as expected 
the agreement between SeByte and SimCad was very low, 
less than 20% on average. Finally, we compared SeByte with 
Merlo’s clone detection tool (CLAN) [10]. The total 
observed agreement for Type 1 and 2 clones was about 18% 
while for Type 3 was negligible. 

 

 

TABLE III.  SEBYTE AND NICAD RESULT COMPARISION 

 Runtime (second) # Clone pair # Clone class Agreement 

 (~%) SeByte 
Distributed 

SeByte 
Single core 

 SeByte NiCad SeByte NiCad 

EIRC    0.4   1.9      198   63   24   17    40% 

 

FreeCol (server)    4   16       708   43   46   19    70% 

Freecol  (full)   135   414      1593   1339   149   305    60% 

Apache  (DB)   132   491      26955   15378   190   297    30% 

 

Furthermore, we manually compared SeByte with JCD 
on binary, and Scorpio on source code content. We used JCD 
1.0.10 using the same configuration recommended by its 
authors. Since Scorpio requires large amount of memory for 
Java heap and stack, we executed it on dedicated hardware 
with 24 GB RAM. As noted earlier, we were unable to 
automate the comparison process for JCD and Scorpio since 
both of them detect clones at finer granularity levels than 
SeByte. We therefore manually verified whether results from 
SeByte (i.e. cloned methods) are detected by them within a 
reasonable coverage. For JCD the agreement ratio was 
~40%, whereas for Scorpio it was negligible. 

Summary. The primary reason for the low agreement 
ratio was due to different search approaches, goals, 
objectives, and input data. While each tool achieves an 
acceptable recall/precision based on the tool specific 
definition of a clone, each tool reports different clone-pairs 
compared to other tools. While for example SeByte and 
Scorpio support specifically semantically similar and gapped 
clones, their different heuristics and input information 
(source code vs. bytecode), result in almost completely 
different result sets. 

C. Answers to the Research Questions 

In what follows we revisit our original research questions 
listed in the Introduction. From our experimental evaluation, 
we were able to observe that SeByte can detect semantic 
clones that are missed by other source code or bytecode 
based tools. As a result, the semantic clones reported by 
SeByte are complimentary to existing clone detection tools. 

Quality. According to the result in the calibration phase 
(Fig. 7), 92% is the best recall that SeByte can achieve for 
semantic clones at method-level using bytecode content. 
Note that, this recall is for the clones that can actually be 
detected using only binary information – and might not 
reflect the clones that can be detected in the source code. We 
also measured the precision of our approach by manually 
checking 500 randomly selected clone pairs from our two 
large datasets. The achieved average precision was around 
79%. This observed precision matches the results from our 
6400 experiments, which we performed during our 
calibration step. Since, there are no other clone detection 
approaches for Java bytecode which support semantic clone 
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detection at method-level, there is no other way to evaluate 
SeByte on a head to head comparison.  

Threats to Validity and SeByte Limitations. We 
calibrated SeByte based on a manually annotated dataset 
which we created. Therefore, it is possible that the selected 
thresholds are not the best due to bias or error in our oracle. 
Regarding the last research question, the mediocre 
agreements in Table 3 illustrates a major limitation (and 
strengths) of our approach. It shows that our approach is able 
to detect clones, which are missed by other tools, at the same 
time, it misses clones detected by other tools. Therefore, we 
consider SeByte to be a complimentary approach to improve 
the overall recall of the state of the art clone detection tools.  

VIII. RELATED WORK 

Metric-based clone detection [7, 8, 17] is one of the 
scalable approaches. Unique features of metric-based 
approach are evaluated by Bellon et al. [10]. There are also 
several semantic clone detection approaches [3, 12, 18] 
proposed in the literature. However, two main challenges 
remain for this research domain. First, there is no well-
established definition for semantic clones. Second, the 
problem in general is undecidable [2]. Recently, diverse 
approaches are proposed such as (1) a formal method-based 
approach for embedded systems [18], (2) clustering of 
entities in different granularities to achieve scalability [3]. 

Binary code clone detection has not been a major 
research focus in the clone detection community. Baker and 
Manber [16] used a combination of three comparison based 
approaches such as Diff on almost the similar bytecode 
representation that we have used (e.g. Fig. 2 Section B) to 
detect syntactical clone (e.g. type 3). The JCD project [13] 
developed by Davis and Godfrey uses a combination of hill 
climbing and greedy algorithms to detect the maximum 
coverage (including a pretty-printing tool [6]). There is also a 
proposal to use process algebra on bytecode [19]. Selim et al. 
[15] converted bytecode to the Jimple format [5] and used 
third-party tools (originally designed for source code) on the 
Jimple content. They reported maximum of 49% and 78% 
agreements between clones from bytecode and source code. 
This agreement ratio is similar to ours between SeByte and 
NiCad and also supports the fact that clone detection at 
source code and bytecode lead to diverse but complementary 
results. Nevertheless, we showed that SeByte also detects 
diverse results from such approach (i.e., Selim et al. [15]) by 
comparing SeByte with SimCad on bytecode. The 
comparison not only shows the usefulness of using bytecode 
for clone detection but also highlights the strengths of our 
heuristics and Semantic Web in clone detection.  

IX. CONCLUSION AND FUTURE WORK 

In this research, we introduced the idea of relaxation on 
code fingerprint which leads to a 2-dimensional code 
fragment comparison. The motivation was to find semantic 
clones which hold high and moderate similarity degrees from 
semantic and syntactic perspectives respectively. In other 
words, it helps the search algorithm to survive in case of 
extreme syntax dissimilarities to find semantic similarities. 
We devised a metric-based approach with two major criteria: 

(1) Pattern similarity, which is done using Semantic Web 
querying and reasoning, and (2) Content similarity, which is 
achieved using Jaccard coefficient. In general, SeByte 
provides the first metric-based approach for semantic clone 
detection on Java bytecode. By comparing to five tools with 
different clone detection algorithms, we showed that our 
approach is able to detect clones which are missed by them. 
As future work, we plan to (1) apply SeByte on large-scale 
subject systems not only on binary but also source code 
levels, (2) compare with other state of the art tools, and (3) 
examine whether certain combinations of the source code 
and binary detection produce satisfactory results. 
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