
A Mutation Analysis Based Benchmarking 
Framework for Clone Detectors 

 

Jeffrey Svajlenko*                      Chanchal K. Roy*                      James R. Cordy+ 
*Department of Computer Science 

University of Saskatchewan 
Saskatoon, Canada 

{jeff.svajlenko, chanchal.roy}@usask.ca  

+School of Computing 
Queen’s University 
Kingston, Canada 

cordy@cs.queensu.ca
 
 

Abstract—In recent years, an abundant number of clone 
detectors have been proposed in literature. However, most of the 
tool papers have lacked a solid performance evaluation of the 
subject tools. This is due both to the lack of an available and 
reliable benchmark, and the manual efforts required to hand 
check a large number of candidate clones. In this tool 
demonstration paper we show how a mutation analysis based 
benchmarking framework can be used by developers and 
researchers to evaluate clone detection tools at a fine granularity 
with minimal effort. 

Index Terms—Evaluation, Benchmarking, Clone Detection, 
Mutation Analysis, Framework. 

I. INTRODUCTION 
The performance of clone detection tools is measured in 

terms of recall (% of true clones within a system found) and 
precision (% of clones reported which are true clones). 
Measuring precision involves validating a tool’s complete (or 
partial) output. Much more difficult is measuring recall as 
knowledge of the true clones within the system must be known. 
Recall is therefore typically measured by comparing the tool’s 
output to a clone corpus built for the system. Previously 
corpuses have been constructed by consulting various clone 
detection tools, and validating a random selection of their 
output [1]. The difficulty with this technique is the amount of 
manual effort required to validate a large corpus. Additionally, 
the corpus becomes specific to and biased by the tools used to 
construct it. The tool we present here resolves these two 
difficulties by synthesizing a corpus rather than mining for one. 
Synthesis can be automated and controlled which allows a well 
understood and unbiased corpus to be created with almost no 
human effort.  

II. FRAMEWORK 
This framework has two phases. In the first phase 

(generation) a corpus of clones is synthesized and then hidden 
in a subject system for the tools to search. The second phase 
(evaluation) executes the detection tools for the corpus and 
analyzes their output to measure recall and precision of the 
synthesized clones (only). 

Clone Synthesis. The framework synthesizes clones by 
mutating real code fragments mined from a source code 

repository. The original and mutated fragments form a clone 
pair produced by mimicking copy, paste and modify cloning 
behavior. Mutations are based upon a validated comprehensive 
taxonomy of the types of edits developers usually perform on 
copy and pasted code [4]. The framework performs mutation 
using mutation operators (Table 1) which takes a fragment as 
input and outputs the same fragment with a single random edit 
of the defined edit type. Framework users specify the types of 
clones to generate as mutators, which are sequences of 
mutation operators which are applied one by one to an input 
fragment. 

Generation Phase. This phase (Fig. 1) begins by selecting 
and extracting any given number n of existing code fragments 
from a code repository. These fragments are mutated by m 
user-defined mutators. The resulting mutant fragments are 
paired with their selected fragment to form a corpus of nm 
synthesized clones. For each of these clones, a mutated version 
of the subject system is created by injecting the selected and 
mutant fragments into the subject system at random 
syntactically correct locations. These mutant systems evolve the 
original subject system by a copy-paste-modify cloning 
activity, and contain exactly one clone from the generated 
clone corpus. The framework can be configured to produce 
multiple mutant systems per generated clone pair using 
different injection locations. The framework tracks corpus 
generation details in a database. 

TABLE I.  MUTATION OPERATORS FROM EDITING TAXONOMY 

Name Mutation Description Clone 
Type 

mCW_A Change in whitespace (addition). 1 
mCW_R Change in whitespace (removal). 1 
mCC_BT Change in between token (/* */) comments. 1 

mCC_EOL Change in end of line (//) comments. 1 
mCF_A Change in formatting (addition of newlines). 1 
mCF_R Change in formatting (removal of newlines). 1 
mSRI Systematic renaming of an identifier. 2 
mARI Arbitrary renaming of a single identifier. 2 

mRL_N Change in value of a single numeric literal. 2 
mRL_S Change in value of a single string literal. 2 
mSIL Small insertion within a line. 3 
mSDL Small deletion within a line. 3 
mILs Insertion of a line. 3 
mDLs Deletion of a line. 3 
mMLs Modification of a whole line. 3 

978-1-4673-6445-4/13 c© 2013 IEEE IWSC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

8



 
Fig. 1.  Generation Phase 

The framework allows a number of constraints to be placed 
on the generated clone corpus, including: min/max clone size 
(lines/tokens), minimum clone similarity, and mutation 
position (min. distance from start/end). This last constraint is to 
encourage the tools to detect the mutant portions (especially for 
type 3 clones) and not trim them into multiple identical clones. 

Evaluation Phase. The evaluation phase (Fig. 2) proceeds 
by running the tools for each of the mutant systems. Any tool 
can be added to the framework by implementing a tool runner, 
a simple communication protocol between the framework and 
the tool. The tool’s performance is measured per mutant system 
as unit recall and unit precision. The framework tracks tool 
unit performance in a database. 

Unit recall is 1.0 if a tool detects the injected clone, or 0.0 if 
it does not. Successful detection is determined by a subsume 
clone matching algorithm with a parameterized tolerance 
threshold. Framework users may also specify a required 
matching clone similarity threshold to prevent false positives 
subsuming the clone from being considered a successful match. 

Unit precision is measured by validating additional clones 
found by the tool that contain at least one of the injected 
fragments. This measures the precision impact of the injected 
clone. Validation is mostly automated using a clone validator, 
which uses source code normalization and multiple code 
similarity metrics to make its decision, as well as its knowledge 
of the types of clones created. Minimal human validation is 
required when the validator is unconfident in judging a clone. 

Output: Once the unit performances have been evaluated, 
overall performance is found by averaging the unit 
performances. This allows recall and precision to be reported at 
various granularities, including: per clone type, per user-
defined mutator, and per mutation operator. 

Scope: The framework supports function and block level 
clones of the Java, C and C# programming languages. 

 

 
Fig. 2.  Evaluation Phase 

III. PREVIOUS WORK 
Previous work includes introduction of the framework’s 

methodology and a prototype experiment [3]. The prototype 
was developed to specifically target NiCad [2] variants, which 
greatly simplified the underlying algorithms. This work has 
generalized the framework for use with any clone detection 
tool, which required significant redesign and reimplementation 
of the underlying algorithms. The generation phase has been 
improved to provide more customization and control over 
corpus generation, and expands language and granularity 
support. The evaluation phase has also been improved, 
including a new automatic clone validator. 

IV. USABILITY 
The framework is operated by a simple menu-based 

command line interface. A menu-based interface was chosen as 
it allows us to document all options within the application, 
greatly simplifying its operation. All configuration parameters 
are explained and provide guidance for selection, including 
defaults. By presenting the framework at the command line, it 
can be easily executed remotely (e.g., cloud computing). 

The menu lists context sensitive options for the six stages 
of the experiment, which include: (1) experiment creation, (2) 
generation phase configuration, (3) generation phase, (4) 
evaluation phase configuration, (5) evaluation phase, and (6) 
result summary and review. It is possible to re-execute the 
evaluation phase by returning to stage (4) from stage (6). Any 
evaluation phase configuration (including participating tools) 
may be changed. Subsequent executions of the evaluation 
phase will reuse any detection or evaluation data not affected 
by the configuration change. 

Between any of these stages the experiment can be exited 
and later resumed. Experiments and their data are portable, 
allowing for easy export and import. Our intention is for 
standardized datasets to be generated and shared amongst the 
clone community. A standard benchmark allows tools to be 
compared without requiring the tools be evaluated together. 

V. DEMONSTRATION 
In this tool demonstration, we will show how the 

framework can be used both to evaluate individual detection 
tools and to compare a set of subject tools. 

REFERENCES 
[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, 

“Comparison and Evaluation of Clone Detection Tools,” IEEE 
Transactions on Software Engineering, 2007, pp. 577-591. 

[2] J.R. Cordy and C.K.Roy, 2010, “The NiCad Clone Detector,” in 
Proc. of the Tool Demo Track of the 19th International 
Conference on Program Comprehension, 2011, pp. 219-220. 

[3] C.K. Roy and J.R. Cordy, 2009. “A Mutation / Injection-based 
Automatic Framework for Evaluating Code Clone Detection 
Tools,” in Proc. of the ICST 4th Int. Workshop on Mutation 
Analysis, 2009, pp. 157-166. 

[4] C.K. Roy, J.R. Cordy and R. Koschke, 2009, “Comparison and 
Evaluation of Code Clone Detection Techniques and Tools: A 
Qualitative Approach,” Science of Computer Programming, 74 
2009, pp. 470-495. 

9


