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Abstract—Detecting clones from large datasets is an interesting 
research topic for a number of reasons. However, building 
scalable clone detection tools is challenging and it is often 
impossible to use existing state of the art tools for such large 
datasets. In this research we have investigated the use of our 
Shuffling Framework for scaling classical clone detection tools to 
ultra large datasets. This framework achieves scalability on 
standard hardware by partitioning the dataset and shuffling the 
partitions over a number of detection rounds. This approach does 
not require modification to the subject tools, which allows their 
individual strengths and precisions to be captured at an 
acceptable loss of recall. In our study, we explored the 
performance and applicability of our framework for six clone 
detection tools. The clones found during our experiment were 
used to comment on the cloning habits of the global Java open-
source development community. 

Index Terms—Clone detection, scalability, large dataset 

I. INTRODUCTION 
Scalable clone detection is amongst the most active topics 

in the clone community. One of the primary targets of such 
research is the creation of clone corpuses from ultra large inter-
project datasets, which often contain on the order of thousands 
of open-source systems. However, building scalable tools is 
challenging and it is often impossible to use existing state of 
the art tools for large dataset analysis, except for emerging 
tools which are built for extreme scalability. Reasons for their 
failure may include insufficient memory, computational time 
requirements, or limitations in their underlying algorithms. 

This research is motivated by the richness of inter-project 
clone corpuses for software mining experiments and 
applications. Corpuses may be mined to study global developer 
behavior or to discover the seeds of new APIs and libraries. A 
corpus may also be used as a basis for Internet-scale clone 
search [1], which has applications including API 
recommendation and usage support. Detection scalability is 
achieved using either novel scalable detection techniques, or 
mixing classical approaches with scalability heuristics. 

In this research, we are interested in evaluating a scalability 
heuristic we term the shuffling framework [2]. Our technique is 
a nondeterministic approach, which allows classical tools (i.e., 
those not specifically designed for scalability) to be scaled to 
ultra large datasets using standard hardware without altering 
the detection tool. The framework achieves scalability by 
executing the classical tools for random partitions of the 

dataset, with the partition contents shuffled over a number of 
detection rounds. 

Our goal is to allow classical tools to contribute towards 
inter-project clone corpuses (e.g., [1]). It is not sufficient to 
only consult scalable clone detectors for corpus generation as 
classical tools have their own unique strengths and detection 
characteristics. Only by consulting a variety of clone detection 
techniques can a comprehensive corpus be constructed. 

This study extends and exploits our earlier research [2]. 
Here we evaluate our framework’s performance for the ultra 
large inter-project dataset IJaDataset 2.0 [3] using a selection of 
classical clone detection tools, including Deckard [4], NiCad 
[5], iClones [6], Simian [7], SimCad [8] and CCFinderX [9]. 
This study reports our observations and the challenges faced in 
executing our framework for these tools and dataset. In order to 
gauge the expected performance of the framework for these 
tools, we also executed it for standard sized datasets which 
allowed us to compare clone detection with and without the 
framework. We developed and evaluated a heuristic for 
estimating framework performance when the clone output was 
too large to process on available hardware. We used our 
discovered inter-project clone facts to comment on open-source 
Java clone characteristics. In summary, we addressed the 
following research questions: 
RQ#1: What is the expected performance of the shuffling 
framework for these selected clone detection tools? 
RQ#2: What is the accuracy of our efficient heuristic for 
measuring the performance of the shuffling framework? 
RQ#3: Is our shuffling framework successful in scaling 
classical detection tools to ultra large datasets? 
RQ#4: What are the major characteristics of cloning in the 
global Java open source community? 

Section 2 outlines the procedure of our shuffling 
framework. Section 3 overviews our experimental setup, and 
defines our metrics, including the heuristic (RQ#2). Section 4 
evaluates the framework’s expected performance for the 
selected tools (RQ#1). Section 5 discusses our experiences in 
applying our shuffling framework to an ultra large dataset 
(IJaDataset), and reports our observations regarding the 
framework’s performance and applicability (RQ#3). In Section 
6 we share our observations on cloning characteristics found in 
the discovered clone facts of IJaDataset (RQ#4). Section 7 
discusses related work. Conclusions and future work are 
presented in Section 8. 
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II. THE SHUFFLING FRAMEWORK 
With the shuffling framework our objective is to allow 

clone detection tools not designed for scalability to scale to 
very large datasets without modification, while using limited 
computational resources and achieving an acceptable overall 
recall. The framework executes the following procedure: 
(1) The source files of the dataset are randomly partitioned 

into n equal sized subsets. Subset size is chosen as to 
enable the clone detection tool to handle a single subset in 
a single run on available hardware. 

(2) Each subset is searched independently by the clone 
detection tool (sequentially, in parallel, or distributed). 

(3) The detected clone pairs are added to a clone repository. 
(4) Steps 1 through 3 are repeated for r rounds. Multiple 

rounds are required as a single round achieves limited 
recall as there is a high chance that cloned contents are 
assigned to disjoint subsets. 

The framework achieves scalability by partitioning the 
dataset into subsets manageable by the clone detection tool. 
The tool’s recall is recovered by repeating detection after 
shuffling the partition contents. The goal of this non-
deterministic approach is to achieve an acceptable fraction of 
the tool’s recall within a manageable number of rounds (O(nr) 
detection experiments). 

A deterministic approach would be to partition the dataset 
and perform detection on every pairing of the partitions. This 
would achieve full recall of the detection tool, but would 
require O(n2) detection experiments. It would require twice the 
number of partitions as our non-deterministic approach as 
partitions are combined for detection. For applications where 
partial recall is acceptable, our framework is more appropriate. 

The key to the use of this framework is the choice of the 
size of the n subsets. Common factors for this choice include 
available memory, computation time and complexity, and 
inherit limitations in the tool’s algorithms and data structures. 
For additional details, see our previous work [2]. 

III. THE CORPUS, ENVIRONMENT, TOOLS AND MEASURES 

A. Corpus - IJaDataset 2.0 
For our experiment we used the second version of 

IJaDataset, which was constructed using raw data crawled in 
2012 [3]. The dataset covers source code of approximately 
25,000 open source Java projects. This new version of the 
dataset contains up-to-date source code and is two times larger 
than the first version, which we used in our earlier studies [2]. 
The dataset is based on source files mined from SourceForge 
and Google Code in 2012. The crawled data includes 12 
million Java files, which reduced to 3 million after filtering. 
The second version of this dataset includes 356 million lines of 
code (LOC). The dataset is publicly available [10]. 

Outliers. Of the 3 million files in IJaDataset, 6238 are 
greater than 2000 lines in length. While these make up an 
insignificant portion of the dataset, they may place a significant 
strain on clone detector performance. For this reason we 
consider these files outliers of the dataset and omitted them 
from the experiments. 

B. Hardware 
For the shuffling experiments we used standard hardware 

with a 2.66GHz multicore processor and 8-16GB of memory. 
Individual rounds were executed on independent instances of 
this standard hardware. Instances were provided by the 
Bugaboo cluster of the Western Canada Research Grid 
(WestGrid) and the Amazon EC2 platform. These instances do 
not exceed the abilities of conventional workstation-class 
desktops, and were exploited in order to complete this study in 
a limited timeframe. For particularly demanding analysis of the 
experiment’s results, an EC2 instance with 64GB of memory 
was utilized. 

C. Clone Detection Tools 
For this study, we explored six clone detection tools. Being 

freely available and supporting Java source code were our 
major deciding factors. Table 1 summarizes our selected tools 
and their chosen configurations. When possible, we preferred 
the tools’ default settings. 

D. Measures 
The performance of our framework is measured as total 

recall, the ratio of the clones from the target tool’s gold 
standard that the framework is able to find. The gold standard 
is the clones the target tool finds when run as is (i.e., without 
our framework). For the application of the shuffling framework 
for r rounds and n subsets, total recall is calculated using Eq. 1. 
As this metric considers clone pairs, it is also referred to as 
clone recall or clone pair recall. 
,ݎ)ݎݐ  ݊) = ∑ (∑ ௗ௧௧ௗ ௦భ )ೝభ ௦  ௗ  (1) 

1) Heuristic-Based Total Recall Measurement 
In our experience, clone detector output may be too large 

for the calculation of total recall, even with extraordinary 
hardware (e.g., 244GB RAM). For this reason a heuristic was 
devised to estimate total recall using limited resources. This 
heuristic estimates total recall by measuring the ratio of the 
cloned fragments, rather than clone pairs, from the gold 
standard found by the framework. Heuristic recall is then 
achieved using Eq. 2. As this metric considers cloned 
fragments, it is also referred to as cloned fragment recall or 
fragment recall. 
 ℎݎ)ݎ, ݊) = ∑ (∑ ௗ௧௧ௗ ௗ ௧௦భ )ೝభ ௗ ௧௦  ௗ    (2) 

TABLE I.  TOOL CONFIGURATIONS 

Tool Configuration 
Deckard [4] 
(version 1.2.3) 

Minimum fragment size of 50 tokens, and a sliding 
window of 5 tokens. Minimum 90% clone 
similarity (tree-based metric). 

NiCad [5] 
(version 3.4) 

Normalized fragment size of 10-2500 lines and 
minimum 70% clone similarity (line-based metric). 

iClones [6] 
(version 0.1.2)  

Minimum clone fragment size of 100 tokens and 
minimum cloned block size of 20 tokens. 

Simian [7] 
(version 2.3.33) 

Code fragment sizes of 6 lines or greater, no 
identifier or literal renaming. 

SimCad [8] 
 (version 2.1)  

Detection of clone pairs of all types after 
consistent identifier normalizer. 

CCFinder [9] 
(version 10.2.7.4) 

Minimum fragment size of 50 tokens, with a 
minimum unique token type of 12. 
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This heuristic is based on the assumption that if two cloned 
fragments of a clone pair have been found by our approach, 
then there is a good chance the clone has also been detected, or 
that the clone could be recovered by applying the transitive 
property to all found clone pairs. For example, if fragments f1, 
f2 and f3 have been found in clone pairs (f1,f2) and (f2,f3) then 
the missed clone pair (f1,f3) can be recovered. A caveat of this 
approach is that while it holds true for all clones of types one 
and two, it may not always for type three clones. 

2) Evaluation of our Heuristic-Based Recall Measure 
In this study, we tested the assumptions of our heuristic-

based recall measurement. We searched JDK1.7 using NiCad, 
Simian and Deckard both as they are and with our shuffling 
framework. The framework was parameterized to evaluate the 
dataset for 15 subsets over 30 rounds. Figure 1 compares the 
total recall and heuristic recall for the tools after each round. 
For NiCad and Simian, the transitive property was applied to 
recover additional clones. Recovered recall was then evaluated 
as in Eq. 1 by including the recovered clones per round as part 
of the tool’s detected clones. Recovered recall was not 
evaluated for Deckard due to the size of its output. 

As can be seen from these experiments, heuristic recall 
over estimates the total recall, but follows a roughly similar 
trend with a faster decay in growth. The recovered recall 
performance for NiCad and Simian show the correctness of the 
heuristic. For NiCad the recovered recall approximately 
matches the heuristic recall. For Simian the recovered recall 
approaches heuristic recall after half the rounds have been 
executed. This shows us our heuristic is effective in estimating 
the recall of our shuffling framework (RQ#2). Note that while 
the transitive property is not perfect for type 3 clones, false 
positives “recovered” by naïve application of the transitive 
property does not affect recall measurement in this study. The 
recovery method has not been efficiently implemented for the 
shuffling framework, and is therefore used only with this study. 
We hope to integrate an efficient version in future work. 

 
Fig. 1.  Heuristic Test 

IV. PRELIMINARY EXPERIMENTS 
Before starting the main study, we used the shuffling 

framework to evaluate two regular size (i.e., small enough to 
evaluate gold standard) subjects systems. The goal of this 
experiment is to observe the expected performance of the 
framework for the six selected tools (RQ#1). We chose 
ArgoUML (190KLOC - 1845 files) and JDK1.7 (900KLOC - 
6916 files) as our regular sized systems. The framework was 
parameterized for 15 random subsets and 30 detection rounds. 

The framework’s total recall performance for each tool’s 
detection of ArgoUML is shown in Fig. 2 and of JDK1.7 in 
Fig. 3. The legends of the graphs specify the gold standard size 
(number of clones) for each tool. The framework performed 
very well with NiCad, iClones, and CCFinderX, obtaining a 
high total recall after 30 rounds. It struggled more for Deckard, 
and performed poorly with Simian for JDK1.7. Total recall 
started and ended lower for JDK1.7, but increased faster than 
for ArgoUML, likely due to the differences in the sizes of the 
two systems (and gold standards). CCFinderX is omitted form 
the JDK1.7 experiment due to failure during detection.  

An observation from this experiment is that generally the 
larger the gold standard the lower the total recall obtained by 
the framework across the same number of rounds and subsets. 
This is seen here for both variation in detection tools and 
subject system size. The exception being Simian, for which the 
framework achieves a lower total recall than for tools with 
 

 
Fig. 2.  Preliminary Experiment – ArgoUML 

 
Fig. 3.  Preliminary Experiment – JDK1.7 
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larger gold standards. Perhaps Simian has better precision for 
smaller datasets, and is therefore not finding the false positives 
in the gold standard, leading to a lowered total recall. 

These results indicate that the framework can achieve a fair 
recall (>70%) for any clone detection tool given an acceptable 
number of rounds. The plots here show the expected 
framework performance for the tools, which answers RQ#1. 

V. THE MAIN EXPERIMENT WITH IJADATASET 
This is the primary experiment of this research. The clone 

detection tools were used to evaluate the ultra large IJaDataset. 
The experiment was used to evaluate the performance and 
feasibility of the shuffling framework for evaluating an ultra 
large dataset using classical clone detection tools (RQ#3). 

Of the original six detection tools only Simian, NiCad and 
Deckard were used successfully for this experiment. 
CCFinderX, iClones, and SimCad were omitted due to 
compatibility issues with the dataset. Table II summarizes the 
shuffling experiments performed. 

A. Simian 
Setup. Simian was chosen for this experiment as it does not 

encounter scalability issues with a dataset as large as 
IJaDataset. By evaluating the dataset using Simian both as is 
(gold standard) and by the shuffling framework, we were able 
to evaluate our technique’s performance for very large datasets. 
Simian’s gold standard was created using an Amazon EC2 
instance with 68GB of RAM. For evaluation with the shuffling 
framework, a subset size of 50,000 files was chosen (58 
subsets). Simian’s fast execution let us choose 30 rounds as 
sufficient to demonstrate the shuffling framework. Subset 
generation and round detection took approximately 8-12 and 4-
10 hours per round, respectively. 

Analysis. Since Simian’s gold standard is extremely large 
(300 billion clone pairs) total recall was estimated using the 
heuristic. Heuristic recall is shown in Fig. 4, with 70% of the 
cloned fragments in the gold standard found by the framework 
after 30 rounds. According to the study of the heuristic effects 
(Section 3-D-2), total recall for Simian should be somewhat 
less than heuristic recall, but with a faster growth. It also 
showed that recovered recall quickly approached heuristic 
recall with Simian once heuristic recall reached 70-80%. 
Simian has achieved an acceptable recall for cloned fragments 
within the 30 rounds, and the heuristic study suggests that the 
recovery method would allow it to achieve a similar recall of 
clone pairs, perhaps requiring 5-10 additional shuffling rounds. 

While the heuristic is a worthy approximation of clone 
recall by the framework, it is still desirable to measure total  
recall, which necessitated a reduction in Simian’s output. 
Investigation into the characteristics of Simian’s gold standard 
 

TABLE II.  SUMMARY OF THE IJADATASET CLONE DETECTION EXPERIMENTS  

Tool Hardware Subset size 
(#files) 

#Sets #Rounds Time 
Total Proc. 

Time (hours)

Deckard 24GB 10K 289 10 ~1440 
NiCad 12GB 10K 289 20 ~760 
Simian 12GB 50K 58 30 ~510 

 
Fig. 4.  Simian Heuristic-based Recall (Clone Fragment Recall) 

found that 99.99% of Simian’s clones came from clone classes 
greater than 100 fragments in size. Manual investigation into 
these clone classes revealed that Simian suffered from what we 
termed the sliding effect; it reported some extremely large 
clone classes containing the same fragment(s) repeated 
numerous times with small offsets in line numbers. These clone 
classes generate an extreme number of self (overlapping) 
clones and represent a significant threat to Simian’s precision. 
We therefore reduced Simian’s output size by trimming clone 
classes over a certain maximum size. 

Figure 5 shows our framework’s total recall using Simian 
for various maximum clone class sizes up to 100 fragments 
(limitation of our hardware). The legend of this figure specifies 
the maximum class size considered with the gold standard’s 
size in parenthesis. Total recall was higher and increased faster 
for lower maximum clone class size. This suggests that the 
framework works best for specialized clone detection (i.e., 
focusing on detecting interesting/unique clones rather than all 
clones). This is due to larger clone classes requiring more 
rounds to be completely found as each fragment in the class 
must be shuffled into the same partition as each of the rest at 
least once. For the smaller class sizes a respectable total recall 
was achievable within 30 rounds (2: 52%, 5: 44%, 10: 40%). 
While still low, the total recall in each case increases nearly 
linearly, with very little decay in slope. Additional rounds 
could bring these to an acceptable level. As can be seen, a 7-
10% increase in total recall is gained per additional 10 rounds. 
The recovery method would also help boost total recall 
achieved. We expect the shuffling framework may perform 
better for other tools, as our preliminary study found that the 
framework performed worst for Simian (Fig. 3, JDK1.7). 

Figure 6 shows heuristic recall for the same trimmed 
output. As can be seen, the shuffling framework is finding the 
cloned fragments very fast, with 52-62% heuristic recall after 
only 30 rounds for each group. Heuristic recall increases faster 
for larger maximum clone class size, meaning that the 
fragments in large clone classes are more easily found. This is 
 

 
Fig. 5.  Simian Total Recall for Maximum Class Size Trimmed Output 
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Fig. 6.  Simian Heuristic-based Recall for Max. Class Size Trimmed Output 

expected as fragments in large clone classes have a higher 
chance of being shuffled into a partition with another fragment 
from the clone class. This suggests that the recovery method 
may work especially well for the clones of large clone classes. 
This is particularly beneficial as it was for these clones that the 
framework had a slower increase in total recall (Fig. 5). 

B. NiCad 
Setup. NiCad was included in this experiment for its ability 

to restrict clone detection to function clones. This is especially 
beneficial to detection in large datasets where the number of 
line level clones may be too large to process. Function clones 
are fewer, and more likely to be interesting as they occur at a 
higher software design level. 

Through experimentation, it was found that NiCad could 
safely handle datasets of 10,000 files. It failed with larger input 
due to hard coded limits in the sizes of its internal data 
structures. These limits appear to act as an early warning to 
guide unwary users away from scalability issues. 

Based on these observations a subset size of 10,000 files 
was chosen for running the shuffling framework (258 subsets). 
As the framework achieved better total recall with NiCad than 
with Simian in the preliminary experiments and previous work 
[2], 20 rounds was deemed sufficient for demonstration of the 
framework. Subset generation and detection took 7-15 and 23-
31 hours per round respectively (shared computing resource). 

Analysis. Creating a gold standard for NiCad was not 
possible so we could not evaluate total recall. Instead we 
investigated the growth of the number of unique clones and 
cloned fragments found after each successive round of our 
framework with NiCad. This information is plotted in Fig. 7. In 
total 5.66 million unique clone pairs containing 875 thousand 
unique cloned code fragments were found. 

The growth of unique reported clone pairs (Fig. 7 diamond-
line) is roughly linear across the twenty rounds, with no 
significant decay in its slope. This is due to the large number of 
subsets created from the dataset, which was a requirement due 
to NiCad’s scalability limits. More rounds would be required to 
see the growth begin to decay. In contrast, the growth of cloned 
fragments (Fig. 7 square-line) decays across the rounds 
significantly. These two facts suggest that most of the cloned 
fragments are being found quickly, but that the clone 
relationships between them are still being detected. Applying 

the transitive clone recovery technique would be a good way to 
recover some of the remaining clones without executing further 
rounds. As seen in the heuristic study (Section 3-D-2), clone 
recovery was very successful for NiCad. 

C. Deckard 
Setup. Experimentation found that Deckard worked for our 

approach with a subset size of 50,000 files, and could possibly 
work for larger subsets up to the entire dataset (untested). 
However, its execution for large sizes exceeded time 
constraints, so a subset size of 10,000 files was used to match 
NiCad (289 subsets). As Deckard has a lengthy execution time, 
the shuffling framework was executed over only 10 rounds for 
this demonstration. Detection was ran on Amazon EC2 and 
took approximately 5-7 days per round. We attempted to run 
the remaining 10 rounds on Westgrid, but found they stalled 
partway through the execution without error or termination. 

Caveat. One disadvantage of Deckard is that it only 
supports up to Java 1.4 syntax. Its documentation specifies that 
it is able to skip unsupported syntax without error. In our 
experience, it found plenty of clones despite this limitation. 

Analysis. Creating a gold standard for Deckard was not 
possible due to the computation time required, so we could not 
investigate total recall. Instead we investigated the detection 
growth across the shuffling rounds as we did for NiCad. 

Figure 8 shows the growth of the number of unique 
detected cloned fragments as measured by the heuristic. As can 
be seen, the growth of detected cloned fragments decays over 
the shuffling rounds. Unfortunately, we could not measure the 
detected clone pairs across the rounds due to the size of 
Deckard’s output. We can infer from NiCad’s and Simian’s 
results it would likely be increasing linearly over these rounds.  

In order to confirm our inference, we measured found clone 
pairs and fragments on a reduction of Deckard’s output. We 
reduced the output sized by considering only reported clone 
classes with a maximum size of 10 fragments (limitation of our 
hardware). The growth of detected clones and fragments for 
this reduced output is shown in Fig. 9. As expected we found 
very similar results to NiCad. The detected clones increases 
roughly linearly, while the detected fragments increases with 
significant decay. Again this suggests that the code fragments 
are found early compared to clone pairs, and that the recovery 
method would be useful in boosting the found clone pairs. 

 
Fig. 7.  Growth of NiCad’s Found Clones and Cloned Fragments 
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Fig. 8.  Growth of Deckard’s Found Cloned Fragments 

 
Fig. 9.  Deckard’s Clone and Fragment Detection Growth for Reduced Output 

D. Other Tools – SimCad, iClones, CCFinderX 
Our intention was to include SimCad, iClones and 

CCFinder in the main experiment as they showed promise in 
the preliminary experiment. During evaluation of a sample 
from the dataset, these tools terminated with an error. 
CCFinderX failed silently, while iClones and SimCad reported 
encountering an invalid Unicode character. This problem does 
not indicate scalability issues with these tools, or with our 
framework. Communication with the iClones developers 
revealed this has been fixed in a development branch. This 
problem was also reported to the SimCad developer, and has 
since been corrected. Strict time constraints prevented us from 
re-integrating these tools into the experiment. We plan on 
investigating these tools with the framework in future work. 

E. Conclusions of the Main Experiment 
From these experiments, we found that the clones found by 

the framework increased nearly linearly, with a slight decay in 
slope, across the rounds. This shows that additional rounds 
would continue to see a healthy increase in found cloned pairs, 
and thus an increased total recall. For Simian and considering 
only smaller clone classes (2-100 fragments) 25-52% total 
recall was achieved over 30 rounds, with a (decaying) 
continued increase of 7-10% per 10 rounds (Fig. 5). Further 
detection rounds could bring total recall to an acceptable value. 

However, the framework was able to find the clone 
fragments much faster. For each tool, the growth of found 
cloned fragments decayed rapidly across the rounds. Simian’s 
results showed that this was due to a majority of the cloned 
fragments having been found (Fig. 4, Fig. 6). 70% were found 
within 30 rounds (52-64% specifically for small clone classes). 

These findings suggest that our framework finds most of 
the cloned fragments in few rounds, but may require a large 
number of rounds to find all of the clone relationships between 

them. This suggests that a transitive-based clone recovery 
process could improve total recall achieved. This is supported 
by our heuristic study (Section 3-D-2) which showed that a 
strong heuristic (clone fragment) recall can be translated into a 
strong total (clone) recall by transitive recovery. Implementing 
this recovery process is therefore a priority for our future work. 

From our experiment, we conclude that the shuffling 
framework is successful in scaling classical clone detection 
tools to ultra large datasets (RQ#3). It is best suited for 
applications which accept partial detection tool recall as 
sufficient. For example, when building a comprehensive inter-
project clone corpus (e.g., for IJaDataset) using both classical 
and scalable detection tools, a 60-80% partial recall using our 
framework is likely sufficient to ensure the clone corpus 
benefits from the diverse strengths and detection characteristics 
of these classical tools.  

The framework is also very suitable for applications which 
only require knowledge of the cloned fragments within an ultra 
large dataset, and not the pairs. Given that we encountered 
scalability limits (memory and time) in processing the clone 
pairs found by this experiment, it is likely that studies on inter-
project clone corpuses of similar scale may need to be done on 
cloned fragments. Analyzing clone pairs found may require 
extraordinary hardware and long computation time. 

VI. CHARACTERISTICS OF THE DETECTED CLONES 
Here we report our observations of the clones discovered in 

the IJaDataset experiment, which represents cloning behavior 
in the Java open source community (RQ#4). 

Clone Report Size. Clone report size was measured for 
each tool as the number of unique clone pairs and cloned 
fragments found (Table III). Due to the limits of our hardware 
we were only able to count the clone pairs Deckard found in its 
first round (1.4 billion). These results show that line level and 
token level clone detection tools report significantly more 
clones than function-level detection tools. The implication is 
that higher granularity detection techniques may be more 
desirable for creating an inter-project clone corpus as their 
smaller reports will be easier to process and analyze. 

Clone Class Statistics. Table IV summarizes our 
measurement of the size of clone classes reported by the tools. 
For NiCad clone classes were discovered by clustering its clone 
pairs using the transitive property. Only the first round of 
Deckard was considered as it was not possible to consolidate its 
classes across its rounds on our hardware. The primary 
observation here is that while small clone classes (2-5 
fragments) are overwhelmingly the most common of the 
reported clone classes, they make up an extreme minority of 
the total reported clone pairs. This indicates that inter-project 
 

TABLE III.  THE CLONE DATASET AND CLONE NETWORK CHARACTERISTICS 

Property NiCad 
(20R) 

Simian 
(Gold) 

Deckard 
(10R) 

#Unique Clones 5.66 Million 298 Billion 1.4 Billion 
(1st round) 

#Unique Fragments 876 Thousand 10.8 Million 1.81 Million 
Avg.CloneSize (LOC) 21.6 40.6 24.5 
ModeCloneSize (LOC) 11 15 19 
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TABLE IV.  CLONE CLASS SIZE STATISTICS FOR NICAD AND SIMIAN 

Class 
Size 

NiCad (20R) Simian (Gold) Deckard (1R) 
Freq. % 

clones 
Freq. % 

clones 
Freq. % 

clones 
2-5 211285 0.32 1431918 0.00091 4081215 0.66 
6-10 7620 0.15 64083 0.00051 383954 0.68 
11-20 2394 0.21 23112 0.00077 208870 1.54 
21-50 1663 0.75 12064 0.0019 192832 7.3 
51-100 888 1.9 3615 0.0030 31828 4.7 
101+ 659 97 2600 99.99 9508 85 

 
clone corpuses would benefit from clustering as a pre-
processing measure to reduce data size and processing costs. 

Clone Size. Figure 10 shows the distribution of cloned 
fragment sizes in IJaDataset for the tools plotted 
logarithmically. The majority of the clones reported are in the 
0-25 and 26-50 LOC ranges. Clones of smaller size typically 
occur at an order of magnitude or lesser frequency. This is as 
expected as cloning typically occurs at the function or code 
block level, not at the class level in Java source code. Average 
and mode fragment sizes for the tools are shown in Table III. 

VII. RELATED WORK 
Scalable clone detection research can be summarized as 

five unique approaches: (1) deterministic novel general purpose 
detection e.g., [11], (2) deterministic novel domain-specific 
approaches e.g., [12], (3) deterministic approaches for 
achieving scalability using an available clone detection tool as 
is e.g., [13], (4) deterministic approaches for achieving 
scalability by altering available tools e.g., [14], and (5) 
nondeterministic approaches for scalability without altering 
e.g., [2]. A variety of use cases can be addressed using each 
family based on their unique features. Which technique should 
be employed depends on the intended application. 

There are few recent and similar studies to our research in 
the literature. Ishihara et al. [12] exploited the inter-project 
scalable clone detection to locate commonly used 
functionalities over 13K open source projects in order to 
generate the seed for future APIs and libraries. Schwarz et al. 
[15] studied cloning between ~3K Smalltalk projects to deploy 
a database of clones which can be queried. Ossher et al. [16] 
observed the cloning at file level using coarse-grained clone 
detection heuristics. Common to all these studies, the detection 
approach is customized and optimized considering the research 
objectives and requirements (i.e., scalability). This is contrary 
to our research where we tried to generate and study a clone 
dataset using available clone detection tools by copping with 
the scalability issue without altering the tools. 

 

 
Fig. 10.  Clone Size Frequency for IJaDataset 

VIII. CONCLUSION AND FUTURE WORK 
In this research we have demonstrated that the shuffling 

framework can be effectively (RQ#3) used to scale existing 
clone detection tools to ultra large datasets. As future work we 
plan to (1) expand our shuffling framework experiment to 
further tools, (2) investigate clone recovery methods to increase 
total recall, and (3) use the shuffling framework to contribute 
toward a validated comprehensive clone corpus for IJaDataset. 
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