
Scaling Classical Clone Detection Tools for Ultra-
Large Datasets: An Exploratory Study

Jeffrey Svajlenko* Iman Keivanloo+ Chanchal K. Roy*
*Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

jes518@mail.usask.ca, croy@cs.usask.ca

 +Department of Computer Science
 Concordia University
 Montreal, Canada
 i_keiv@cse.concordia.ca

Abstract—Detecting clones from large datasets is an interesting
research topic for a number of reasons. However, building
scalable clone detection tools is challenging and it is often
impossible to use existing state of the art tools for such large
datasets. In this research we have investigated the use of our
Shuffling Framework for scaling classical clone detection tools to
ultra large datasets. This framework achieves scalability on
standard hardware by partitioning the dataset and shuffling the
partitions over a number of detection rounds. This approach does
not require modification to the subject tools, which allows their
individual strengths and precisions to be captured at an
acceptable loss of recall. In our study, we explored the
performance and applicability of our framework for six clone
detection tools. The clones found during our experiment were
used to comment on the cloning habits of the global Java open-
source development community.

Index Terms—Clone detection, scalability, large dataset

I. INTRODUCTION
Scalable clone detection is amongst the most active topics

in the clone community. One of the primary targets of such
research is the creation of clone corpuses from ultra large inter-
project datasets, which often contain on the order of thousands
of open-source systems. However, building scalable tools is
challenging and it is often impossible to use existing state of
the art tools for large dataset analysis, except for emerging
tools which are built for extreme scalability. Reasons for their
failure may include insufficient memory, computational time
requirements, or limitations in their underlying algorithms.

This research is motivated by the richness of inter-project
clone corpuses for software mining experiments and
applications. Corpuses may be mined to study global developer
behavior or to discover the seeds of new APIs and libraries. A
corpus may also be used as a basis for Internet-scale clone
search [1], which has applications including API
recommendation and usage support. Detection scalability is
achieved using either novel scalable detection techniques, or
mixing classical approaches with scalability heuristics.

In this research, we are interested in evaluating a scalability
heuristic we term the shuffling framework [2]. Our technique is
a nondeterministic approach, which allows classical tools (i.e.,
those not specifically designed for scalability) to be scaled to
ultra large datasets using standard hardware without altering
the detection tool. The framework achieves scalability by
executing the classical tools for random partitions of the

dataset, with the partition contents shuffled over a number of
detection rounds.

Our goal is to allow classical tools to contribute towards
inter-project clone corpuses (e.g., [1]). It is not sufficient to
only consult scalable clone detectors for corpus generation as
classical tools have their own unique strengths and detection
characteristics. Only by consulting a variety of clone detection
techniques can a comprehensive corpus be constructed.

This study extends and exploits our earlier research [2].
Here we evaluate our framework’s performance for the ultra
large inter-project dataset IJaDataset 2.0 [3] using a selection of
classical clone detection tools, including Deckard [4], NiCad
[5], iClones [6], Simian [7], SimCad [8] and CCFinderX [9].
This study reports our observations and the challenges faced in
executing our framework for these tools and dataset. In order to
gauge the expected performance of the framework for these
tools, we also executed it for standard sized datasets which
allowed us to compare clone detection with and without the
framework. We developed and evaluated a heuristic for
estimating framework performance when the clone output was
too large to process on available hardware. We used our
discovered inter-project clone facts to comment on open-source
Java clone characteristics. In summary, we addressed the
following research questions:
RQ#1: What is the expected performance of the shuffling
framework for these selected clone detection tools?
RQ#2: What is the accuracy of our efficient heuristic for
measuring the performance of the shuffling framework?
RQ#3: Is our shuffling framework successful in scaling
classical detection tools to ultra large datasets?
RQ#4: What are the major characteristics of cloning in the
global Java open source community?

Section 2 outlines the procedure of our shuffling
framework. Section 3 overviews our experimental setup, and
defines our metrics, including the heuristic (RQ#2). Section 4
evaluates the framework’s expected performance for the
selected tools (RQ#1). Section 5 discusses our experiences in
applying our shuffling framework to an ultra large dataset
(IJaDataset), and reports our observations regarding the
framework’s performance and applicability (RQ#3). In Section
6 we share our observations on cloning characteristics found in
the discovered clone facts of IJaDataset (RQ#4). Section 7
discusses related work. Conclusions and future work are
presented in Section 8.

978-1-4673-6445-4/13 c© 2013 IEEE IWSC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

16

II. THE SHUFFLING FRAMEWORK
With the shuffling framework our objective is to allow

clone detection tools not designed for scalability to scale to
very large datasets without modification, while using limited
computational resources and achieving an acceptable overall
recall. The framework executes the following procedure:
(1) The source files of the dataset are randomly partitioned

into n equal sized subsets. Subset size is chosen as to
enable the clone detection tool to handle a single subset in
a single run on available hardware.

(2) Each subset is searched independently by the clone
detection tool (sequentially, in parallel, or distributed).

(3) The detected clone pairs are added to a clone repository.
(4) Steps 1 through 3 are repeated for r rounds. Multiple

rounds are required as a single round achieves limited
recall as there is a high chance that cloned contents are
assigned to disjoint subsets.

The framework achieves scalability by partitioning the
dataset into subsets manageable by the clone detection tool.
The tool’s recall is recovered by repeating detection after
shuffling the partition contents. The goal of this non-
deterministic approach is to achieve an acceptable fraction of
the tool’s recall within a manageable number of rounds (O(nr)
detection experiments).

A deterministic approach would be to partition the dataset
and perform detection on every pairing of the partitions. This
would achieve full recall of the detection tool, but would
require O(n2) detection experiments. It would require twice the
number of partitions as our non-deterministic approach as
partitions are combined for detection. For applications where
partial recall is acceptable, our framework is more appropriate.

The key to the use of this framework is the choice of the
size of the n subsets. Common factors for this choice include
available memory, computation time and complexity, and
inherit limitations in the tool’s algorithms and data structures.
For additional details, see our previous work [2].

III. THE CORPUS, ENVIRONMENT, TOOLS AND MEASURES

A. Corpus - IJaDataset 2.0
For our experiment we used the second version of

IJaDataset, which was constructed using raw data crawled in
2012 [3]. The dataset covers source code of approximately
25,000 open source Java projects. This new version of the
dataset contains up-to-date source code and is two times larger
than the first version, which we used in our earlier studies [2].
The dataset is based on source files mined from SourceForge
and Google Code in 2012. The crawled data includes 12
million Java files, which reduced to 3 million after filtering.
The second version of this dataset includes 356 million lines of
code (LOC). The dataset is publicly available [10].

Outliers. Of the 3 million files in IJaDataset, 6238 are
greater than 2000 lines in length. While these make up an
insignificant portion of the dataset, they may place a significant
strain on clone detector performance. For this reason we
consider these files outliers of the dataset and omitted them
from the experiments.

B. Hardware
For the shuffling experiments we used standard hardware

with a 2.66GHz multicore processor and 8-16GB of memory.
Individual rounds were executed on independent instances of
this standard hardware. Instances were provided by the
Bugaboo cluster of the Western Canada Research Grid
(WestGrid) and the Amazon EC2 platform. These instances do
not exceed the abilities of conventional workstation-class
desktops, and were exploited in order to complete this study in
a limited timeframe. For particularly demanding analysis of the
experiment’s results, an EC2 instance with 64GB of memory
was utilized.

C. Clone Detection Tools
For this study, we explored six clone detection tools. Being

freely available and supporting Java source code were our
major deciding factors. Table 1 summarizes our selected tools
and their chosen configurations. When possible, we preferred
the tools’ default settings.

D. Measures
The performance of our framework is measured as total

recall, the ratio of the clones from the target tool’s gold
standard that the framework is able to find. The gold standard
is the clones the target tool finds when run as is (i.e., without
our framework). For the application of the shuffling framework
for r rounds and n subsets, total recall is calculated using Eq. 1.
As this metric considers clone pairs, it is also referred to as
clone recall or clone pair recall.
,ݎ)ݎݐ ݊) = ∑ (∑ ௗ௧௧ௗ ௦భ)ೝభ ௦ ௗ (1)

1) Heuristic-Based Total Recall Measurement
In our experience, clone detector output may be too large

for the calculation of total recall, even with extraordinary
hardware (e.g., 244GB RAM). For this reason a heuristic was
devised to estimate total recall using limited resources. This
heuristic estimates total recall by measuring the ratio of the
cloned fragments, rather than clone pairs, from the gold
standard found by the framework. Heuristic recall is then
achieved using Eq. 2. As this metric considers cloned
fragments, it is also referred to as cloned fragment recall or
fragment recall.
 ℎݎ)ݎ, ݊) = ∑ (∑ ௗ௧௧ௗ ௗ ௧௦భ)ೝభ ௗ ௧௦ ௗ (2)

TABLE I. TOOL CONFIGURATIONS

Tool Configuration
Deckard [4]
(version 1.2.3)

Minimum fragment size of 50 tokens, and a sliding
window of 5 tokens. Minimum 90% clone
similarity (tree-based metric).

NiCad [5]
(version 3.4)

Normalized fragment size of 10-2500 lines and
minimum 70% clone similarity (line-based metric).

iClones [6]
(version 0.1.2)

Minimum clone fragment size of 100 tokens and
minimum cloned block size of 20 tokens.

Simian [7]
(version 2.3.33)

Code fragment sizes of 6 lines or greater, no
identifier or literal renaming.

SimCad [8]
 (version 2.1)

Detection of clone pairs of all types after
consistent identifier normalizer.

CCFinder [9]
(version 10.2.7.4)

Minimum fragment size of 50 tokens, with a
minimum unique token type of 12.

17

This heuristic is based on the assumption that if two cloned
fragments of a clone pair have been found by our approach,
then there is a good chance the clone has also been detected, or
that the clone could be recovered by applying the transitive
property to all found clone pairs. For example, if fragments f1,
f2 and f3 have been found in clone pairs (f1,f2) and (f2,f3) then
the missed clone pair (f1,f3) can be recovered. A caveat of this
approach is that while it holds true for all clones of types one
and two, it may not always for type three clones.

2) Evaluation of our Heuristic-Based Recall Measure
In this study, we tested the assumptions of our heuristic-

based recall measurement. We searched JDK1.7 using NiCad,
Simian and Deckard both as they are and with our shuffling
framework. The framework was parameterized to evaluate the
dataset for 15 subsets over 30 rounds. Figure 1 compares the
total recall and heuristic recall for the tools after each round.
For NiCad and Simian, the transitive property was applied to
recover additional clones. Recovered recall was then evaluated
as in Eq. 1 by including the recovered clones per round as part
of the tool’s detected clones. Recovered recall was not
evaluated for Deckard due to the size of its output.

As can be seen from these experiments, heuristic recall
over estimates the total recall, but follows a roughly similar
trend with a faster decay in growth. The recovered recall
performance for NiCad and Simian show the correctness of the
heuristic. For NiCad the recovered recall approximately
matches the heuristic recall. For Simian the recovered recall
approaches heuristic recall after half the rounds have been
executed. This shows us our heuristic is effective in estimating
the recall of our shuffling framework (RQ#2). Note that while
the transitive property is not perfect for type 3 clones, false
positives “recovered” by naïve application of the transitive
property does not affect recall measurement in this study. The
recovery method has not been efficiently implemented for the
shuffling framework, and is therefore used only with this study.
We hope to integrate an efficient version in future work.

Fig. 1. Heuristic Test

IV. PRELIMINARY EXPERIMENTS
Before starting the main study, we used the shuffling

framework to evaluate two regular size (i.e., small enough to
evaluate gold standard) subjects systems. The goal of this
experiment is to observe the expected performance of the
framework for the six selected tools (RQ#1). We chose
ArgoUML (190KLOC - 1845 files) and JDK1.7 (900KLOC -
6916 files) as our regular sized systems. The framework was
parameterized for 15 random subsets and 30 detection rounds.

The framework’s total recall performance for each tool’s
detection of ArgoUML is shown in Fig. 2 and of JDK1.7 in
Fig. 3. The legends of the graphs specify the gold standard size
(number of clones) for each tool. The framework performed
very well with NiCad, iClones, and CCFinderX, obtaining a
high total recall after 30 rounds. It struggled more for Deckard,
and performed poorly with Simian for JDK1.7. Total recall
started and ended lower for JDK1.7, but increased faster than
for ArgoUML, likely due to the differences in the sizes of the
two systems (and gold standards). CCFinderX is omitted form
the JDK1.7 experiment due to failure during detection.

An observation from this experiment is that generally the
larger the gold standard the lower the total recall obtained by
the framework across the same number of rounds and subsets.
This is seen here for both variation in detection tools and
subject system size. The exception being Simian, for which the
framework achieves a lower total recall than for tools with

Fig. 2. Preliminary Experiment – ArgoUML

Fig. 3. Preliminary Experiment – JDK1.7

18

larger gold standards. Perhaps Simian has better precision for
smaller datasets, and is therefore not finding the false positives
in the gold standard, leading to a lowered total recall.

These results indicate that the framework can achieve a fair
recall (>70%) for any clone detection tool given an acceptable
number of rounds. The plots here show the expected
framework performance for the tools, which answers RQ#1.

V. THE MAIN EXPERIMENT WITH IJADATASET
This is the primary experiment of this research. The clone

detection tools were used to evaluate the ultra large IJaDataset.
The experiment was used to evaluate the performance and
feasibility of the shuffling framework for evaluating an ultra
large dataset using classical clone detection tools (RQ#3).

Of the original six detection tools only Simian, NiCad and
Deckard were used successfully for this experiment.
CCFinderX, iClones, and SimCad were omitted due to
compatibility issues with the dataset. Table II summarizes the
shuffling experiments performed.

A. Simian
Setup. Simian was chosen for this experiment as it does not

encounter scalability issues with a dataset as large as
IJaDataset. By evaluating the dataset using Simian both as is
(gold standard) and by the shuffling framework, we were able
to evaluate our technique’s performance for very large datasets.
Simian’s gold standard was created using an Amazon EC2
instance with 68GB of RAM. For evaluation with the shuffling
framework, a subset size of 50,000 files was chosen (58
subsets). Simian’s fast execution let us choose 30 rounds as
sufficient to demonstrate the shuffling framework. Subset
generation and round detection took approximately 8-12 and 4-
10 hours per round, respectively.

Analysis. Since Simian’s gold standard is extremely large
(300 billion clone pairs) total recall was estimated using the
heuristic. Heuristic recall is shown in Fig. 4, with 70% of the
cloned fragments in the gold standard found by the framework
after 30 rounds. According to the study of the heuristic effects
(Section 3-D-2), total recall for Simian should be somewhat
less than heuristic recall, but with a faster growth. It also
showed that recovered recall quickly approached heuristic
recall with Simian once heuristic recall reached 70-80%.
Simian has achieved an acceptable recall for cloned fragments
within the 30 rounds, and the heuristic study suggests that the
recovery method would allow it to achieve a similar recall of
clone pairs, perhaps requiring 5-10 additional shuffling rounds.

While the heuristic is a worthy approximation of clone
recall by the framework, it is still desirable to measure total
recall, which necessitated a reduction in Simian’s output.
Investigation into the characteristics of Simian’s gold standard

TABLE II. SUMMARY OF THE IJADATASET CLONE DETECTION EXPERIMENTS

Tool Hardware Subset size
(#files)

#Sets #Rounds Time
Total Proc.

Time (hours)

Deckard 24GB 10K 289 10 ~1440
NiCad 12GB 10K 289 20 ~760
Simian 12GB 50K 58 30 ~510

Fig. 4. Simian Heuristic-based Recall (Clone Fragment Recall)

found that 99.99% of Simian’s clones came from clone classes
greater than 100 fragments in size. Manual investigation into
these clone classes revealed that Simian suffered from what we
termed the sliding effect; it reported some extremely large
clone classes containing the same fragment(s) repeated
numerous times with small offsets in line numbers. These clone
classes generate an extreme number of self (overlapping)
clones and represent a significant threat to Simian’s precision.
We therefore reduced Simian’s output size by trimming clone
classes over a certain maximum size.

Figure 5 shows our framework’s total recall using Simian
for various maximum clone class sizes up to 100 fragments
(limitation of our hardware). The legend of this figure specifies
the maximum class size considered with the gold standard’s
size in parenthesis. Total recall was higher and increased faster
for lower maximum clone class size. This suggests that the
framework works best for specialized clone detection (i.e.,
focusing on detecting interesting/unique clones rather than all
clones). This is due to larger clone classes requiring more
rounds to be completely found as each fragment in the class
must be shuffled into the same partition as each of the rest at
least once. For the smaller class sizes a respectable total recall
was achievable within 30 rounds (2: 52%, 5: 44%, 10: 40%).
While still low, the total recall in each case increases nearly
linearly, with very little decay in slope. Additional rounds
could bring these to an acceptable level. As can be seen, a 7-
10% increase in total recall is gained per additional 10 rounds.
The recovery method would also help boost total recall
achieved. We expect the shuffling framework may perform
better for other tools, as our preliminary study found that the
framework performed worst for Simian (Fig. 3, JDK1.7).

Figure 6 shows heuristic recall for the same trimmed
output. As can be seen, the shuffling framework is finding the
cloned fragments very fast, with 52-62% heuristic recall after
only 30 rounds for each group. Heuristic recall increases faster
for larger maximum clone class size, meaning that the
fragments in large clone classes are more easily found. This is

Fig. 5. Simian Total Recall for Maximum Class Size Trimmed Output

19

Fig. 6. Simian Heuristic-based Recall for Max. Class Size Trimmed Output

expected as fragments in large clone classes have a higher
chance of being shuffled into a partition with another fragment
from the clone class. This suggests that the recovery method
may work especially well for the clones of large clone classes.
This is particularly beneficial as it was for these clones that the
framework had a slower increase in total recall (Fig. 5).

B. NiCad
Setup. NiCad was included in this experiment for its ability

to restrict clone detection to function clones. This is especially
beneficial to detection in large datasets where the number of
line level clones may be too large to process. Function clones
are fewer, and more likely to be interesting as they occur at a
higher software design level.

Through experimentation, it was found that NiCad could
safely handle datasets of 10,000 files. It failed with larger input
due to hard coded limits in the sizes of its internal data
structures. These limits appear to act as an early warning to
guide unwary users away from scalability issues.

Based on these observations a subset size of 10,000 files
was chosen for running the shuffling framework (258 subsets).
As the framework achieved better total recall with NiCad than
with Simian in the preliminary experiments and previous work
[2], 20 rounds was deemed sufficient for demonstration of the
framework. Subset generation and detection took 7-15 and 23-
31 hours per round respectively (shared computing resource).

Analysis. Creating a gold standard for NiCad was not
possible so we could not evaluate total recall. Instead we
investigated the growth of the number of unique clones and
cloned fragments found after each successive round of our
framework with NiCad. This information is plotted in Fig. 7. In
total 5.66 million unique clone pairs containing 875 thousand
unique cloned code fragments were found.

The growth of unique reported clone pairs (Fig. 7 diamond-
line) is roughly linear across the twenty rounds, with no
significant decay in its slope. This is due to the large number of
subsets created from the dataset, which was a requirement due
to NiCad’s scalability limits. More rounds would be required to
see the growth begin to decay. In contrast, the growth of cloned
fragments (Fig. 7 square-line) decays across the rounds
significantly. These two facts suggest that most of the cloned
fragments are being found quickly, but that the clone
relationships between them are still being detected. Applying

the transitive clone recovery technique would be a good way to
recover some of the remaining clones without executing further
rounds. As seen in the heuristic study (Section 3-D-2), clone
recovery was very successful for NiCad.

C. Deckard
Setup. Experimentation found that Deckard worked for our

approach with a subset size of 50,000 files, and could possibly
work for larger subsets up to the entire dataset (untested).
However, its execution for large sizes exceeded time
constraints, so a subset size of 10,000 files was used to match
NiCad (289 subsets). As Deckard has a lengthy execution time,
the shuffling framework was executed over only 10 rounds for
this demonstration. Detection was ran on Amazon EC2 and
took approximately 5-7 days per round. We attempted to run
the remaining 10 rounds on Westgrid, but found they stalled
partway through the execution without error or termination.

Caveat. One disadvantage of Deckard is that it only
supports up to Java 1.4 syntax. Its documentation specifies that
it is able to skip unsupported syntax without error. In our
experience, it found plenty of clones despite this limitation.

Analysis. Creating a gold standard for Deckard was not
possible due to the computation time required, so we could not
investigate total recall. Instead we investigated the detection
growth across the shuffling rounds as we did for NiCad.

Figure 8 shows the growth of the number of unique
detected cloned fragments as measured by the heuristic. As can
be seen, the growth of detected cloned fragments decays over
the shuffling rounds. Unfortunately, we could not measure the
detected clone pairs across the rounds due to the size of
Deckard’s output. We can infer from NiCad’s and Simian’s
results it would likely be increasing linearly over these rounds.

In order to confirm our inference, we measured found clone
pairs and fragments on a reduction of Deckard’s output. We
reduced the output sized by considering only reported clone
classes with a maximum size of 10 fragments (limitation of our
hardware). The growth of detected clones and fragments for
this reduced output is shown in Fig. 9. As expected we found
very similar results to NiCad. The detected clones increases
roughly linearly, while the detected fragments increases with
significant decay. Again this suggests that the code fragments
are found early compared to clone pairs, and that the recovery
method would be useful in boosting the found clone pairs.

Fig. 7. Growth of NiCad’s Found Clones and Cloned Fragments

20

Fig. 8. Growth of Deckard’s Found Cloned Fragments

Fig. 9. Deckard’s Clone and Fragment Detection Growth for Reduced Output

D. Other Tools – SimCad, iClones, CCFinderX
Our intention was to include SimCad, iClones and

CCFinder in the main experiment as they showed promise in
the preliminary experiment. During evaluation of a sample
from the dataset, these tools terminated with an error.
CCFinderX failed silently, while iClones and SimCad reported
encountering an invalid Unicode character. This problem does
not indicate scalability issues with these tools, or with our
framework. Communication with the iClones developers
revealed this has been fixed in a development branch. This
problem was also reported to the SimCad developer, and has
since been corrected. Strict time constraints prevented us from
re-integrating these tools into the experiment. We plan on
investigating these tools with the framework in future work.

E. Conclusions of the Main Experiment
From these experiments, we found that the clones found by

the framework increased nearly linearly, with a slight decay in
slope, across the rounds. This shows that additional rounds
would continue to see a healthy increase in found cloned pairs,
and thus an increased total recall. For Simian and considering
only smaller clone classes (2-100 fragments) 25-52% total
recall was achieved over 30 rounds, with a (decaying)
continued increase of 7-10% per 10 rounds (Fig. 5). Further
detection rounds could bring total recall to an acceptable value.

However, the framework was able to find the clone
fragments much faster. For each tool, the growth of found
cloned fragments decayed rapidly across the rounds. Simian’s
results showed that this was due to a majority of the cloned
fragments having been found (Fig. 4, Fig. 6). 70% were found
within 30 rounds (52-64% specifically for small clone classes).

These findings suggest that our framework finds most of
the cloned fragments in few rounds, but may require a large
number of rounds to find all of the clone relationships between

them. This suggests that a transitive-based clone recovery
process could improve total recall achieved. This is supported
by our heuristic study (Section 3-D-2) which showed that a
strong heuristic (clone fragment) recall can be translated into a
strong total (clone) recall by transitive recovery. Implementing
this recovery process is therefore a priority for our future work.

From our experiment, we conclude that the shuffling
framework is successful in scaling classical clone detection
tools to ultra large datasets (RQ#3). It is best suited for
applications which accept partial detection tool recall as
sufficient. For example, when building a comprehensive inter-
project clone corpus (e.g., for IJaDataset) using both classical
and scalable detection tools, a 60-80% partial recall using our
framework is likely sufficient to ensure the clone corpus
benefits from the diverse strengths and detection characteristics
of these classical tools.

The framework is also very suitable for applications which
only require knowledge of the cloned fragments within an ultra
large dataset, and not the pairs. Given that we encountered
scalability limits (memory and time) in processing the clone
pairs found by this experiment, it is likely that studies on inter-
project clone corpuses of similar scale may need to be done on
cloned fragments. Analyzing clone pairs found may require
extraordinary hardware and long computation time.

VI. CHARACTERISTICS OF THE DETECTED CLONES
Here we report our observations of the clones discovered in

the IJaDataset experiment, which represents cloning behavior
in the Java open source community (RQ#4).

Clone Report Size. Clone report size was measured for
each tool as the number of unique clone pairs and cloned
fragments found (Table III). Due to the limits of our hardware
we were only able to count the clone pairs Deckard found in its
first round (1.4 billion). These results show that line level and
token level clone detection tools report significantly more
clones than function-level detection tools. The implication is
that higher granularity detection techniques may be more
desirable for creating an inter-project clone corpus as their
smaller reports will be easier to process and analyze.

Clone Class Statistics. Table IV summarizes our
measurement of the size of clone classes reported by the tools.
For NiCad clone classes were discovered by clustering its clone
pairs using the transitive property. Only the first round of
Deckard was considered as it was not possible to consolidate its
classes across its rounds on our hardware. The primary
observation here is that while small clone classes (2-5
fragments) are overwhelmingly the most common of the
reported clone classes, they make up an extreme minority of
the total reported clone pairs. This indicates that inter-project

TABLE III. THE CLONE DATASET AND CLONE NETWORK CHARACTERISTICS

Property NiCad
(20R)

Simian
(Gold)

Deckard
(10R)

#Unique Clones 5.66 Million 298 Billion 1.4 Billion
(1st round)

#Unique Fragments 876 Thousand 10.8 Million 1.81 Million
Avg.CloneSize (LOC) 21.6 40.6 24.5
ModeCloneSize (LOC) 11 15 19

21

TABLE IV. CLONE CLASS SIZE STATISTICS FOR NICAD AND SIMIAN

Class
Size

NiCad (20R) Simian (Gold) Deckard (1R)
Freq. %

clones
Freq. %

clones
Freq. %

clones
2-5 211285 0.32 1431918 0.00091 4081215 0.66
6-10 7620 0.15 64083 0.00051 383954 0.68
11-20 2394 0.21 23112 0.00077 208870 1.54
21-50 1663 0.75 12064 0.0019 192832 7.3
51-100 888 1.9 3615 0.0030 31828 4.7
101+ 659 97 2600 99.99 9508 85

clone corpuses would benefit from clustering as a pre-
processing measure to reduce data size and processing costs.

Clone Size. Figure 10 shows the distribution of cloned
fragment sizes in IJaDataset for the tools plotted
logarithmically. The majority of the clones reported are in the
0-25 and 26-50 LOC ranges. Clones of smaller size typically
occur at an order of magnitude or lesser frequency. This is as
expected as cloning typically occurs at the function or code
block level, not at the class level in Java source code. Average
and mode fragment sizes for the tools are shown in Table III.

VII. RELATED WORK
Scalable clone detection research can be summarized as

five unique approaches: (1) deterministic novel general purpose
detection e.g., [11], (2) deterministic novel domain-specific
approaches e.g., [12], (3) deterministic approaches for
achieving scalability using an available clone detection tool as
is e.g., [13], (4) deterministic approaches for achieving
scalability by altering available tools e.g., [14], and (5)
nondeterministic approaches for scalability without altering
e.g., [2]. A variety of use cases can be addressed using each
family based on their unique features. Which technique should
be employed depends on the intended application.

There are few recent and similar studies to our research in
the literature. Ishihara et al. [12] exploited the inter-project
scalable clone detection to locate commonly used
functionalities over 13K open source projects in order to
generate the seed for future APIs and libraries. Schwarz et al.
[15] studied cloning between ~3K Smalltalk projects to deploy
a database of clones which can be queried. Ossher et al. [16]
observed the cloning at file level using coarse-grained clone
detection heuristics. Common to all these studies, the detection
approach is customized and optimized considering the research
objectives and requirements (i.e., scalability). This is contrary
to our research where we tried to generate and study a clone
dataset using available clone detection tools by copping with
the scalability issue without altering the tools.

Fig. 10. Clone Size Frequency for IJaDataset

VIII. CONCLUSION AND FUTURE WORK
In this research we have demonstrated that the shuffling

framework can be effectively (RQ#3) used to scale existing
clone detection tools to ultra large datasets. As future work we
plan to (1) expand our shuffling framework experiment to
further tools, (2) investigate clone recovery methods to increase
total recall, and (3) use the shuffling framework to contribute
toward a validated comprehensive clone corpus for IJaDataset.

ACKNOWLEDGEMENTS
We thank the developers of the tools used in this study, as

well as Dr. Rilling and co-authors of our earlier publications on
the shuffling framework [2] and IJaDataset [3].

REFERENCES
[1] I. Keivanloo, C. Forbes, and J. Rilling, “Similarity search plug-

in: Clone detection meets internet-scale code search”, Proc.
ICSE SUITE, 2012, pp. 21-22.

[2] I. Keivanloo, C. K. Roy, J. Rilling, and P. Charland, “Shuffling
and randomization for scalable source code clone detection”,
Proc. IWSC, 2012, pp. 82-83.

[3] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G.
Peristerakis, and J. Rilling, “A linked data platform for mining
software repositories”, Proc. MSR, 2012, pp.32-35.

[4] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD:
Scalable and accurate tree-based detection of code clones”, Proc.
ICSE, 2007, pp. 96-105.

[5] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of
near-miss intentional clones using flexible pretty-printing and
code normalization”, Proc. ICPC, 2008, pp.172-181.

[6] N. Göde and R. Koschke, “Incremental clone detection”, Proc.
CSMR, 2009, pp. 219-228.

[7] Simian, http://www.harukizaemon.com/simian/, Jan. 2013.
[8] S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle, “On the

effectiveness of Simhash for detecting near-miss clones in large
scale software systems”, Proc. WCRE, 2011, pp. 13-22.

[9] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code”, IEEE Trans. Softw. Eng., 2002, pp. 654-670.

[10] SeClone IJaDataset, http://secold.org/projects/seclone, Jan 2013.
[11] R. Koschke, “Large-scale Inter-system clone detection using

suffix trees”, Proc. CSMR, 2012, pp. 309-318.
[12] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto,

“Inter-project functional clone detection toward building
libraries - An empirical study on 13,000 projects”, Proc. WCRE,
2012, pp. 387-391.

[13] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large
scale code clone analysis and visualization of open source
programs using distributed CCFinder: D-CCFinder”, Proc.
ICSE, 2007, pp. 106-115.

[14] H. Sajnani, J. Ossher, and C. Lopes, “Parallel code clone
detection using MapReduce”, Proc. ICPC, 2012, pp. 261-262.

[15] N. Schwarz, M. Lungu, and R. Robbes, “On how often code is
cloned across repositories”, Proc. ICSE, 2012, pp. 1289-1292.

[16] J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open source
Java projects: The good, the bad, and the ugly”, Proc. ICSM,
2011, pp. 283-292.

22

