
NEAR-MISS CLONE PATTERNS IN WEB APPLICATIONS: AN EMPIRICAL STUDY WITH
INDUSTRIAL SYSTEMS

Tariq Muhammad, Minhaz F. Zibran, Yosuke Yamamoto, Chanchal K. Roy

Department of Computer Science, University of Saskatchawan, Saskatoon, SK, Canada

ABSTRACT
Dynamic web pages composed of inter-woven (tangled) source
code written in multiple programming languages (e.g., HTML,
PHP, JavaScript, CSS) makes it difficult to analyze and man-
age clones in web applications. Despite more than a decade
of research on software clones, there are not many studies to-
wards the investigation of code clones in web applications.

In this paper, we present an in-depth study on the pat-
terns (i.e., forking and templating) of exact and near-miss
code clones in two industrial dynamic web applications hav-
ing distinct architecture. The findings of our study confirm
the believed patterns for cloning and suggest that specialized
techniques and tool support are necessary for effectively man-
aging clones in the tangled source code of dynamic web ap-
plications.

Index Terms— Code clone, analysis, empirical study

1. INTRODUCTION
Code clone (duplicate code) is a well-known code smell that
has significant impact on the development and maintenance
of software systems. Code snippets that have identical source
text except for the comments and layout are called the Type-1
clones. Syntactically similar code snippets, where there may
be variations in the names of identifiers/variables are known
as Type-2 clones. Code fragments that exhibit similarity as
of Type-2 clones and also allow further differences such as
additions, deletions or modifications of statements are Type-
3 clones [16]. As reported by the earlier studies, a typical
software system may have 9%-17% [18] code clones, while
the proportion may go as high as even 68% [3] for certain
software components.

The creation of code clones by copy-pasting source code
is a common practice that the developers adopt to minimize
efforts and speedup development process. On the other hand,
duplicated code can unnecessarily inflate the program size,
which is often proportional to the maintenance effort. More-
over, code clones can also cause fault propagation [21], and
may increase future maintenance effort for consistent change
and evolution of the code clones [19].

Due to the dual (both positive and negative) role of code
clones in the development and maintenance of software sys-
tems, code clones need to be detected and managed effec-
tively to minimize the negative impacts of clones, while max-

imizing the benefits out of code cloning [20, 22]. The ongoing
research towards clone management strives in devising effec-
tive clone management tools and techniques from the analy-
sis of clones and their impacts in evolving software systems.
However, most of the earlier studies on the analysis of code
clones focused on traditional applications written in a partic-
ular programming language such as Java, C, C++, and C#.
While such studies provide useful insights into clones in those
kind of software systems, relatively fewer research aimed to
investigate clones in web applications, even though web ap-
plications are becoming more ubiquitous these days than in
the past.

Unlike the traditional software applications written in a
particular language, web applications these days typically have
multilingual implementations, where a single source file may
contain tangled snippets of source code written in different
programming languages. Programmers typically use three or
four languages while writing a dynamic web page: HTML,
Style code, JavaScript and some kind of server side scripts
such as PHP, Active server pages (ASP), or Java server pages
(JSP). Programmers often put the scripting code inside HTML
tags. Such tangling of Cascaded Style Sheet (CSS), scripting
and HTML code in dynamic applications are not very uncom-
mon, specially in legacy systems.

The scattered clones in the tangled multilingual source
code of the web applications appear to be more difficult to an-
alyze and manage than those in traditional software systems.
Those few studies [11, 12, 13] on the analysis of code clones
in web applications mostly analyzed only Type-1 and Type-
2 clones or the set of clones based on the authors’ distinct
definitions of code similarity. Moreover, those studies were
limited in the investigation of clones only in static HTML
pages, or in the reference graph derived from the links among
different pages and resources.

In this paper, we present an exploratory study on the pat-
terns of both exact (Type-1) and near-miss (Type-2 and Type-
3) code clones in two industrial web applications, which un-
derwent two different development styles. One was devel-
oped using the traditional style where HTML mark-up and
PHP code were put together on dynamic web pages. The other
was developed following a more sophisticated approach using
the MVC (Model-View-Controller) pattern that resulted in a
relatively more modularized implementation.

Web Pages
HTML, Style
code, PHP
scripts, and
JavaScripts

Island
Grammar

Code
Extraction

 PHP
code

Clones
Report

VisCad
Visualization

Clone
patterns

NiCad
Clone

Detector

Clone
detection Clone Analysis

Manual
Investigation

Fig. 1. Procedure of our empirical study

Using island grammar [17], we extracted the PHP code
from the tangled source code of the dynamic web pages. Then
using the NiCad [15] clone detector, we detected clones in
the PHP code, and analyzed them with VisCad [1], a clone
analysis and visualization tool. We investigated the possible
instances of different patterns of cloning such as Forking and
Templating [4]. In particular, we aimed to examine whether
there is any significant difference in the patterns of cloning
in the two web applications that underwent technically two
different development approaches. A schematic diagram por-
traying the procedural steps of our empirical study is pre-
sented in Figure 1.

The findings of our study contribute to the ongoing re-
search on clone management. Despite experiencing quite dif-
ferent development styles, the two web applications are al-
most equally found to have significant number of code clones.
However, the code clones in the system developed using the
traditional style are more scattered across different locations
compared to the dispersion of clones in the other system.

2. BACKGROUND
Code Clones: Two code segments each containing a certain
number of contiguous program statements can be regarded as
a clone-pair, if those two fragments share a certain level of
similarity. A set of two or more code fragments are called
a clone-group if any two members of the set are clone-pairs.
The notion of code segment may refer to different levels of
granularity, such as functions, blocks, or entire files. In our
study, we deal with block clones, where a code fragment refers
to a sequence of program statements that span an entire syn-
tactic block (e.g., all PHP statements between a pair of corre-
sponding <?php and ?> tags).

Patterns of Cloning: The patterns of cloning character-
ize the creation and distribution clones in the source code.
Forking and Templating are two prominent patterns of cloning
as described by Kapser and Godfrey [4]. In the process of
Forking, a piece of existing code is cloned to a different loca-
tion, which is expected to evolve independently from its orig-
inal source. In Templating, similar behaviour is implemented
by cloning existing code, which are then expected to evolve
together with any future changes.

3. SUBJECT SYSTEMS
As subjects to our study, we use two industrial web appli-
cations: a Training Registration System (TRS)
and an Incident Reporting System (IRS). The sys-
tems are developed at the Information and Communications
Technology division of the University of Saskatchewan (UofS),
Canada.

Table 1. Subject systems
Subject Number of
Systems .php files PHP blocks LOC

IRS 75 644 6,848
TRS 27 868 5,295

Table 2. NiCad settings for clone detection
Parameter Value

Granularity of Clones blocks
Minimum Clone Size (LOC) 4, 6, 8, 10, 12, 14, 16, 18, 20
Maximum Clone Size (LOC) 10,000
Filtering of Statements none
UPI (dissimilarity) Threshold 0%, 10%, 20%, 30%, 40%, 50%
Renaming of Identifiers blind rename

TRS1 allows to register in different safety courses offered
for the employees and students at UofS. TRS is developed us-
ing PHP and MySQL. The development of this web applica-
tion followed the traditional page-based style where HTML
mark-ups and PHP code are put together for dynamic web
pages. TRS also includes JavaScript and CSSs to enhance the
client side user experience. The web site has evolved over a
period of five years with some recent major changes to add
new users and an interface with a desktop client server appli-
cation. TRS represents an incrementally developed dynamic
web application.

IRS2 is a dynamic web application for reporting and man-
aging safety incidents on campus. IRS is developed over a
period of three years using the PHP Zend framework. The
Zend Framework allows development using the MVC pat-
tern. IRS has a modular implementation with object-oriented
source code well-organized into Controller, Model and View
classes.

4. CODE EXTRACTION

As we are interested to investigate the clones in the scripting
code written in PHP, we first had to separate the PHP code
from the tangled multilingual source code of the dynamic
web pages. We used a TXL implementation of island gram-
mar [17] to achieve this. Island grammar can be effectively
used to parse source files written in inter-woven multilingual
source code [17]. It can separate the target segments (called
islands) from the remainder (called water) of a given input
file. Since we are interested in the blocks including the entire
segment wrapped around by <?php and ?>, which is exter-
nal to PHP language and part of HTML syntax, we needed to
use an island grammar.

5. CLONE DETECTION

For the detection of clones in the extracted PHP code, we used
the NiCad [15] (version 3.2) clone detector. We wrote sev-
eral scripts and TXL transformation rules for adapting NiCad
to detect clones in PHP code in web applications.

1http://www.usask.ca/dhse/trainingcourses
2http://lamp.usask.ca/dhse/ZF1.0.1

Table 3. Number of clones and cloned files in two systems
with UPI threshold 30% and min. clone size set to 4 LOC

Subject # of # of % of
Systems clones cloned files cloned files

IRS 240 30 40%
TRS 212 19 70%

For our study, we carefully set NiCad’s parameters as
shown in Table 2. With this setting, NiCad detects Type-1,
Type-2, and Type-3 block clones (at the granularity of syntac-
tic blocks). As shown in the Table 2, we varied the minimum
clone size from 04 through 20 LOC (Lines of Code) at each
separate run. Similarly, we also varied the UPI threshold at
different values as shown in the table. The UPI threshold (Ta-
ble 2) is a size-sensitive dissimilarity threshold that guides
NiCad in the detection of Type-3 clones. For example, with
the UPI threshold set to 30%, NiCad detects two code frag-
ments as clones if at least 70% of their pretty-printed text lines
are the same. The “blind rename” option set for our study, in-
structs NiCad to to ignore the differences in the names of
identifiers/variables during comparison of code segments and
thus enables the detection of Type-2 clones.

6. ANALYSIS AND FINDINGS

From the detection of clones in each of the two subject sys-
tems with varying settings of NiCad, we obtained a total of
108 sets (for 2 systems ×9 varieties of minimum clone size
×6 varieties of UPI threshold) of reported clones over the two
systems. To analyze these large number of clones, we used
VisCad [1], a tool for clone analysis and visualization. We
carefully examined the patterns of cloning in both the web
applications subjects to our study. In particular, we studied
the two categories (i.e., Forking and Templating) of cloning
patterns.

In Figure 2, we present the percentages (with respect to
the sizes of the systems in terms of LOC) of clone-pairs and
clone-groups detected in both IRS and TRS at different UPI
(dissimilarity) thresholds and different minimum clone sizes.
As we see, for both the systems, the percentages of clone-
pairs increases, while the percentages of clone-groups in some
cases decreases with the increase in UPI (dissimilarity) thresh-
old. In those cases, with higher dissimilarity threshold, higher
number of clone fragments were clustered in larger clone-
groups, which resulted in the decrease in the number of clone-
groups. Comparing the results of clone detection in the two
systems (Figure 2), one can infer that the proportion of clones
in TRS is about 10 times lower than that in IRS. Thus, the
object-oriented system IRS exhibits a higher clone density,
which is also consistent with earlier studies [14, 18] that also
reported the object-oriented systems to have higher clone den-
sity compared to the systems developed using procedural pro-
gramming languages.

For both the subject systems, the total number detected
clones and cloned files (source files containing one or more

cloned fragments) are presented in Table 3. As we see from
the table, IRS is found to have slightly higher number of
clones than that of TRS. This is in accordance with our ex-
pectations, as IRS is object-oriented and larger in size than
TRS. Perhaps, due to the sophisticated development approach
and modularized architecture, the clones in IRS exist in only
40% of the source files. On the contrary, in TRS, which un-
derwent very traditional development approach, the clone are
found scattered over 70% of the source files.

6.1. Observed Patterns

In both the systems, the developers’ motivation for cloning
appeared to be quite different. In TRS, the programmers reused
the code as bunch of reusable program statements. However,
most of the clones in IRS appeared due to the used templates
of underlying framework. Thus, in most cases, the clones in
IRS system are found to be the result of copying of entire
classes or functions, as compared to those in TRS, where the
programmers copied the reusable code fragments from one
web page to another.

The clones in TRS are found to be difficult to manage
(e.g., refactoring, merging), as those are unpredictably scat-
tered all around in different web pages located in different
directories. However, all the clones detected in IRS are in ac-
cordance with predefined templates and directory structures,
with a consistent naming convention forced by the underlying
framework. Thus, the clones in IRS appears to be relatively
more manageable compared to those in TRS.

Listing 1. A code fragment in TRS having 68 clones
if ($date2 != ‘0000-00-00’) {

$date2 = getdate(strtotime($date2));
if ($date1[‘month’] == $date2[‘month’]) {

$result = $result.‘/’ . $date2[‘mday’];
} else {

$result = $result.‘/’ . $date2[‘month’]
.‘ ’. $date2[‘mday’];

}
}

6.1.1. Coning Patterns in TRS

As mentioned before, TRS underwent a traditional “page-
based” incremental development process, where new web pages
were developed to meet the new needs. The source code in
each of these web pages includes independent program text
often having duplicated code. The relationships among these
pages can only be traced by the web site menus, embedded
URLs, and use cases. Though the source code is organized
into directories pertaining to concerned menus and use cases,
we found that many of the clones in TRS were created as a
result of shared resources such as menu system, page layouts,
authentication code, and GUI forms.

A typical web application development team avoids the
duplication of code by configuring the application into func-
tional components, and using shared CSS as well as separate
script-files for dynamic code generation to fulfill re-occurring

UPI (dissimilarity) threshold
minimum

clone
size (LOC)

clone-groups
in IRS

(a) clone-groups in IRS UPI (dissimilarity) threshold

minimum
clone

size (LOC)

clone-groups
in TRS

%
 o

f c
lo

ne
-g

ro
up

s

(b) clone-groups in TRS

Fig. 2. Percentage of PHP clone-groups in IRS and TRS

requirements of rendering. In TRS, we found signatures of
exploiting some of these best practices during the page-based
development. Still, NiCad detected 14 clone-groups. In List-
ing 1, we present an example of code fragment, which is
found to have as many as 68 near-miss clones in TRS. Many
of these clones are the left-overs from the quick prototypes.
At the end of iterations, these prototypes were staged to pro-
duction with minor changes without considering the possibil-
ities of refactoring and thus caused the existing clones remain
intact.

It was interesting to find that the web pages handling higher
number of use cases have higher number of clones. This ob-
servation is consistent with the programmers’ behaviour of
reusing the existing code to implement new functionalities.
The main page of the web application as well as the web
pages inside the Admin module dealing with large number
of use cases and functionalities such as the management of
class time, students, and courses are found to have relatively
higher number of clones compared to other web pages.

In TRS, (that experienced page-based development pro-
cess), most of the source code is written for HTML render-
ing and the majority of such code consists of print statements.
These print statements often include very complex concatena-
tion of strings encapsulating HTML and scripting code. Due
to the lack of support from text editors and IDEs to efficiently
write such code, programmers usually rely on the plain text
editors, which makes it very tedious to write blocks of such
code. Thus, the programmers easily become tempted to reuse
such code by copy-pasting and making minor changes. For
example, during our manual investigation, we found instances
of copy-pasting the header part of an HTML table along with
the following loop construct to put data in the table.

In the page-based traditional development of web applica-
tions, whenever programmers start working on the new page,
their first target often remains to meet the template require-
ments of the code, session management, and connections with
database if required. These are often easily done by copying
an entire existing page from the same directory or under the
same menu hierarchy. The programmers then start trimming
down the code to remove unnecessary code. Sometimes more

than the basic skeleton code is kept for some anticipated fu-
ture use. Signs of such Templating practices are commonly
found in TRS, which often lead to many clones and some of
which are even dead code.

6.1.2. Cloning Pattern in IRS
Recall that, IRS experienced a sophisticated development pro-
cess and have a modular architecture with object-oriented code.
We found many clones in IRS that we believe to have been
created due to the necessary library calls to conform the MVC
pattern. Many clones are found to have constituted functions
implementing of methods of super class, or the functions for
initialization of certain program objects and indices in the
Controller classes.

A second pattern of cloning in IRS is found in the ex-
ception handling code. The code snippet of Listing 2 shows
a clone fragment resulting from the programming practice of
using simpler code to handle all kinds of program exceptions.
Instead of handling context specific exception, a more generic
exception is caught. In IRS, we discovered as many as 42 of
such clone fragments. A third pattern of cloning in IRS ap-
peared due to the use of very similar code for inserting and
updating data in the underlying database. Such code blocks
are found as clone-pairs in each of the Controller classes.

Listing 2. Generic exception handling code in IRS having 42
clones
catch (Exception $e){
$db->rollback();
$this->view-> messages = ‘Record not Saved !!’;
echo $e->getMessage();

}

With respect to the modules of MVC pattern, the num-
ber of clones is found to be much lower in the Model module
compared to those in the Controller. In the Controller module,
we found 201 clone fragments distributed over 16 source files,
whereas in the Model module, only 39 clone segments were
found dispersed over 14 source files. The source code in-
side the Model module are often mapped to database schema.
The source code in the Model module requires only localized
changes (i.e., changes that do not affect the rest of the system)
only when there is a relatively rare change in the database

schema. This might be a reason why the Model module ex-
hibited lower number of clones compared to the Controller
module.

In addition, the frequent user-centric changes in the View
module (i.e., at the interface of the system) result in corre-
sponding changes in the Controller module, which often caused
changes in the existing Controller code, the creation of new
Controller code, or the creation of new action handlers in the
least. During our manual investigation, we found evidences
that in such situations, the developers copied the existing code
and reused it with necessary customizations, which resulted in
many code clones in the Controller module. Similar to TRS,
in IRS as well, we found that the Controllers classes handling
higher number of use cases also had higher number of clones.

In general, the systems that undergo more usage are more
likely to experience changes during the maintenance life cy-
cle. Frequent interaction of a certain user for his or her daily
operations, or a large number of users’ interaction with a par-
ticular portion of the system may result in high usage. These
often lead to a large number of feedbacks and enhancement
requested posted by the user community. When the develop-
ers accommodate those feedbacks and feature requests, they
make modifications in the existing code base. These changes
often cause the creation of clones by immense forking and
customization of the existing code snippets. In IRS, a sub-
set of Controller classes such as the Reporter, Short, and
Admin classes are found to have experienced extensive in-
teractions from the user community. These Controller classes
also underwent frequent changes, and became sources of clones
through forking. For example, the source code for the Short
Controller is a trimmed down clone of the pre-existing Con-
troller class.

From the development history of IRS, we found that the
first Controller class developed for the system was the Index
class. The rest of the Controller classes were developed by
templating from the Index class followed by minor cus-
tomizations. The real center of the universe is the Reporter
class. The very first version of Reporter class of the Con-
troller module was handling very detailed input forms. As the
department received complaints about those lengthy forms,
a change request was initiated to remove some of the fields.
This resulted in splitting the Reporter class and forking a
new Controller class named Short Controller. Later, tem-
plating from the Reporter class, several new Controller
classes were introduced, which were customized for their re-
spective contexts.

Recall that, IRS is developed following the object-oriented
paradigm. We found evidences implying that the develop-
ment process of IRS employs strict rules for the implanta-
tion of separate classes for Controller, Model and View mod-
ules. It was interesting not to find any code clones across the
triplet of Model, View, and Controller modules. However,
duplicated blocks of code are found within the source code
of the individual modules. Although IRS has a modular ar-

chitecture built through a framework-based sophisticated de-
velopment process, the system still has a fair number of code
clones, in fact, a higher density of clones compared to TRS.

7. VALIDITY

The internal validity of the findings of our study depends
on the accuracy of clone detection. However, the NiCad
clone detector used in our work is reported to be effective
in detecting exact (Type- 1) and near-miss (Type-2 and Type-
3) clones with high precision and recall [15, 16]. Never-
theless, we manually verified most of the detected clones,
as we performed extensive subjective analysis with the help
of VisCad.

Our manual efforts and subjective judgment can be sub-
ject to human errors. During clone analysis, the tool support
from VisCad helped us to keep the probable human errors
to the minimum. Moreover, as the first author of this study is
also a developer of the systems, we have been able to capture
facts (e.g., contextual information about the situations and in-
tentions of clone creation) that were not possible to extract
from the analysis of source code only. Indeed, the findings of
our study are based on only two industrial systems, and thus
can be argued against their generalizability.

8. RELATED WORK
Not many works have been done towards the investigation of
code clones in web applications. Lucca et al. [6] aimed to
detect of similar static web pages by pairwise computation
of Levenstein distance between tag-sequences produced from
serialization of HTML tags. In a follow up work [7], they
attempted to detect clones in ASP pages by serializing refer-
ences to ASP objects. Lucia et al. [8, 9] proposed a graph-
based method to identify clones in the navigational patterns
in web applications. An extension of their technique was re-
alized in a tool [10]. However, our study is different from
theirs in the fact that we investigate cloning patterns in the
PHP scripts, whereas their work was towards the detection
and analysis of clones in the navigational patterns. Our work
fundamentally differs from those. Instead of detecting simi-
larities in entire web pages or navigational patterns, we inves-
tigated the patterns of cloning in the scripting code embedded
in dynamic web applications.

Lanubile and Mallardo [5] applied a metric based approach
to detect function level clones in the JavaScript and VBScript
code in three web based systems. Rajapakse and Jarzabek [12]
reported a cloning rate of up to 63% in web applications. In
a later study [13], they investigated the effectiveness of clone
unification using Server Pages technique to reduce the num-
ber of clones. Our work significantly differs from those stud-
ies in a number of ways. The metric based clone detection
technique used in the study of Lanubile and Mallardo [5]
might have reported many false positives and missed many
potential clones, as the metric based techniques are known to
have low accuracy in clone detection [16, 22]. The studies

of Rajapakse and Jarzabek [12, 13] were only on Type-1 and
Type-2 clones. However, in our study, we use a hybrid clone
detector, NiCad [15], which was reported to have high ac-
curacy in detecting both exact (Type-1) and near-miss (Type-
2 and Type-3) clones [15, 16]. Moreover, the objective of
Lanubile and Mallardo [5] was on the detection of clones in
JavaScript and VBScript code, whereas Rajapakse and Jarz-
abek [12, 13] focused on the existence of clones and the effec-
tiveness of Server Pages technique in clone minimization. On
the contrary, our work is on the analysis of cloning patterns
in PHP scripts in web applications that underwent distinct de-
velopment processes.

Similar to ours, the work of Mao et al. [11] also used
TXL [2] implementation of island grammar [17] to extract
style information from HTML files. Then they identified the
exact (Type-1) clones in the style code segments by pairwise
comparison. The objective of their work was to convert the
table-based layout websites to standards-compliant modern
CSS stylesheet-based websites. Our work, is orthogonal to
theirs. We use island grammar to PHP code from the dynamic
web applications, and then we detect and analyze clones in the
scripting code.

9. CONCLUSION

In this paper, we have presented an empirical study on the
exact (Type-1) and near-miss (Type-2 and Type-3) clones in
two industrial dynamic web applications, which have archi-
tecturally different implementations developed through two
different development processes. Applying island grammar,
we extracted the scripting code written in PHP, and detected
clones in them with a state-of-the-art clone detection tool.
Then we carried out an in-depth analysis on the cloning pat-
terns (i.e., Forking and Templating) in the systems.

The findings of our study confirm the earlier reported rea-
sons for cloning and inform clone management in the context
of web applications. We found that, despite the architectural
differences and development styles, both the web applications
had significant number of code clones. However, the system
developed using the traditional page-based approach have the
clones very scattered over different areas of the code base.
On the contrary, the modular implementation following the
MVC pattern resulted in relatively less scattered clones in the
other system. The dispersion of clones in the later system
was dictated by the underlying framework, and those clones
appeared to be relatively easier to manage compared to those
in the other system.

In both the systems, we found many footprints of Fork-
ing and Templating cloning patterns. However, compared to a
traditional desktop application written in a single program-
ming language such as Java or C++, the development and
maintenance of the web applications need to handle an ad-
ditional dimension of difficulty, since the web pages are com-
posed of inter-woven source code written in more than one
languages (e.g., HTML, PHP, CSS, JavaScript). Due to the
lack of sufficient support for writing such tangled code, de-

velopers make extensive code reuse by copy-pasting and re-
sult in many clones in the code base. Tracing and managing
those clones in the web applications demand specialized tool
support that should be able to perform language specific sepa-
ration of code from the tangled source code, and handle them
separately while still preserving the inter-language relation-
ships of the code clones.
Acknowledgement: This works is supported in part by the Walter C. Sum-

ner Memorial Foundation.

10. REFERENCES
[1] M. Asaduzzaman and C. Roy, “VisCad: flexible code clone analysis

support for NiCad,” In IWSC, pp. 77–78, 2011.
[2] J. Cordy, “Source transformation, analysis and generation in TXL,” In

PEPM, pp. 1–11, 2006.
[3] S. Jarzabek and L. Shubiao, “Eliminating Redundancies with a “Com-

position with Adaptation” Meta-programming Technique,” SIGSOFT
Softw. Eng. Notes, 28(5):237–246, 2003.

[4] C. Kapser and M. Godfrey, ““Cloning considered harmful” consid-
ered harmful: patterns of cloning in software,” Empirical Softw. Eng.,
13:645–692, 2008.

[5] F. Lanubile and T. Mallardo, “Finding function clones in web appli-
cations,” In CSMR, pp. 379–386, 2003.

[6] G. Lucca, M. Di Penta, and A. Fasolino, “Clone analysis in the web
era: An approach to identify cloned web,” In WESS, pp. 107–113,
2001.

[7] G. Lucca, M. Di Penta, and A. Fasolino, “An Approach to Identify
Duplicated Web Pages,” In COMPSAC, pp. 481–486, 2002.

[8] A. Lucia, R. Francese, G. Scanniello, and G. Tortora, “Reengineering
web applications based on cloned pattern analysis,” In IWPC, pp. 132
– 141, 2004.

[9] A. Lucia, G. Scanniello, G. Tortora, “Identifying Clones in Dynamic
Web Sites Using Similarity thresholds,” In ICEIS, pp. 391–396, 2004.

[10] A. Lucia, R. Francese, G. Scanniello, G. Tortora, “Understanding
Cloned Patterns in Web Applications,” In IWPC, pp. 333–336, 2005.

[11] A. Mao, J. Cordy, and T. Dean, “Automated conversion of table-based
websites to structured stylesheets using table recognition and clone
detection,” In CASCON, pp. 12–26, 2007.

[12] D. Rajapakse, “An investigation of cloning in web applications,” In
WWW, pp. 924–925, 2005.

[13] D. Rajapakse and S. Jarzabek, “Using server pp. to unify clones in
web applications: A trade-off analysis,” In ICSE, pp. 116–126, 2007.

[14] C. Roy and J. Cordy, “Near-miss function clones in open source soft-
ware: an empirical study,” J. Softw. Maint. Evol., 22(3):165–189,
2010.

[15] C. Roy and J. Cordy, “NiCad: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization,” In
ICPC, pp. 172–181, 2008.

[16] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, 74(7):470–495, 2009.

[17] N. Synytskyy and J. Cordy, “Robust multilingual parsing using island
grammars,” In CASCON, pp. 266–278, 2003.

[18] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy, “Analyzing and
Forecasting Near-miss Clones in Evolving Software: An Empirical
Study,” In ICECCS, pp. 295–304, 2011.

[19] M. Zibran and C. Roy, “A Constraint Programming Approach to
Conflict-aware Optimal Scheduling of Prioritized Code Clone Refac-
toring,” In SCAM, pp. 105–114, 2011.

[20] M. Zibran and C. Roy, “Towards flexible code clone detection, man-
agement, and refactoring in IDE,” In IWSC, pp. 75–76, 2011.

[21] M. Zibran and C. Roy, “IDE-based real-time focused search for near-
miss clones,” In SAC, pp. 1235–1242, 2012.

[22] M. Zibran and C. Roy, “The Road to Software Clone Management:
A Survey,” Tech. Report 2012-03, Department of Computer Science,
University of Saskatchewan, Canada, pp. 1–62, 2012.

