
Chapter 4 - Solution of

Nonlinear Equations



4.1 The Bisection Method

In this chapter, we will be interested in solving
equations of the form

f(x) = 0.

Because f(x) is not assumed to be linear, it could have
any number of solutions, from 0 to ∞.

In one dimension, if f(x) is continuous, we can
make use of the Intermediate Value Theorem (IVT)
to bracket a root; i.e., we can find numbers a and b
such that f(a) and f(b) have different signs.

Then the IVT tells us that there is at least one magical
value x∗ ∈ (a, b) such that f(x∗) = 0.

The number x∗ is called a root or zero of f(x).

Solving nonlinear equations is also called root-finding.
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To “bisect” means to divide in half.

Once we have an interval (a, b) in which we know x∗
lies, a systematic way to proceed is to sample f(a+b2 ).

If f(a+b2 ) = 0, then x∗ =
a+b
2 , and we are done!

Otherwise, the sign of f(a+b2 ) will either agree with
the sign of f(a), or it will agree with the sign of f(b).

Suppose the signs of f(a+b2 ) and f(a) agree.

Then we are no longer guaranteed that x∗ ∈ (a, a+b2 ),

but we are still guaranteed that x∗ ∈ (a+b2 , b).

So we have narrowed down the region where x∗ lies.

Moreover, we can repeat the process by setting a+b
2 to

a (or to b, as applicable) until the interval containing
x∗ is small enough.

See bisectionDemo.m

Interval bisection is a slow-but-sure algorithm for
finding a zero of f(x), where f(x) is a real-valued
function of a single real variable.
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We assume that we know an interval [a, b] on which a
continuous function f(x) changes sign.

However, there is likely no floating-point number (or
even rational number!) where f(x) is exactly 0.

So our goal is:

Find a (small) interval (perhaps as small as 2 successive
floating-point numbers) on which f(x) changes sign.

Sadly, bisection is slow !

It can be shown that bisection only adds 1 bit of
precision per iteration.

Starting from 0 bits of accuracy, it always takes 52
steps to narrow the interval in which x∗ lies down to 2
adjacent floating-point numbers.

However, bisection is completely foolproof .

If f(x) is continuous and we have a starting interval on
which f(x) changes sign, then bisection is guaranteed
to reduce that interval to two successive floating-point
numbers that bracket x∗.
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4.2 Newton’s Method

Newton’s method for solving f(x) = 0 works in the
following fashion.

Suppose you have a guess xn for a root x∗.

Find the tangent line to y = f(x) at x = xn and
follow it down until it crosses the x-axis; call the
crossing point xn+1.

This leads to the iteration

xn+1 = xn −
f(xn)

f ′(xn)
.

Often xn+1 will be closer to x∗ than xn was.

Repeat the process until we are close enough to x∗.

See newtonDemo.m

When Newton’s method works, it is really great!
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In fact, the generalization of the above description of
Newton’s method is the only viable general-purpose
method to solve systems of nonlinear equations.

But, as a general-purpose algorithm for finding zeros
of functions, it has 3 serious drawbacks.

1. The function f(x) must be smooth.

2. The derivative f ′(x) must be computed.

3. The starting guess must be “sufficiently accurate”.

• If f(x) is not smooth, then f ′(x) does not exist, and
Newton’s method is not defined.

Estimating or approximating derivative values at points
of non-smoothness can be hazardous.

• Computing f ′(x) may be problematic.

Nowadays, the computation of f ′(x) can (in principle)
be done using automatic differentiation:
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Suppose we have a function f(x) and some computer
code (in any programming language) to evaluate it.

By combining modern computer science parsing
techniques with the rules of calculus (in particular the
chain rule), it is theoretically possible to automatically
generate the code for another function, fprime(x),
that computes f ′(x).

You may be able to use software that estimates f ′(x)
by means of finite differences; e.g.,

f ′(x) ≈ f(x+ ε)− f(x− ε)
2ε

.

If we could take limε→0 of the right-hand side, then
we would precisely have f ′(x). (Why can’t we?)

But it still may be expensive or inconvenient depending
on your computing environment.

• If x0 is not sufficiently accurate, Newton’s method
will diverge (often catastrophically!).
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The local convergence properties of Newton’s method
are its strongest features.

Let x∗ be a zero of f(x), and let en = x∗ − xn be the
error in the nth iterate.

Assume

• f ′(x) and f ′′(x) exist and are continuous.

• x0 is sufficiently close to x∗.

Then it is possible to prove that

en+1 =
1

2

f ′′(ξ)

f ′(xn)
e2n,

where ξ is some point between xn and x∗.

In other words, the new error is roughly the size of the
square of the old error.

(In this case we say en+1 = O(e2n).)
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This is called quadratic convergence:

For nice,1 smooth functions, once xn is close enough
to x∗, the error goes down roughly by its square with
each iteration.

=⇒ The number of correct digits approximately
doubles with each iteration!

(This is much faster than bisection, which only has
linear convergence.)

The behaviour we saw for computing
√
x is typical.

Beware! When the assumptions underlying the local
convergence theory are not satisfied, Newton’s method
might not work.

If f ′(x) and f ′′(x) are not continuous and bounded, or
if x0 is not “close enough” to x∗, then the local theory
does not apply!

→ We might get slow convergence, or even no
convergence at all.

1By “nice”, here we mean f(x) such that f ′′(x) is bounded and
f ′(x∗) 6= 0.
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4.3 Bad Behaviour of Newton’s Method

As we have indicated, Newton’s method does not
always work.

Potentially bad behaviour of Newton’s method includes

• convergence to an undesired root,

• periodic cycling,

• catastrophic failure.
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• It is easy to see geometrically how Newton’s method
can converge to a root that you were not expecting.

Let f(x) = x2 − 1.

This function has 2 roots: x = −1 and x = 1.

From the graph of f(x) and the geometric
interpretation of Newton’s method, we see that we
will get convergence to x = −1 for any x0 < 0 and to
x = 1 for any x0 > 0.

(Newton’s method is undefined in this case for x0 = 0.)
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• To see how Newton’s method can cycle periodically,
we have to cook up the right problem.

Suppose we want to see Newton’s method cycle about
a point a.

Then the iteration will satisfy

xn+1 − a = a− xn.

Therefore, we write

x− f(x)

f ′(x)
− a = a− x,

and solve this equation for the evil f(x):

df

f
=

dx

2(x− a)
.
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Integrating both sides,

ln |f(x)| = 1

2
ln |x− a|+ C,

where C is an arbitrary constant, or

|f(x)| = A
√
|x− a|,

where A = eC. Noting

f(x) = ±A
√
|x− a|,

we can choose A = sgn(x− a).
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Here is a plot of the f(x) and the cyclic behaviour for
a = 2 and x0 = 3 or −1.
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Of course, x∗ = a.

What goes wrong?

The local convergence theory for Newton’s method
fails for this problem because f ′(x) is unbounded as
x→ a.
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• Newton’s method can fail completely.

When it does, it is usually in a catastrophic fashion;
i.e., the iterates xn become numerically unbounded in
only a few iterations.

(And if you are watching the iterates as they are
computed, it becomes clear within an iteration or two
that things aren’t going to work.)

This bad behaviour is much more common when
solving systems of nonlinear equations, so we defer
more discussion until the end of this chapter.

What this tells us however is that having a good
guess is even more important when solving a system of
nonlinear equations.

(Unfortunately, it is also much harder to obtain one!)

For scalar equations, the problem of catastrophic failure
generally stems from having f ′(xn) “point in the wrong
direction”.
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In practice, to enhance the global convergence
properties of Newton’s method, only part of the
Newton “step” is taken when xn is “far” from x∗:

The iteration is modified to

xn+1 = xn−λn
f(xn)

f ′(xn)
.

A computation is performed to compute a scaling
factor λn ∈ (0, 1] that tells us what fraction of the
Newton correction to take.

As xn → x∗, λn → 1;

i.e., as we approach the solution, we tend to take the
whole Newton step (and get quadratic convergence).

This is called the damped Newton method.

The idea is that far from the root, you would not take
the whole Newton step if it is bad (and hence avoid
catastrophic failure).
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Some other safeguards that are also added to software
in practice to allow for graceful termination of the
algorithm:

• Specify a maximum number of iterations allowed.

• Check that the Newton correction f(xn)/f
′(xn) is

not too large (or alternatively λn is not too small).
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4.4 The Secant Method

One of the greatest shortcomings of Newton’s method
is that it requires the derivative f ′(x) of the function
f(x) whose root we are trying to find.

The secant method replaces the derivative evaluation in
Newton’s method with a finite difference approximation
based on the two most recent iterates.

Geometrically, instead of drawing a tangent to f(x)
at the current iterate xn, you draw a straight line
(secant) through the two points (xn, f(xn)) and
(xn−1, f(xn−1)).

The next iterate xn+1 is again the intersection of this
secant with the x-axis.

The iteration requires two starting values, x0 and x1.
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The subsequent iterates are given by

sn =
f(xn)− f(xn−1)

xn − xn−1
,

xn+1 = xn −
f(xn)

sn
.

It should be clear that the slope of the secant sn
approximates f ′(xn) in Newton’s method.

See secantDemo.m

The convergence properties of the secant method are
similar to those of Newton’s method. Assuming f ′(x)
and f ′′(x) are continuous, it can be shown that

en+1 =
1

2

f ′′(ξ)f ′(ξn)f
′(ξn−1)

f ′(ξ)3
enen−1,

where ξn, ξn−1 are points between xn, xn−1, and x∗;
ξ is a point in the interval in x corresponding to the
interval in y spanned by f(xn−1), f(xn), and 0.
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This is not quadratic convergence, but it is superlinear
convergence.

It can be shown that

en+1 = O(eφn),

where φ = (1 +
√
5)/2 ≈ 1.6 is the golden ratio.

In other words, when xn gets close to x∗, the number
of correct digits is multiplied by φ with each iteration.

That’s almost as fast as Newton’s method!

It is a great deal faster than bisection.

Typically, the secant method is very popular because
although the convergence rate is not as fast as that
of Newton’s method (and so you need a few more
iterations to reach a given accuracy), a secant iteration
is usually much cheaper than a Newton iteration.

This means that ultimately the secant method is
actually faster than Newton’s method to find a root
to a given accuracy.
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4.5 Inverse Quadratic Interpolation

A typical train of thought in numerical analysis is the
following.

We notice that the secant method uses 2 previous
points xn, xn−1 in determining the next one, xn+1.

So we begin to wonder: is there anything to be gained
by using 3 points?

Suppose we have 3 values, xn, xn−1, and xn−2, and
their corresponding function values, f(xn), f(xn−1),
and f(xn−2).

We could interpolate these values by a parabola and
take xn+1 to be the point where the parabola intersects
the x-axis.

Problem: The parabola might not intersect the x-axis!

(This is because a quadratic function does not
necessarily have real roots.)
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Note: This could be regarded as an advantage!

In fact an algorithm known as Muller’s method
uses the complex roots of the quadratic to produce
approximations to complex zeros of f(x).

Unfortunately, we have to avoid complex arithmetic.

So instead of a quadratic in x, we interpolate the 3
points with a quadratic function in y!

This leads to a sideways parabola, P (y), determined
by the interpolation conditions

xn = P (f(xn)), xn−1 = P (f(xn−1)), xn−2 = P (f(xn−2)).

Note: We are reversing the traditional roles of the
data x and y in this process!

A sideways parabola always hits the x-axis (y = 0).

So, xn+1 = P (0) is the next iterate.
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This method is known as inverse quadratic
interpolation (IQI).

The biggest problem with this “pure” IQI algorithm is
that polynomial interpolation assumes the x data (also
called the abscissae), which in this case are f(xn),
f(xn−1), and f(xn−2), to be distinct.

Doing things as we propose, we have no guarantee that
they will be!

For example, suppose we want to compute
√
2 using

f(x) = x2 − 2.

If our initial guesses are x0 = −2, x1 = 0, x2 = 2,
then f(x0) = f(x2) and x3 is undefined!

Even if we start near this singular situation, e.g., with
x0 = −2.001, x1 = 0, x2 = 1.999, then x3 ≈ 500.

Cleve likens IQI to an immature race horse: It moves
very quickly when it is near the finish line, but its
overall behavior can be erratic.

→ It needs a good trainer to keep it under control.
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4.6 The Zero-in Algorithm

The zero-in algorithm is a hybrid algorithm that
combines the reliability of bisection with the speed
of secant and IQI.

The algorithm was first proposed by Dekker in the
1960s. It was later refined by Brent (1973).

The steps of the algorithm are as follows.
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• Start with points a, b so that f(a), f(b) have
opposite signs, |f(b)| ≤ |f(a)|, and c = a.

• Use a secant step to give b+ between a and b.

• Repeat the following steps until |b−a| < εmachine|b|
or f(b) = 0.

– Set a or b to b+ in such a way that
∗ f(a) and f(b) have opposite signs;
∗ |f(b)| ≤ |f(a)|;
∗ Set c to the old b if b = b+; else set c = a.

– If c 6= a, consider an IQI step.
– If c = a, consider a secant step.
– If the result of the IQI or secant step is in the

interval [a, b], take it as the new b+.
– If the step is not in the interval, use bisection to

get the new b+.
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This algorithm is foolproof: It maintains in a shrinking
interval that brackets the root.

It uses rapidly convergent methods when they are
reliable; but it uses a slow-but-sure method when
necessary to maintain a bracket for the root and
guarantee convergence.

This is the algorithm implemented in Matlab’s fzero
function.

See fzeroDemo.m and fzerogui.m
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Solving Systems of Nonlinear Equations

We now consider systems of nonlinear equations.

We are now looking for a solution vector x =
(x1, x2, . . . , xm)

T that satisfies a set of m nonlinear
equations f(x) = 0, where

f(x) =


f1(x1, x2, . . . , xm)
f2(x1, x2, . . . , xm)

...
fm(x1, x2, . . . , xm)

 .
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This case is much more difficult than the scalar case
for a number of reasons; e.g.,

• Much more complicated behaviour is possible,
making analysis of existence and number of solutions
much harder or even impossible.

• There is no concept of bracketing in higher
dimensions, so foolproof methods that are
guaranteed to converge to the correct solution do
not exist.

• Computational costs increase exponentially with
increasing dimension.

Consider the following system of 2 equations:

x21 − x2 + γ = 0,

−x1 + x22 + γ = 0,

where γ is a parameter.
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Each equation defines a parabola, and the solutions (if
any) are the intersection points of these parabolas.

Depending on γ, this system can have 0, 1, 2, or 4
solutions.

x

y

γ = 0.5

−2 −1 0 1 2
−2

−1

0

1

2

x

y

γ = 0.25

−2 −1 0 1 2
−2

−1

0

1

2

x

y

γ = −0.5

−2 −1 0 1 2
−2

−1

0

1

2

x

y

γ = −1

−2 −1 0 1 2
−2

−1

0

1

2

28



Newton’s Method

Many methods for finding roots in one dimension do
not generalize directly to m dimensions.

Fortunately, Newton’s method can generalize to higher
dimensions quite easily.

It is arguably the most popular and powerful method
for solving systems of nonlinear equations.

Before discussing it, we will first need to introduce the
concept of the Jacobian matrix (also known as the
matrix of first partial derivatives).

Let

f(x) =


f1(x1, x2, . . . , xm)
f2(x1, x2, . . . , xm)

...
fm(x1, x2, . . . , xm)

 .
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Then the Jacobian matrix Jf(x) =
∂f(x)
∂x is an m ×m

matrix whose (i, j) element is given by

[Jf(x)]ij =
∂fi
∂xj

.

e.g., when m = 2,

Jf(x) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
.

Let

f(x) =

(
x21 − x2 + γ
−x1 + x22 + γ

)
.

Then,

Jf(x) =

[
2x1 −1
−1 2x2

]
.
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The Newton iteration for systems of nonlinear
equations takes the form

xn+1 = xn − Jf
−1(xn)f(xn).

Of course, in practice we never actually form Jf
−1(xn)!

Instead we solve the linear system

Jf(xn)sn = −f(xn),

then update
xn+1 = xn + sn.

→ Newton’s method reduces the solution of a nonlinear
system to the solution of a sequence of linear equations.
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Example

Solve the nonlinear system

f(x) =

[
x1 + 2x2 − 2
x21 + 4x22 − 4

]
= 0.

First compute the Jacobian:

Jf(x) =

[
1 2
2x1 8x2

]
.

Start with initial guess x0 = [1, 2]T .

Then,

f(x0) =

[
3
13

]
, Jf(x0) =

[
1 2
2 16

]
.
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Solve for the correction s0 from[
1 2
2 16

]
s0 = −

[
3
13

]
=⇒ s0 =

[
−1.83
−0.58

]
.

So

x1 =

[
1
2

]
+

[
−1.83
−0.58

]
=

[
−0.83
1.42

]
,

etc.

If the process converges, we iterate until we have
satisfied some stopping criterion.

As a compromise between checking for absolute and
relative change in the iterates, we use a stopping
criterion like

e = ‖xn+1 − xn‖+ 4εmachine‖xn+1‖,

and stop when e is less than some tolerance (say 10−8).

See systemDemo.m

33

http://www.cs.usask.ca/~spiteri/M211/notes/systemDemo.m


Notes:

1. Newton’s method is quadratically convergent is m
dimensions, but the proof is beyond the scope of
this course.

2. The computational expense of solving a system of
m nonlinear equations can be substantial!
→ computing Jf(x) requires m2 function
evaluations
→ solving the linear systems by Gaussian elimination
costs O(m3) operations

These statements assume that the Jacobian is dense.

If it is sparse or has some special structure or properties,
some savings can usually be had.
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Quasi-Newton Methods

These are also called secant-updating methods.

The main computational cost of Newton’s method in
higher dimensions is in evaluating the Jacobian and
solving the linear system

Jf(xn)sn = −f(xn).

There are 2 main ways to reduce this cost:

1. only update the Jacobian every few iterations
This is known as freezing the Jacobian.
If you store the LU factors from the first linear
system solve, the cost of solving subsequent systems
with the frozen Jacobian is much less than the
original cost (O(m2) vs. O(m3)).
If you only ever use Jf(x0), this is known as the
chord method.
It is the analogue of the secant method in higher
dimensions.
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2. build up an approximation to the Jacobian using
successive iterates and function values
The most well-known of these methods is called
Broyden’s method.
Unfortunately its description is beyond the scope of
this course.

Again, more iterations are generally required of a quasi-
Newton method compared to Newton’s method.

However, the cost of these extra iterations is usually
more than made up for with savings in costs per
iteration.

Hence, there is often a net savings in using such
methods over Newton’s method.
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