
Chapter 5 - Quadrature

The Goal: Adaptive Quadrature

Historically in mathematics, quadrature refers to the
act of trying to find a square with the same area as a
given circle.

In mathematical computing, quadrature refers to the
numerical approximation of definite integrals.

Let f(x) be a real-valued function of a real variable,
defined on a finite interval a ≤ x ≤ b.

We seek to compute the value of the definite integral

∫ b

a

f(x) dx.

Note: This is a real number.

In line with its historical meaning, “quadrature” might
conjure up the vision of plotting the function on
graph paper and counting the little boxes (and their
fractions!) that lie underneath the curve.

1

Observations:

• The use of smaller boxes gives a more accurate
answer (but requires more work!).

• It is possible to get away with larger boxes in some
regions (where f(x) doesn’t change much) and not
make a large error.

Adaptive quadrature is the act of carefully selecting
the points where f(x) is sampled.

Of course, we want a computer to do this automatically
for us!

So, we will have to figure out strategies that can be
programmed.

In general, we also want to evaluate the function
at as few points as possible while approximating
the integral to within some specified accuracy; i.e.,
adaptive quadrature is meant to give accurate answers
in an efficient manner.

2

The basis for adaptive quadrature is the following
fundamental additive property of the definite integral.

If c is any point between1 a and b, then

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

The idea of adaptive quadrature is that if we can
approximate each of the two integrals on the right to
within a specified tolerance, then the sum gives us the
desired result.

If not, we can recursively apply the additive property
to each of the intervals [a, c] and [c, b]; e.g., if the error
is too large on [a, c] the we subdivide it into smaller
subintervals in order to reduce the overall error.

1Actually, the ensuing equation usually is true even if c 6∈ [a, b] (unless
f(x) is misbehaved), but such values of c are not used by adaptive quadrature.

3

We expect the quadrature strategy to adapt to the
integrand automatically, partitioning the interval into
subintervals with fine spacing where the integrand is
varying rapidly and coarse spacing where the integrand
is varying slowly.

However, before we can learn the details of
adaptive quadrature, we need to understand the basic
quadrature rules.

4

Basic Quadrature Rules

We begin by deriving of two basic yet useful rules: the
midpoint rule and the trapezoidal rule.

Both of these rules take their names from the
approximations used to perform the quadrature.

Let h = b− a be the length of the integration interval.

The midpoint rule M approximates the integral by the
area of a rectangle whose base has length h and whose
height is the value of f(x) at the midpoint:

M = hf

(
a+ b

2

)
.

5

The trapezoidal rule T approximates the integral by
the area of a trapezoid with base h and sides equal to
the values of f(x) at the two end points.

T = h

(
f(a) + f(b)

2

)
.

What makes one quadrature rule more accurate than
another?

We would like to be able to quantify this somehow.

This leads us to the following definition:

The order of a quadrature rule is the degree of
the lowest-degree polynomial that the rule does not
integrate exactly.

6

An equivalent interpretation of order (and accuracy) of
a quadrature rule is as follows:

If a quadrature rule of order p is used to integrate
a smooth function over a small interval of length h,
then a Taylor series analysis shows that the error is
proportional to hp.

This means that if h is decreased by a factor of 2, the
error decreases by a factor of 2p.

So, rules with high order converge more quickly than
those with low order.

The midpoint rule and the trapezoidal rule are both
exact for constant functions and linear functions of x.

This should be obvious for the trapezoidal rule:

The trapezoidal rule forms a linear interpolant between
(a, f(a)) and (b, f(b)) and integrates the interpolant
exactly to define the rule.

7

If the underlying function is linear (so that the
interpolant and the underlying function are identical),
it should not be surprising that the trapezoidal rule
gives the exact result.

The order is a little more subtle for the midpoint rule!

Already there is the notion of a free lunch here: the
midpoint rule does a constant (degree-0) interpolation,
yet it can integrate linear (degree-1) functions exactly!

Coming back to reality, neither of them is exact for a
quadratic in x, so they both have order 2.

There are two methods that you may have seen but
that we did not cover: the so-called left-hand rectangle
rule and the right-hand rectangle rule.

These rules approximate the area under f(x) by
rectangles with height f(a) or f(b), respectively.

It can be shown that their orders are only 1, and so
they are not good methods to use in practice.

8

The accuracy of the midpoint and trapezoidal rules
can be compared by examining their behavior on the
simple integral ∫ 1

0

x2 dx =
1

3
.

The midpoint rule gives

M = 1

(
1

2

)2

=
1

4
.

The trapezoidal rule gives

T = 1
02 + 12

2
=

1

2
.

So, we see that the error in M is 1/12, whereas the
error in T is −1/6.

The errors have opposite signs and, perhaps
surprisingly, the midpoint rule is twice as accurate
as the trapezoidal rule.

9

This turns out to not be just coincidence!

When integrating smooth f(x) over short intervals
[a, b], M is roughly twice as accurate as T , and the
errors have opposite signs.

We can extrapolate on this knowledge as follows:

Knowing these error estimates allows us to combine
these two methods and get a rule that is usually more
accurate than either one separately!

Let the exact value of the integral be I.

If the error in T were exactly −2 times the error in M ,
then

I − T = −2(I −M).

Solving this equation for I would then give us the exact
value of the integral!

We settle for creating a new rule S that better
approximates I:

S =
2

3
M +

1

3
T.

10

Indeed, S is usually a more accurate approximation
than either M or T alone.

This rule is known as Simpson’s rule.

Classically, Simpson’s rule is derived by using a
parabola to interpolate f(x) at the two endpoints, a
and b, and the midpoint, c = (a+ b)/2 and integrating
the parabola exactly.

This yields

S =
h

6
(f(a) + 4f(c) + f(b)).

It turns out that S also integrates cubics exactly
(another free lunch!), but not quartics, so its order
is 4.

11

So far, we have fit one interpolant to the entire interval
[a, b] and integrated it to obtain a quadrature rule.

One way to derive quadrature rules of higher and
higher order is to fit polynomial interpolants of higher
and higher degree to the integrand f(x) and integrate
these interpolants exactly.

However, as we know, high-degree polynomial
interpolation based on equally spaced abscissae
generically results in oscillatory interpolants that do
not reflect the behaviour of the underlying function.

This would degrade the accuracy of the quadrature
rules based on them!

With equally spaced abscissae, a better strategy is to
use lower-order piecewise polynomial interpolation.

For example, apply Simpson’s rule on the two halves
of the interval, [a, c] and [c, b].

Let d and e be the midpoints of these two subintervals;
i.e., d = (a+ c)/2 and e = (c+ b)/2.

12

Applying Simpson’s rule to each subinterval, we obtain
a quadrature rule over [a, b]:

S2 =
h

12
(f(a) + 4f(d) + 2f(c) + 4f(e) + f(b)).

This is an example of a composite quadrature rule.

As before, the two approximations S and S2 can be
combined to get an even more accurate approximation.

Both rules are of order four, but the step size for S2 is
half the step size for S, so the error in S2 is roughly
24 = 16 times smaller than that of S.

Thus, a new, more accurate rule Q can be obtained by
solving

Q− S = 16(Q− S2).

The result is

Q = S2 +
(S2 − S)

15
.

13

As an exercise on the mock final asks you to express Q
as a weighted combination of the five function values
f(a) through f(e) and to establish that its order is six.

The rule is known as Weddle’s rule or the sixth-order
closed Newton–Cotes rule or the first step of Romberg
integration.

We will simply call it the extrapolated Simpson’s rule
because it uses Simpson’s rule for two different values
of h and then extrapolates toward h = 0.

Romberg integration generalizes this to the use of an
arbitrary number of different values of h.

14

An Adaptive Quadrature Strategy

Composite quadrature rules with error estimates can
be used to produce adaptive quadrature methods.

In general, it is inefficient to use the same mesh on
an integrand f(x) that varies rapidly in one region but
slowly in another.

→ The uniform mesh will have a larger error where the
integrand varies rapidly.

So if the mesh is uniform, we would have to use a very
fine mesh everywhere.

This can be extremely inefficient in regions where f(x)
varies slowly and a coarser mesh would be adequate.

Ideally, we would like to equidistribute the error over
the whole mesh; i.e., we would like each piece of the
composite integration to contribute the same amount
of error to the overall error.

Then we would be using a fine or coarse mesh where
appropriate.

15

The basic problem is to approximate
∫ b
a
f(x) dx to

within some specified tolerance ε > 0.

Suppose we wish to base our adaptive method on
Simpson’s rule.

Step 1: Apply Simpson’s rule with h = b− a.

∫ b

a

f(x) dx ≈ Sh(a, b),

where

Sh(a, b) =
h

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

Step 2: Determine an estimate of the accuracy of the
approximation.

The standard way to do this is to halve the mesh and
re-solve the problem; i.e., compute Sh/2(a, b).

16

Recalling Weddle’s rule (translated to the present
notation),

Q(a, b) = Sh/2(a, b) + Eh/2,

where

Eh/2 =
Sh/2(a, b)− Sh(a, b)

15
.

This can be viewed as an approximation Sh/2(a, b) to
the definite integral, plus an error estimate Eh/2.

In the case of Weddle’s rule, we add the error estimate
to the approximation to (hopefully) obtain an even
better approximation.

In the case of adaptive quadrature, we use Eh/2
to decide whether the approximation Sh/2(a, b) is
accurate enough.

If so, Sh/2(a, b) should approximate
∫ b
a
f(x) dx to

within ε.

17

If not, we repeat this process on the subintervals
[a, (a+ b)/2] and [(a+ b)/2, b] individually.

However, this time we will compare the error estimates
to ε/2.

This way, if each of the 2 subintervals has an error of at
most ε/2, the total error will be at most ε/2+ ε/2 = ε.

Again, if any subinterval reports an error of more than
ε/2, it is halved again, and its error is recomputed and
compared to ε/4, etc.

We keep going until the error estimate on every
subinterval satisfies the appropriate fraction of ε.

18

Two important notes:

1. The text by Moler argues that this strategy is too
conservative, leading to too much accuracy.

In fact, some textbooks advocate simply using the
same accuracy tolerance ε on every subinterval.

2. This method is not foolproof!

Integrands with discontinuities, singularities, or
misbehaved higher derivatives can cause this
method to never terminate.

However, it tends to work well on many problems,
roughly because for each subdivision, the accuracy
increases by a factor of 16, but the tolerance is only
restricted by a factor of 2.

Example: Evaluate

∫ 3

1

100

x2
sin

10

x
dx.

See quadDemo.m

19

http://www.cs.usask.ca/~spiteri/M211/notes/quadDemo.m

Specifying Integrands

Matlab has several different ways of specifying the
function to be integrated by a quadrature routine.

The inline facility is convenient for simple formulas.

For example, ∫ 1

0

dx√
1 + x4

can be computed with

f = inline(’1./sqrt(1+x.^4)’)

Q = quad(f,0,1)

If we want to compute∫ π

0

sinx

x
dx,

we could try

f = inline(’sin(x)./x’)

Q = quad(f,0,pi)

20

Unfortunately, this results in a division-by-zero message
and an invalid answer.

One way to suppress the warning (but not necessarily
to get the correct answer!) is to change the lower limit
of integration from 0 to realmin.

Q = quad(f,realmin,pi)

In this case, the error made by this change is
many orders of magnitude smaller than roundoff error
because |f(x)| ≤ 1 and the length of the omitted
interval is less than 10−300.

Another remedy is to use an M-file instead of the inline
function that can handle the problematic point x = 0.

We create a file named sinc.m that contains

function f = sinc(x)

if x == 0

f = 1;

else

f = sin(x)/x;

end

21

Then the statement

Q = quad(@sinc,0,pi)

uses a function handle and computes the integral with
no difficulty.

Definite integrals that depend on parameters are
encountered frequently.

An example is the beta function, defined by

β(z, w) =

∫ 1

0

tz−1(1− t)w−1 dt.

Matlab already has a beta function, but we can use
this example to illustrate how to handle parameters.

Create an inline function with three arguments,

F = inline(’t.^(z-1).*(1-t).^(w-1)’,’t’,’z’,’w’)

or create an M-file with a name like betaf.m,

function f = betaf(t,z,w)

f = t.^(z-1).*(1-t).^(w-1)

22

As with all functions, the order of the arguments is
important!

The functions used with quadrature routines must have
the variable of integration as the first argument.

Values for the parameters are then given as extra
arguments to quad.

For example, to compute β(8/3, 10/3), you could do

z = 8/3;

w = 10/3;

tol = 1e-6;

and then use

Q = quad(F,0,1,tol,[],z,w);

or

Q = quad(@betaf,0,1,tol,[],z,w);

The “function functions” in Matlab usually expect
the first argument to be in vectorized form.

23

In other words, the function you input to the function
function should be able to accept a vector argument;
i.e., it should be written in such a way as to be able to
process a bunch of inputs simultaneously .

Usually, this means that the mathematical expressions
should be specified with Matlab array (.) notation.

For example,

f(x) =
sinx

1 + x2

should be input as

sin(x)./(1 + x.^2)

Without the (.) operators, the code

sin(x)/(1 + x^2)

calls for linear algebraic vector operations that are not
appropriate here.

The Matlab function vectorize automatically
transforms a scalar expression into a form that can
be used as input to function functions.

24

So

vectorize(’sin(x)/(1+x^2)’)

produces

sin(x)./(1+x.^2)

Many of the function functions in Matlab require the
specification of an interval of the x-axis.

Mathematically, we have two notations, a ≤ x ≤ b or
x ∈ [a, b].

With Matlab, we also have two possibilities.

The endpoints can be given as two separate arguments,
a and b, or they can be combined into one vector
argument, [a,b].

The quadrature functions, quad, quadl, and quadgk,
use two separate arguments.

As we have seen, the root-finder fzero uses a single
argument, but this can be either a single starting point
or a two-element vector specifying the interval.

25

Integrating Discrete Data

So far, we have been concerned with computing an
approximation to the definite integral of a specified
function f(x).

We have assumed that we can evaluate f(x) at any
point in a given interval.

However, in many situations, the function is only
known at a discrete set of points, say (xk, yk),
k = 1, 2, 3, . . . , n. Assume the xk are sorted in
increasing order, with

a = x1 < x2 < · · · < xn−1 < xn = b.

When approximating
∫ b
a
f(x) dx, it is now not possible

to sample f(x) wherever we want.

This rules out the use of adaptive quadrature methods!

26

The most obvious approach is to do piecewise linear
interpolation through the data and integrate the
interpolant exactly.

i.e., use the composite trapezoidal rule

T =

n−1∑
k=1

hk
yk + yk+1

2
,

where hk = xk+1 − xk.

The composite trapezoidal rule can be implemented in
Matlab in one line:

T = sum(diff(x).*(y(1:end-1)+y(2:end))/2)

The Matlab function trapz also provides an
implementation.

27

For example, consider the data set

x = 1:6

y = [6 8 11 7 5 2]

For these data, the trapezoidal rule gives

T = 35.

The trapezoidal rule is often satisfactory in practice,
and more complicated methods may not be necessary.

Nevertheless, methods based on higher-order
interpolation can give other estimates of the integral.

Whether or not they are better is impossible to decide
without further knowledge of the data!

28

Recall that both the spline and pchip interpolants
are based on piecewise cubic Hermite interpolation:

P (x) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk

+
s2(s− h)

h2
dk+1 +

s(s− h)2

h2
dk,

where xk ≤ x ≤ xk+1, s = x− xk, and h = hk.

Recall also that this is a cubic polynomial in s (and
hence in x) that satisfies 4 interpolation conditions, 2
on function values and 2 on derivative values:

P (xk) = yk, P (xk+1) = yk+1,

P ′(xk) = dk, P ′(xk+1) = dk+1.

The slopes dk are computed in spline or pchip.

29

As an exercise, show that∫ xk+1

xk

P (x) dx = hk
yk+1 + yk

2
− h2k

dk+1 − dk
12

.

Hence ∫ b

a

P (x) dx = T −D,

where T is the trapezoidal rule, and

D =

n−1∑
k=1

h2k
dk+1 − dk

12
,

is a higher-order correction.

Note: If the xk are equally spaced with spacing h, then
D simplifies to

D = h2
dn − d1

12
.

30

For the data shown earlier, the area obtained by trapz

(piecewise linear interpolation) is 35.00.

By spline interpolation, the area is 35.25.

By the pchip, the area is 35.41667.

The integration process tends to average out the
variation in the interpolants, so even though the
interpolants might have rather different shapes, the
approximations to the integral are often quite close to
each other.

31

High-Powered Tricks and Theory

• The method of undetermined coefficients

Quadrature formulas take the form

∫ b

a

f(x) dx ≈
n∑
i=1

wif(xi);

i.e., the definite integral is approximated by a weighted
sum of function values.

We have seen how quadrature rules can be derived
based on interpolating a set of function values by a
polynomial or piecewise polynomial of a given degree
and integrating the interpolant exactly.

An alternative derivation to explicitly forming
and integrating an interpolant is the method of
undetermined coefficients.

32

Suppose the nodes xi have been chosen; e.g., they
could be n equally spaced points in [a, b], including the
end-points.

The idea is that we treat the weights wi as unknowns
and solve for them by forcing the quadrature rule to
integrate the usual polynomial basis functions exactly.

If we have n nodes, we have n weights; so, we
can require the quadrature rule to exactly integrate
polynomials up to degree n− 1.

→ a system of n linear equations in n unknowns.

Example: Derive a 3-point rule that uses x1 = a,
x2 = (a+ b)/2, and x3 = b.

The quadrature rule is

∫ b

a

f(x) dx ≈ w1f(a) + w2f

(
a+ b

2

)
+ w3f(b).

We want the rule to be exact for f(x) = 1, x, x2.

33

(Then by linearity, it will be exact for all polynomials
of degree ≤ 2.)

f(x) = 1 :

1 · w1 + 1 · w2 + 1 · w3 =

∫ b

a

1 dx = b− a

f(x) = x :

a · w1 +
a+ b

2
· w2 + b · w3 =

∫ b

a

x dx =
b2 − a2

2

f(x) = x2 :

a2 ·w1+

(
a+ b

2

)2

·w2+b
2 ·w3 =

∫ b

a

x2 dx =
b3 − a3

3

34

Solution:

w1 =
b− a
6

, w2 =
2(b− a)

3
, w3 =

b− a
6

.

This is of course Simpson’s rule.

See undetCoeffs.m

Try Simpson’s rule on f(x) = x3.

Are you surprised by the result?

35

http://www.cs.usask.ca/~spiteri/M211/notes/undetCoeffs.m

• Gaussian quadrature

In the quadrature rules that we have studied so far, we
have always assumed that the integrand is evaluated at
the end points and at equally spaced points in between.

There are disadvantages to this!

1. Insisting that the nodes be equally spaced
removes degrees of freedom from the method of
undetermined coefficients.

→ If we remove this restriction, we can derive
higher-order quadrature rules for a given number of
function evaluations!

2. Integrands are often singular (and yet integrable) at
the endpoints.

→ Evaluating f(x) at x = a or x = b is problematic,
even though the integral itself is well defined.

Recall that when we fixed the xi, we chose the wi to
integrate exactly the functions f(x) = 1, x, x2,

36

So for n nodes, we expect to integrate exactly
polynomials of degree n− 1.

The key idea behind Gaussian quadrature is to also
treat the xi as unknowns.

Now we have 2n degrees of freedom, and we expect to
integrate exactly polynomials up to degree 2n− 1.

Example: Derive the Gaussian quadrature rule with
n = 2 and [a, b] = [−1, 1].

We are to determine x1, x2, w1, w2 such that

∫ 1

−1
f(x) dx = w1f(x1) + w2f(x2)

holds exactly for all polynomials of degree 3 or less.

37

f(x) = 1 : 1 · w1 + 1 · w2 =

∫ 1

−1
1 dx = 2

f(x) = x : x1 · w1 + x2 · w2 =

∫ 1

−1
x dx = 0

f(x) = x2 : x21 · w1 + x22 · w2 =

∫ 1

−1
x2 dx =

2

3

f(x) = x3 : x31 · w1 + x32 · w2 =

∫ 1

−1
x3 dx = 0

One solution is

x1 = −
1√
3
, x2 =

1√
3
, w1 = 1, w2 = 1.

Thus, the Gaussian quadrature rule takes the form

∫ 1

−1
f(x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
.

38

It turns out that the abscissae for these maximum-
order (2n) quadrature rules are the roots of the nth
Legendre polynomials.

Hence, these methods are also sometimes called Gauss–
Legendre quadrature rules.

Knowledge of the location of the xi makes the
computation of the wi much easier!

→ A linear system of size n can be solved for the wi,
as opposed solving to a nonlinear system of size 2n for
the xi and wi simultaneously.

Note: The Legendre polynomials are defined on the
interval [−1, 1].

So in general, the definite integral defined on [a, b] is
transformed to [−1, 1] to make the evaluations more
convenient.

This means we change the variable of integration by
means of

t =
2x− b− a
b− a

⇐⇒ x =
1

2
[(b− a)t+ (b+ a)].

39

Thus,∫ b

a

f(x) dx =

∫ 1

−1
f

(
1

2
[(b− a)t+ (b+ a)]

)
b− a
2

dt.

Example: Approximate
∫ 1

0
e−x

2
dx by the 2-point

Gaussian quadrature rule.

First we transform the interval of integration:

a = 0, b = 1 =⇒ x =
1

2
(t+ 1).

Thus∫ 1

0

e−x
2
dx =

1− 0

2

∫ 1

−1
e−{

1
2(t+1)}2 dt

≈ 1

2

[
e
−
{

1
2

(
− 1√

3
+1
)}2

+ e
−
{

1
2

(
1√
3
+1
)}2]

= 0.746595.

40

Note: The exact answer is 0.746824.

This approximation is more accurate than Simpson’s
rule and uses one less function evaluation!

See gaussQuad.m

41

http://www.cs.usask.ca/~spiteri/M211/notes/gaussQuad.m

• Infinite intervals of integration

The problem we consider here is

∫ b

a

f(x) dx,

where now a = −∞ and/or b =∞.

There are 3 standard ways to approach such problems.

1. Replace the infinite limit(s) by finite value(s).

In order to do this sensibly, an error estimate of the
neglected “tail(s)” is required.

2. Change variables so that the new interval is finite;

e.g.,

x = − log t = log

(
1

t

)
⇐⇒ t = e−x,

x = 0 =⇒ t = 1, x =∞ =⇒ t = 0,

42

or

x =
t

1− t
⇐⇒ t =

x

x+ 1
,

x = 0 =⇒ t = 0, x =∞ =⇒ t = 1.

3. Apply a quadrature rule like Gauss–Laguerre (for
[0,∞)) or Gauss–Hermite (for (−∞,∞)).

We briefly describe Gauss–Laguerre quadrature.

Gauss–Laguerre quadrature rules are designed to
evaluate definite integrals

∫ ∞
0

e−xf(x) dx =

n∑
i=1

wif(xi)

by choosing the quadrature weights wi and nodes xi
such that the quadrature rule is exact for f(x) that are
polynomials up to and including degree 2n− 1.

We can derive the 2-stage Gauss–Laguerre quadrature
rule using the method of undetermined coefficients.

43

f(x) = 1 : 1 · w1 + 1 · w2 =

∫ ∞
0

1e−x dx = 1

f(x) = x : x1 · w1 + x2 · w2 =

∫ ∞
0

xe−x dx = 1

f(x) = x2 : x21 · w1 + x22 · w2 =

∫ ∞
0

x2e−x dx = 2

f(x) = x3 : x31 · w1 + x32 · w2 =

∫ ∞
0

x3e−x dx = 6

Solution:

x1 = 2−
√
2, x2 = 2+

√
2, w1 =

2 +
√
2

4
, w2 =

2−
√
2

4
.

44

Implementation note: When solving∫ ∞
0

f̃(x) dx,

we re-write the integral as∫ ∞
0

e−x[ex f̃(x)] dx,

and use the quadrature rule in the form

∫ ∞
0

f̃(x) dx =

n∑
i=1

wie
xif̃(xi);

i.e., we identify f(x) with exf̃(x).

Example: Use 2-stage Gauss–Laguerre quadrature to
evaluate ∫ ∞

0

ln(1 + e−x) dx.

See infiniteInterval.m

45

http://www.cs.usask.ca/~spiteri/M211/notes/infiniteInterval.m

• Multiple integrals (cubature)

Multiple integrals are integrals in dimension greater
than 1.

Needless to say, the computational effort required to
compute definite integrals generally increases greatly
with increasing dimension.

Fortunately, definite integrals derived from physical
problems are usually limited to 3 or 4 dimensions.

However, applications such as mathematical finance
can have integrals in an arbitrary number of
dimensions; e.g., depending on how many different
financial products are relevant.

There are 3 general approaches for computing multiple
integrals.

1. Write the integral as an iterated integral and use
1D quadrature.

→ Keeping reasonable tolerance at each stage can
be tricky!

46

This approach works well for regular (e.g.,
rectangular) domains.

You can use Matlab’s dblquad or triplequad

functions to approximate double and triple integrals,
respectively.

The default behaviour is to assume the domain is
rectangular.

If it is not, you can enclose the domain in a rectangle
and define the integrand to be 0 outside the domain
(but still within the enclosing rectangle.)

2. Use a higher-dimensional quadrature rule.

This is the analogue of how we have been doing
quadrature but extended to higher dimensions.

For example, a quadrature rule in 2D might look
like ∫ b

a

∫ d

c

f(x, y) dy dx ≈
n∑
i=1

wif(xi, yi).

47

Again, this approach works well for regular domains;
the various rules are derived for specific domains.

3. Use a Monte Carlo method.

This is usually the method of choice for
approximating definite integrals in dimensions higher
than 2 or 3.

The idea is to sample the integrand at N points
distributed randomly in the domain of integration.

These values are then averaged and multiplied by the
“volume” of the domain to obtain an approximation
for the integral.

It can be shown that such a procedure converges
like N−1/2, which is pretty slow!

For example, to gain an extra decimal of accuracy,
you will need 100 times more points!

This makes Monte Carlo uncompetitive for low-
dimensional quadrature.

However, the beauty is that the convergence rate is
independent of the number of dimensions!

48

For example, 106 points in 6D is only 10 points per
dimension, and this will be much better than any
type of conventional quadrature rule for the same
type of accuracy.

Also, the software is easy to write and parallelize.

Monte Carlo methods can be made more efficient
by biasing the sampling in some way, e.g.,
concentrating the sampling where the integrand is
large or rapidly varying.

→ This makes it behave like adaptive quadrature.

Example: Estimate

∫ 1

0

∫ 1

0

1

1− xy
dy dx.

Note: Exact value is π2/6.

See multipleIntegral.m

49

http://www.cs.usask.ca/~spiteri/M211/notes/multipleIntegral.m

Shared-Memory Adaptive Quadrature

The natural progression of scientific discovery and
industrial research is to continually seek out harder
and harder problems to study.

Parallel programming and parallel computers allow us
to take better advantage of computing resources to
solve larger and more memory-intensive problems in
less time than is possible on a single serial computer.

Trends in computer architecture towards multi-
core systems make parallel programming and high-
performance computing (HPC) a necessary practice
going forward.

Computational scientists who ignore HPC do so at
their own risk!

It is already difficult to do leading-edge computational
science without HPC, and this situation can only get
worse in the future.

50

The Shared-Memory Paradigm

Parallel computers can be organized in different ways.

In a shared-memory environment, each processor is able
to read from and write to the same (global) memory.

Each processor (or node) also has its own local memory
(cache) and runs its own program.

 CPU CPU CPU

 Cache Cache Cache

 High−speed Interconnect

 Shared Memory

Parallel programming is the act of writing a program
for each node, co-ordinating the work that they do.

51

We assume each node has access to the quad function
and the integrand f.

First, we must initialize any required global variables,
i.e., the integration limits a, b as well as any optional
arguments such as tolerances, parameters, etc.

When parallel programs are executed, the number of
desired processors p is known in advance.

Suppose they are numbered from 1 to p.

Each processor can find out its local ID number.

We usually view one processor (say the first one) as
being the co-ordinating processor (or server); the rest
are workers (or clients).

The idea is that we will get each processor to compute
part of the integral, and then one processor can sum
up the partial results and report the answer.

We will also allocate an array Qp of dimension p in
global memory for the partial results and one space Q

for the final answer.

52

For concreteness, suppose we are trying to compute2

Q =

∫ 1

0

1

x
cos

(
log(x)

x

)
dx

using p = 3 processors.

1 2 3

 Cache Cache Cache

 High−speed Interconnect

 a=0, b=1, p=3, Qp(1:3), Q

2This is the first problem from the SIAM 100-Digit Challenge.

53

Static Scheduling

A natural way to partition (or schedule) the work
among the p processors is to assign

Qp(i) =

∫ a+ih

a+(i−1)h
f(x) dx, h :=

b− a
p

,

to processor i, i = 1, 2, . . . , p.

The plan is for processor i to work on its part of Q
then write its result to Qp(i).

When all processors have finished, processor 1 sums
the entries of Qp and reports the final answer Q.

This mapping is called “static” because the assignment
of the tasks is fixed before the computation begins.

Because the time taken to solve the problem is
governed by the time it takes the slowest processor to
finish its task, this strategy works well if the workload
can be divided evenly among the processors.

54

Unfortunately, this is often not the case in quadrature
problems.

(If it were, adaptive quadrature would not be so
important!)

One way to mitigate this problem is to subdivide the
interval [a, b] into rp subintervals and assign r different
subintervals to each processor.

For example, if r = 5 and p = 3, processor 1 would be
assigned intervals 1, 4, 7, 10, 13, processor 2 would be
assigned intervals 2, 5, 8, 11, 14, etc.

The idea is that the processors would share the parts

of [a, b] where
∫ b
a
f(x) dx is tough.

Clearly, this becomes more likely for large r.

But if r is too large, some intervals may be computed
“too accurately”!

Hence there is a tradeoff in the choice of r.

It seems that imposing a static scheduling on an
adaptive quadrature method may be ineffective.

55

Dynamic Scheduling

In parallel computing, we strive to keep all processors
busy doing useful work all the time.

Such a computation is said to be load-balanced.

An idle processor is a wasted resource!

We would like a way for processors with easy
assignments to help out with the hard parts of the
integration when they are done.

The most common way to do this is instead of fixing the
assignment of the rp intervals, we allocate assignments
on a first-come, first-served basis.

For example, we begin by assigning interval i to
processor i for i = 1, 2, . . . , p.

Then interval p+ 1 is assigned to whichever processor
is done its initial assignment first, interval p + 2 is
assigned to the first processor done its assignment
after that, etc.

56

This process continues until all rp intervals have been
assigned.

In this way, processors that have easy assignments and
are done quickly can return to the “assignment pool”
(or queue) to get a new assignment.

There is still no guarantee of good performance (e.g.,
interval rp turns out to be extremely difficult), but
it is likely that with some foresight extremely poor
performance can be avoided.

Care must be taken to ensure more than one processor
is not assigned the same job!

This means there may be idling while processors
determine which interval is to be handled next.

A more esoteric way to accomplish load balancing is to
have the roles of servers and clients be dynamic, so a
client with a subinterval that is too difficult can act as
the server for that subinterval.

57

