
Chapter 6 - Ordinary

Differential Equations

7.1 Solving Initial-Value Problems

In this chapter, we focus on the solution of initial-value
problems in ordinary differential equations.

Ordinary differential equations (ODEs) get their name
from the fact that we are solving equations that involve
unknown functions y(t) of one independent variable t
and their derivatives dy/dt, which we denote by ẏ(t).

Notes:

1. y(t) is really a vector of size m; i.e.,

y(t) =

y1(t)
y2(t)

...
ym(t)

 .

However, it does not usually hurt (especially when first
starting out) to think of it as a scalar (as we are more
accustomed to).

1

Differentiation in this sense simply means to apply the
derivative operator to each component individually;
i.e.,

ẏ(t) =

ẏ1(t)
ẏ2(t)

...
ẏm(t)

 .
2. Higher derivatives are denoted using more dots;
e.g.,

d2y(t)

dt2
= ÿ(t), etc.

To begin, we will try to approximate values of y(t) for
certain discrete values of t, denoted tn, n = 1, 2,

We denote the corresponding approximations by yn;
i.e.,

yn ≈ y(tn).

It will be possible to construct approximations to y(t)
for any t using the values y1,y2, (how?)

2

Note: Partial differential equations (PDEs) involve
functions of more than one variable; e.g., u = u(x, t).

In this case, derivatives can be with respect to x or t.

Perhaps it is not hard to imagine that solving partial
differential equations is much harder than solving
ordinary differential equations!

However there is a common technique (called the
method of lines) whereby a partial differential equation
is converted to a set of ordinary differential equations
for its numerical solution.

Most modern software packages are designed to solve
explicit ODEs:

ẏ(t) = f(t,y).

Of course, we appreciate that Just having an ODE is
not enough to completely specify the problem.

This is because if y(t) solves the above ODE, then so
will y(t) + C for any constant C.

We need an extra condition to uniquely determine y(t)!

3

This can be done, for example, by specifying y(t) at
some point t0.

If so, the problem we want to solve is

ẏ(t) = f(t,y),

y(t0) = y0.

This is an example of an initial-value problem (IVP).

The idea is to “march forward” with the information at
time t = t0 to produce approximations to the unknown
function y(t) at some future final time t = tfinal.

Note: There are other problems where not all of the
missing information is specified at one point; rather
it is distributed between 2 or more points; e.g., some
components of y(t) could be specified at t = t0 while
others are specified at t = tfinal.

Such problems are known as boundary-value problems.

4

Numerical methods for these problems differ markedly
from those for initial-value problems, and we do not
consider them here.

Modern numerical methods automatically determine
the step sizes

hn = tn+1 − tn,
so that the estimated error in the numerical solution is
controlled by a specified tolerance.

As usual, results from a single run of an algorithm on
a problem should not be blindly trusted!

Rather, results from a few runs with decreasing
tolerances should be compared to assess the accuracy
of a given solution.

The Fundamental Theorem of Calculus gives us an
important connection between differential equations
and integrals:

y(t+ h) = y(t) +

∫ t+h

t

f(s,y(s)) ds.

5

Note: The integral of a vector function simply means
to take the integral of each component (similar to what
we did for derivatives).

Unfortunately, we cannot use numerical quadrature
directly to approximate the integral because we do not
know the function y(s) in the integrand.

Nevertheless, the basic idea is to choose a sequence of
values of h so that this formula allows us to generate
our numerical solution.

One special case to keep in mind is the situation where
f(t,y) is in fact a function of t alone.

Then indeed the numerical solution of such simple
differential equations reduces to a sequence of
quadratures:

yn+1 = yn +

∫ t+h

t

f(s) ds.

Of course, if we could compute the integral exactly,
then we would obtain the exact solution to the ODE.

6

7.2 Systems of ODEs

Many mathematical models involve more than one
unknown function; e.g., a model for a chemical reaction
would probably have a differential equation for each
chemical species.

Often mathematical models involve second- or higher-
order derivatives; any model based on Newton’s second
law F = ma corresponds to ẍ(t) = F/m.

Problems such as these are not of the form ẏ = f(t,y),
so it is not obvious how to use standard ODE software
for their solution.

Fortunately, these models can be converted to first-
order form using a standard change of variables.

In such cases, the unknowns are the function and its
derivatives up to one order less than the given ODE.

This means that an mth-order ODE is converted to m
first-order ODEs.

7

For example, consider the second-order differential
equation describing a simple harmonic oscillator:

ẍ(t) = −x(t).

In this case, we create the vector of unknown functions
to be

y1(t) = x(t), y2(t) = ẋ(t).

Then the second-order ODE is converted into two
first-order ODEs:

ẏ(t) =

[
ẏ1(t)
ẏ2(t)

]
=

[
y2(t)
−y1(t)

]
.

In order to use the built-in Matlab routines to solve
an IVP, we will have to input the right-hand side
function f(t,y).

It should take as input a scalar t and a vector y(t) and
return a vector f(t,y).

8

For the harmonic oscillator example, the
Matlab function defining f(t,y) might look like

function ydot = harmonic(t,y)

ydot = [y(2); -y(1)];

Notice that the variable t must be passed as the first
argument, even though it is not involved in ydot.

As a slightly more complicated example, consider the
two-body problem.

This describes the orbit of one body under the
gravitational attraction of a much heavier body (like a
planet orbiting a sun).

With the origin at the centre of the “sun”, the
Cartesian coordinates u(t) and v(t) of the “planet”
satisfy

ü(t) = − u(t)

[u2(t) + v2(t)]3/2
,

v̈(t) = − v(t)

[u2(t) + v2(t)]3/2
.

9

To convert to a first-order system of ODEs, we define

y(t) = (u(t), u̇(t), v(t), v̇(t))T .

Then

ẏ(t) =

ẏ1(t)
ẏ2(t)
ẏ3(t)
ẏ4(t)

 =

y2(t)

− y1(t)

[y21(t)+y23(t)]
3/2

y4(t)

− y3(t)

[y21(t)+y23(t)]
3/2

 .

A Matlab script to define this might look like

function ydot = twobody(t,y)

% define r for convenience and efficiency

r = (y(1)^2 + y(3)^2)^(3/2);

ydot = [y(2); -y(1)/r; y(4); -y(3)/r];

10

7.4 One-Step Methods

The simplest method for the numerical solution of IVPs
is Euler’s method1.

Starting from a known value y0 at time t = t0, it
(typically) uses a fixed step size h and marches the
approximate solution forward according to the formula

yn+1 = yn + h f(tn,yn),

tn+1 = tn + h, n = 0, 1, 2,

This method has a nice geometric interpretation.

We can imagine that f(t,y) specifies a velocity field
for y.

Then Euler’s method can be thought of as sampling
the velocity field at the point (tn,yn), assuming it is
constant, and following it for a length of time h.

1Those in the biz also call it forward Euler.

11

This amounts to following the tangent line to the
velocity field at (tn,yn) for some length of time h.

This procedure is repeated starting from (tn+1,yn+1)
to approximate yn+2, etc.

See forwardEulerDemo.m and
forwardEulerDemo2.m

Given initial time t0, initial value y0, final time
tfinal, right-hand side function f(t,y), and stepsize
h, Matlab code to implement Euler’s method might
look like:

t = t0;

y = y0;

while t <= tfinal

y = y + h*feval(f,t,y)

t = t + h

end

As you can imagine, the answer gets more accurate as
you reduce h; but of course the more work has to be
done to get to tfinal.

12

http://www.cs.usask.ca/~spiteri/M211/notes/forwardEulerDemo.m
http://www.cs.usask.ca/~spiteri/M211/notes/forwardEulerDemo2.m

Note: There is no inherent need to assume h is a
constant.

In fact, if we could estimate how big a stepsize hn+1

starting from tn we could get away with and still satisfy
the given tolerance, then we could take that instead.

This generally yields a more efficient algorithm than
one with a fixed step size.

As a quadrature rule for integrating f(t), Euler’s
method corresponds to left-hand rectangle rule; i.e., at
each step, we take f(t) ≈ f(tn).

A powerful way to analyze the accuracy of an IVP
solver is by means of Taylor series.

Consider the Taylor series expansion for a scalar
function y(t+ h) about the point y(t):

y(t+ h) = y(t) + ẏ(t)h+
1

2
ÿ(t)h2 + . . .

= y(t) + f(t, y(t))h+
1

2
ḟ(t, y(t))h2 +

13

One method to derive the forward Euler method is to
truncate the Taylor series after terms of order h.

This leads (yet again) to

yn+1 = yn + hf(tn, yn).

We define the order of accuracy of an IVP solver to
be one order less than the order of the first term not
matched in the Taylor series of the exact solution.

So, the forward Euler method is first-order accurate.

The idea is that although each step appears to be order
h2, in general there is an accumulation of errors from
each step, and we assume there will be O(1/h) steps.

This just means that you probably have tfinal = O(1).

A first-order method is usually not very efficient: Tiny
steps are needed to get even a few digits of accuracy.

It is easy to imagine that you could derive higher-order
methods by keeping more terms in the Taylor series.

14

This is in fact true; the ensuing methods are
(appropriately enough) called Taylor series methods.

The drawback of such approaches is that for anything
beyond first order, you need to take derivatives of
f(t, y(t)) with respect to t.

Even for scalar equations, this involves the chain rule:

ḟ(t, y(t)) =
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))ẏ(t)

=
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t)).

This is already pretty messy, and the messiness
is compounded exponentially as you take more
derivatives.

Despite this, Taylor series methods have become more
popular since the advent of symbolic algebra and
automatic differentiation software packages.

However, we would like a way to obtain higher order
only using evaluations of f(t,y).

15

Higher-order methods

There are 2 classical strategies to obtain methods with
higher order:

1. Keep more past values of the solution; e.g., store

yn−i+1, for i = 1, 2, . . . , k.

This is called a k-step linear multistep method.

2. Build up approximations to y(t) at intermediate
points in [tn, tn+1]. These are called Runge–
Kutta methods after the two German applied
mathematicians who first wrote about them in 1905.

• Multistep methods

A one-step numerical method has a short memory; it
only uses information from one step of the integration.

As the name implies, a multistep method has a longer
memory.

16

(In fact, an old-fashioned-sounding way to refer to
them is methods with memory.)

The idea is that an interpolation is done on the past y
and/or f values to derive a rule to approximate yn+1.

Multistep methods tend to be more efficient than one-
step methods for problems with smooth solutions and
high accuracy requirements.

For example, the orbits of planets and deep space
probes are computed with multistep methods.

In production software, these methods vary both the
order p and the step size h to achieve the most efficient
integration.

However, natural questions such as how to start a
multistep method (where do the past values come
from at the beginning of the integration?) are beyond
the scope of this course.

17

• Runge–Kutta methods

There are two natural possibilities for extending Euler’s
method by adding one function evaluation.

They correspond to the midpoint rule and the
trapezoidal rule for quadrature.

For the midpoint rule, we step with Euler’s method
halfway across the interval, evaluate the function at
this intermediate point, and then use that slope to take
the actual step:

K1 = f(tn,yn)

K2 = f(tn + h/2,yn + hK1/2)

yn+1 = yn + hK2

tn+1 = tn + h

18

For the trapezoidal rule, we (tentatively) step with
Euler’s method all the way across the interval, evaluate
the function at this tentative point, and then average
the two slopes to take the actual step:

K1 = f(tn,yn)

K2 = f(tn + h,yn + hK1)

yn+1 = yn + h(K1 +K2)/2

tn+1 = tn + h

Perhaps not surprisingly, both of these methods are
second-order accurate.

19

The most popular Runge–Kutta method has 4 stages
(the number of Ki) and is fourth-order accurate:

K1 = f(tn,yn)

K2 = f(tn + h/2,yn + hK1/2)

K3 = f(tn + h/2,yn + hK2/2)

K4 = f(tn + h,yn + hK3)

yn+1 = yn + h(K1 + 2(K2 +K3) +K4)/6

tn+1 = tn + h

If f(t,y) does not depend on y, then the classical
Runge–Kutta method has K2 = K3, and the method
reduces to Simpson’s quadrature rule.

Note: These methods are in fact explicit Runge–Kutta
methods; i.e., the Ki are evaluated one after the other
(like a recipe) and then a linear combination of them
is added to yn to obtain yn+1.

20

There are also implicit Runge–Kutta methods where
all the Ki have to be solved at once as part of a big
nonlinear system of equations.

Implicit Runge–Kutta methods are good for “stiff”
(numerically tough) problems.

Despite being more work per step, high-order methods
are much more efficient than low-order methods at
producing very accurate answers to problems with
smooth solutions.

21

Error Control

As usual, for the purposes of efficiency and reliability,
we need to be able to change the stepsize h while
satisfying a user-specified tolerance.

We now describe a method for controlling the error of
the forward Euler method.

It is a similar strategy to that of adaptive quadrature:
we take a step of size h, then 2 steps of size h/2, and
compare the answers to estimate the error.

From this, we will also predict the optimal size of the
next step.

To simplify the analysis, we assume that we are only
dealing with 1 first-order ODE.

Suppose we wanted each step of forward Euler to
satisfy a local error tolerance TOL.

We know the first term of the Taylor series that we
neglected is O(h2).

22

If we now take 2 steps of size h/2, we will have two
approximations of the same quantity, and we can take
a difference between them to estimate the error.

Analogously, consider the following strategy for error
control of a scalar ODE with solution y(t) by a method
of order p:

Take 1 step of h to obtain the approximation yh.

Take 2 steps of h/2 to obtain the approximation yh/2.

Both yh and yh/2 are meant to approximate y(tn).

Then y(tn)− yh ≈ chhp+1,
y(tn)− yh/2 ≈ 2ch/2(h/2)

p+1.

If we assume ch = ch/2 := c,

∴ |yh − yh/2| ≈
(
1− 1

2p

)
|c|hp+1,

→ |c|hp+1 ≈ 2p

2p−1|yh − yh/2|.

If this expression is less than the user’s error tolerance
TOL, the step with size h can be accepted as being
sufficiently accurate.

23

In practice, we compare the error estimate to
frac∗TOL, where frac is a fudge factor (usually taken
to be ≈ 0.9) in order to err on the side of caution.

Dividing the above error estimate by 2p allows us to
have an error estimate for yh/2.

We take yh/2 to be the value with which we advance
in practice.

Not only do we have error control, but we can also use
this information to estimate the “optimal” stepsize for
the next step.

We estimate what stepsize we could have taken to just
satisfy the error tolerance.

This corresponds to the largest possible stepsize (and
hence the most efficient integration).

24

Call this stepsize h̃.

Then
|c|h̃p+1 ≈ frac ∗ TOL,

and we can use

(h̃
h

)p+1

≈ 2p − 1

2p
frac ∗ TOL

|yh − yh/2|

to calculate h̃.

25

7.7 Examples

The following classical example from astronomy
provides us with strong motivation to solve ODEs
with error control.

Consider the motion of a planet with a (normalized)
mass of µ = 0.012277471, a sun with mass µ̂ = 1−µ,
and a moon with negligible mass in a 2D plane.

The motion is governed by the equations

ü1 = u1 + 2u̇2 − µ̂
u1 + µ

r1
− µu1 − µ̂

r2
,

ü2 = u2 − 2u̇1 − µ̂
u2
r1
− µu2

r2
,

r1 = [(u1 + µ)2 + u22]
3/2,

r2 = [(u1 − µ̂)2 + u22]
3/2.

26

Starting with the initial conditions

u1(0) = 0.994, u2(0) = 0, u̇1(0) = 0,

u̇2(0) = −2.00158510637908252240537862224,

the orbit is periodic with period T < 17.1. Note
that r1 = 0 at (u1, u2) = (−µ, 0) and r2 = 0 at
(u1, u2) = (µ̂, 0), so we need to be careful when the
orbit comes close to these points!

We now solve this equation using Euler’s method, the
classical Runge–Kutta method, and MATLAB’s ode45.

See orbitSolvers.m

27

http://www.cs.usask.ca/~spiteri/M211/notes/orbitSolvers.m

7.8 Lorenz Attractor

One of the world’s most famous ODE systems is the
Lorenz chaotic attractor.

It was first described in 1963 by Edward Lorenz,
a mathematician and meteorologist from MIT, who
was interested in fluid flow models of the earth’s
atmosphere.

The ODEs themselves are

ẏ1 = −βy1 + y2y3,

ẏ2 = −σ(y2 − y3),
ẏ3 = −y1y2 + ρy2 − y3.

y1(t) is related to the convection in the atmosphere;

y2(t), y3(t) are related to horizontal and vertical
temperature variation.

28

The most popular values of the parameters, σ = 10,
ρ = 28, and β = 8/3 do not actually correspond to
realistic values associated with the earth’s atmosphere.

Theoretically of course the solution to the system is
completely deterministic.

Nonetheless, the behaviour of the solution can appear
to be very unpredictable.

(This is where the idea of chaos comes from.)

For some values of the parameters, the orbit of y(t) in
3D space is known as a strange attractor.

It is bounded, but not periodic and not convergent.

It never intersects itself.

It ranges chaotically back and forth around two
different fixed points.

(For other values of the parameters, the solution might
converge to a fixed point, diverge to infinity, or oscillate
periodically.)

See lorenzgui.m

29

http://www.cs.usask.ca/~spiteri/M211/notes/lorenzgui.m

7.9 Stiffness

Stiffness is one of the most enigmatic yet pervasive
concepts in the numerical solution of IVPs.

We look at one instance of a stiff problem: a model of
flame propagation.

If you light a match, the ball of flame grows rapidly
until it reaches a critical size.

Then it remains at that size because the amount of
oxygen being consumed by the combustion in the
interior of the ball balances the amount available
through the surface.

The simple ODE model is

ẏ = y2 − y3, y(0) = δ, 0 ≤ t ≤ 2/δ.

The variable y(t) represents the radius of the ball.

30

The y2 and y3 terms come from the surface area and
the volume.

The critical parameter is the initial radius, δ, which is
“small”.

We seek the solution over a length of time that is
inversely proportional to δ.

We solve the problem for δ = 0.01 using ode23.

Then we solve the problem for δ = 0.0001 using ode23.

We see that when y(t) reaches its equilibrium value,
the integration slows to a crawl.

This is what is meant by stiffness: the numerical
method takes a very small step-size even though the
solution does not vary rapidly.

If instead we solve this problem with a stiff solver
like ode23s, we see behaviour that is much more
acceptable.

See stiffnessDemo.m

31

http://www.cs.usask.ca/~spiteri/M211/notes/stiffnessDemo.m

