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1. [20 marks]

(a) When deriving the trapezoidal method, we replaced ẏ(tn−1/2) in

y(tn)− y(tn−1)

∆tn
= ẏ(tn−1/2) +O((∆tn)2)

by an average

ẏ(tn−1/2) =
1

2
(ẏ(tn−1) + ẏ(tn))

and then substituted for ẏ from the ODE

ẏ = f(t,y).

If instead we use the ODE first to write ẏ(tn−1/2) = f(tn−1/2,yn−1/2) and then
replace yn−1/2 with an average

yn−1/2 =
1

2
(yn−1 + yn),

we obtain an important method called the implicit midpoint method :

yn = yn−1 + ∆tnf

(
tn−1/2,

1

2
(yn−1 + yn)

)
.

Show that this method is symmetric, second-order, and A-stable. How does it
relate to the trapezoidal method for the linear constant-coefficient ODE ẏ = Ay?

(b) Show that one step of the trapezoidal method can be viewed as half a step of
Forward Euler followed by half a step of Backward Euler.

(c) Show that one step of the implicit midpoint method can be viewed as half a step
of Backward Euler followed by half a step of Forward Euler.

2. [20 marks] The following classical example from astronomy provides us with strong
motivation to olve ODEs with error control.

Consider a planet with (normalized) mass µ = 0.012277471, a sun with mass µ̂ = 1−µ,
and a moon with negligible mass moving in a two-dimensional plane. The motion of
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the moon is governed by the equations

ü1 = u1 + 2u̇2 − µ̂
u1 + µ

r1
− µu1 − µ̂

r2
,

ü2 = u2 − 2u̇1 − µ̂
u2
r1
− µu2

r2
,

r1 = [(u1 + µ)2 + u22]
3/2,

r2 = [(u1 − µ̂)2 + u22]
3/2.

Starting with the initial conditions

u1(0) = 0.994, u2(0) = 0, u̇1(0) = 0,

u̇2(0) = −2.00158510637908252240537862224,

the orbit is periodic with period T < 17.1. Note that r1 = 0 at (u1, u2) = (−µ, 0) and
r2 = 0 at (u1, u2) = (µ̂, 0), so we need to be careful when the orbit comes close to
these points!

Solve this equation using Matlab’s ode45. Set the quantities AbsTol and RelTol

equal to 10−6. Report on the number of successful and rejected time steps. (Hint:
Type help ode45 at the Matlab prompt and look at how to set options with odeset.)

Now use the classical fourth-order Runge–Kutta method with a constant stepsize to
integrate this problem on [0, 17.1] using 100, 1000, 10000, 20000 steps. Plot the orbit
u2 vs. u1 in each case. How many uniform steps are needed before the orbit appears to
be qualitatively correct? What percentage of adaptive steps relative to constant steps
was required to get the same (or better!) accuracy?

3. [30 marks]

(a) Give the Butcher array representation of the following Runge–Kutta method:

K1 = f(tn−1,yn−1)

K2 = f(tn−1 + ∆tn/2,yn−1 + ∆tnK1/2)

K3 = f(tn−1 + ∆tn,yn−1 −∆tnK1 + 2∆tnK2)

yn = yn−1 + ∆tn(K1 + 4K2 + K3)/6.

By considering the exact error at t = 1 in solving the initial-value problem

ẏ = −2ty2, y(0) = 1,

for constant step-sizes ∆tn = ∆t = 0.2, 0.1, 0.05, estimate the order of the
method. Note that the exact solution is y(t) = 1

t2+1
.
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(b) According to Butcher’s rooted tree theory, we have the following order conditions

for a Runge–Kutta method with Butcher tableau
c A

bT are

Order 1: bTe = 1.

Order 2: bTc =
1

2
.

Order 3: bTc2 =
1

3
, bTAc =

1

6
.

where e = (1, 1, . . . , 1)T .

Prove that the method from part (a) is third-order accurate. This will involve
checking that all of the order conditions up to and including order 3 are satisfied
as well as checking that at least one order condition of order 4 is not satisfied.

4. [30 marks]

(a) Show that when we apply the implicit midpoint method to the linear, variable-
coefficient problem

ẏ = λ(t)y,

(instead of the test equation), the condition of absolute stability

|yn| ≤ |yn−1|

still holds. In this case we say the implicit midpoint method is AN-stable1. Show
that the trapezoidal method is not AN-stable.

(b) For the autonomous system ẏ = f(y), show that N constant steps of size ∆t of
the trapezoidal method is the same as starting with half a step of Forward Euler,
continuing with N − 1 steps of the implicit midpoint method, and finishing with
half a step of Backward Euler.

We say therefore that the trapezoidal and implicit midpoint methods are dynam-
ically equivalent : for ∆t sufficiently small, their behaviours are similar (indepen-
dent of N) even over very long times tf = N∆t� 1.

(c) What is the stability function of the following explicit Runge–Kutta method?
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Using Matlab, plot the method’s region of absolute stability.
Hint: Type help contour.

1The N is usually understood to stand for nonautonomous.
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5. [0 marks] Provide a plan for your project. The plan should include a well-defined
topic, goals for the project, and timelines for achieving the goals and writing the
interim and final reports. After review of the plan by the instructor, a meeting will
be set up to provide feedback on your project and the plan for its completion.
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