CHAPTER 1: ODEs

e Very common for ODEs to be present in
mathematical models in science, engineering,
finance, etc.

Very common for “real” ODEs to not have analytical
solutions. — We need numerical methods!

Algorithms / software must be

— efficient (time and memory)
— reliable
— robust

Broadly classify ODEs with respect to side
conditions.

e.g.,



Solution:
u(t) = asin(t + 5),

where «, [ are arbitrary constants.

2 arbitrary constants <+ 2 different conditions

)

we can impose 2 side conditions

How we do this determines the nature of the ODE.
e.g., IVP:

u(0) =c1, w(0) = ¢
3 3

asinf8 =c¢; =>4+ acosfB = ¢y

!

B=arctanl, o= (=25

L . c
— Solution is unique for all ¢ = ( ! )



e.g.. BVP:

u(0) =c1, ulty) = co.

Lettf =m, c1 = 0.
Then

u(0) = asin 8 =0,

u(m) = asin(f + 7) = cs.

But
sin f = —sin(B8 + 7).
", if co # 0, there is no solution.

If co =0 and 8 =0, « is arbitrary
— an infinite number of solutions.

If £, # 7, it is possible to have a unique solution.

With a BVP, anything is possible !



1.1 IVPs

Standard form

y(0) = yo.
BEWARE ! y,yq are vectors;
f is a vector-valued function.

Note 1. When f = f(y), the ODE is autonomous.

Non-autonomous ODEs can be transformed to
autonomous ODEs by introducing a new variable



then .
Y =F(Y).

We will often write y = f(y) without loss of generality.

Example 1. (Simple pendulum)

Newton'’s law:
mé = —gsinf (ignore friction)
Convert to first-order system. Let

Y, = 6,
Y, = 0.



Then
Y, = Y
YQ = ——=ginY;j.
Initial conditions:  0(0) = 6y, 6(0) = wo.

Exercise: Let m =1, ¢ =9.8, 6 =1, wg = 1.
Solve and visualize using Matlab’s ode45.




Example 2. (Predator-Prey model)
— population biology

y1(t) Prey population at time t
y2(t) Predator population at time t
« Prey’s net growth rate (birth — death) a >0
B Probability of interaction g >0
v Predator’s growth rate without prey v <0
0 Predator growth rate when meeting prey 0 > 0
Y1 = oy — Py
Y2 = Y2+ 0y1ye

Typical values:
a=0.256=0.01,vy=—-1,0 =0.01.

Starting from y(0) = ( z;gg; ) — ( 28 ) , model
possesses a periodic solution y(T) = y(0) foraT > 0.



Example 3. (Diffusion problem)

u(x,t) = temperature in metal rod

0 (o),
ot oz \Lox I\Es

u = u(x,t) is unknown

0<x<1, t>0.

For simplicity, let p = 1.

Initial data
u(x,0) = ug(x).

Boundary data

u(0,t) = a(t), wu(l,t) = B(1).



e Divide up [0,1] into m + 1 equal subintervals:

Ar = ——
m + 1

o Lety;(t) =~ u(x;t), x; =1Ax, 1 =0,1,....,m+1,
— method of lines.

~ Yi+1—2YitYi—1

T; (Axz)?

9%y
o Llet Z—3

Then

1
)i = 5 Yi+1 — 2Yi + Yi— is Yi),
y (Az)g[yﬂ yi + yi-1] + (i, Yi)

Yo = a(l), Yms1 = B(1),
yi(0) = uo(w:).

A system of m coupled ODEs !
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Theorem 1. (Existence, uniqueness of IVP solutions)
y = f(ty),
y(0) = Yo
Let f£(t,y) be continuous for all (t,y) in
D={0<t<ty, 0|yl <oo}.

Let f(t,y) satisfy a Lipschitz condition in D:;

I.e.,
£(t,y) — £, 9)|| < Llly — ¥l

for some constant 0 < L < oo and all pairs (t,y),
(t,y) in D.

(L can be taken as a (potentially conservative) bound
on the norm of the Jacobian matrix 0f /Jy.)
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Then

e for any yq, there is a unique (and differentiable)
solution to the IVP in |0,1¢].

Moreover,
e y depends continuously on the data.
o Ify =f(t,y) +r(t,y) with||r|]| < M on D,

then

ly(t) =3I < e[ly(0) = y(0)]] + (e — 1)

< e“|ly(0) — ¥(0)].

i.e., If ICs / parameters / f(t,y) are changed slightly,
solution changes slightly.

Often D must be restricted for these results to hold.

e.g., if we restrict D so that y satisfies ||y — yo|| <7,
a finite L exists, and ||f(t,y)|| < M, then a unique
solution is guaranteed for 0 <t < min(ts,~v/M).
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This is the definition of a well-posed problem:

The solution

® exists
® /s unique

® /s not sensitive to perturbation.
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We have seen

IVVPs have a local nature.

e Solution marches in time

e Past or future values not needed in solution
determination

BVPs have a global nature.

e Need to account for solution values everywhere!

e Existence and uniqueness much more complicated!

BVPs are “harder” to solve than IVPs.
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General form:

g(y(a),y(b)) = 0.

Example 4. (Vibrating spring)

Suppose one end is fixed, the other is free:
— u(a) =0, u'(b)=0.

More discussion about BVPs is deferred until later.
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1.3 DAEs

So far our model problems look like

y(t) = £ty ().

— explicit ODE

More generally, however, we can have

F(t,y(t),y(t) = 0.
— implicit ODE if ‘g—]’; is nonsingular.

(Then in principle you can solve for y.)
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Now consider explicit ODE with constraints:

x < differential variables
z < algebraic variables

The components of x are not independent !
— semi-explicit DAEs

We can cast this as an implicit ODE:
(X)), Fr=(* ") =Ftyy) =0
y = z |t o YY) = V.

But g—g = ( (I) g ) is singular for all ¢, x,z,x,z.
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Example 5. (Simple pendulum — again)

X2

Lo

x1

N
.5.131 = —Z2I
To = —zx2—¢g
le12 —|—£L'22 _ l2

z = Lagrange multiplier (reaction force)
— Simple case of a multibody system.

Note 2. Letting x1 = [sinf, ro = —lcosf, we can
eliminate z. — This takes us back to Example 1.
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Real life is rarely this convenient.

Such a transformation may not be

e possible (complicated, discontinuous, etc.)

e advisable (painstaking, less efficient, etc.)

FINAL NOTE ON DAEs:

DAEs are not ODEs!
DAEs are fundamentally different from ODEs
(even implicit ones).

r = z,

= x —1.

Clearly, the solution is x =t, z = 1.
— No ICs or BCs needed!

If you try to set x(0) = x(, then no solution if xy #£ 0.
(zg = 0 is consistent, but not necessary.)

Much more discussion on DAEs deferred to later.
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