
CHAPTER 10: Numerical Methods

for DAEs

Numerical approaches for the solution of DAEs divide
roughly into two classes:

1. direct discretization

2. reformulation (index reduction) plus discretization

Direct discretization is desirable because reformulation
may be costly and require additional user input and/or
intervention.

However, direct discretizations are only feasible for
index-1 and semi-explicit index-2 DAEs!

This makes reformulation popular in practice.

Fortunately, many DAEs in practice are index-1 or
simple combinations of Hessenberg systems.



We consider two classes of problems:

1. fully implicit index-1 DAEs:

F(t,y, ẏ) = 0.

2. Hessenberg (pure) index-2 form

ẋ = f(t,x, z),

0 = g(t,x).

Recall, the class of semi-explicit index-2 DAEs

ẋ = f(t,x, z), (1a)

0 = g(t,x, z), (1b)

is equivalent to the class of fully implicit index-1 DAEs.

Of course, the conversion may come at a price of
increased system size.



For the index-2 DAE, the algebraic variables z may be
index-1 or index-2.

For the Hessenberg form, all the z are index-2.

(That is why we call it the pure index-2 form.)

There are some convergence results for numerical
methods applied to even higher-index Hessenberg
DAEs, but there are difficulties in constructing general-
purpose codes.

The best strategy seems to be to perform index
reduction and solve the resulting lower-index problem
with a suitable discretization. (More about this later.)



10.1 Direct Discretizations

Consider the regularization of the semi-explicit index-2
DAE by replacing the algebraic constraint by the ODE

εż = g(t,x, z),

where 0 ≤ ε� 1.

Note: We do not intend to carry out this process!

The very stiff ODE so obtained is usually more trouble
to solve than the original DAE!

But this allows us to think about what properties are
required of a numerical method to be good for DAEs.

• Because the regularized ODE is stiff, we consider
numerical methods for stiff ODEs.

• Methods that possess the property of stiff decay are
particularly attractive.



Recall these methods tend to skip over transient
regions. This is exactly what we would like to do
to: skip over the “artificial” layers induced by the
regularization and transition to the limit ε→ 0.

All the good methods for DAEs will have stiff decay,
but this property alone is not sufficient for success.

For initial-value DAEs that are hard to transform or
have a stiff underlying ODE, BDF and Radau methods
are preferred.

So we begin with the grandfather of both of these
families: backward Euler.



10.1.1 Backward Euler

Consider the general DAE

F(t,y, ẏ) = 0.

Apply backward Euler directly to this DAE:

F

(
tn,yn,

yn − yn−1

∆tn

)
= 0.

→ a system of m nonlinear equations for yn at each
time tn.

Sadly, this simple method does not always work!

Worst case: There are simple high-index DAEs with
well-defined solutions for which backward Euler (and in
fact all other multi-step and Runge–Kutta methods!)
are unstable or not defined.



Example 10.1

Consider the following linear index-2 DAE:[
0 0
1 ηt

]
ẏ +

[
1 ηt
0 1 + η

]
y =

[
q(t)

0

]
,

where η is a parameter and q(t) is differentiable.

Exact solution: y1(t) = q(t) + η t q̇(t), y2 = −q̇(t).

→ well defined for all η.

The problem is stable for moderate values of η, but
backward Euler is not defined if η = −1! (verify!)

In fact, it can be shown that backward Euler is unstable
when η < −0.5.

Some analysis of this problem offers some insight.



We can transform to semi-explicit form via

y =

[
1 −ηt
0 1

] [
u
v

]
.

This yields

u̇+ v = 0, u = q(t).

Note: Forward Euler is undefined for this problem!

Applying backward Euler to this yields

un = q(tn), vn = −q(tn)− un−1

∆tn
.

Starting with a consistent initial value u(0) = q(0),

vn = −q̇(tn) +O(∆t),

which is all you can expect from a first-order method
like backward Euler.



Now apply backward Euler directly to the original DAE:[
0 0
1 ηtn

]
yn − yn−1

∆t
+

[
1 ηtn
0 1 + η

]
yn =

[
q(tn)

0

]
.

Defining [
un
vn

]
=

[
1 ηtn
0 1

]
yn,

we get

un = q(tn), (1 + η)vn = −q(tn)− q(tn−1)

∆tn
.

So un is reproduced exactly (as before), but vn is
undefined when η = −1.

Note that the transformations we have introduced
have decoupled y into differential and algebraic
components.

Backward Euler works well for the decoupled problem.

However, direct discretizations of nondecoupled DAEs



of index higher than 1 are not recommended!

For the rest of this subsection, we consider only index-1
or semi-explicit index-2 DAEs.

Starting with the semi-explicit index-1 DAE,

ẋ = f(t,x, z),

0 = g(t,x, z),

where gz is nonsingular, it is easy to see that backward
Euler retains all its nice properties (order, stability,
convergence) from the ODE case.

From the implicit function theorem, there exists a
function g̃ such that

z = g̃(t,x).



Assuming there is only one such g̃, the DAE is
equivalent to the ODE

ẋ = f(t,x, g̃(t,x)).

Applying backward Euler directly to the DAE, we
obtain

xn − xn−1

∆tn
= f(tn,xn, zn),

0 = g(tn,xn, zn).

Solving for zn and substituting into the differential
equation yields

xn − xn−1

∆tn
= f(tn,xn, g̃(tn,xn)).

This is backward Euler applied to the underlying ODE.



So all the results from the analysis of backward Euler
apply now:

Backward Euler is first-order accurate, stable, and
convergent for semi-explicit index-1 DAEs.

The same results can be shown for fully implicit index-1
DAEs and semi-explicit index-2 DAEs (but the analysis
is quite a bit more involved).

See the text for some hints as to how this is performed.



10.1.2 BDF and Multistep Methods

In the usual notation, applying a BDF method with
constant stepsize ∆t to a general nonlinear DAE yields

F

tn,yn,
1

β0∆t

k∑
j=0

αjyn−j

 = 0.

Most software packages based on BDF methods solve
fully implicit index-1 DAEs.

Fortunately, many practical problems arise in this form!

Convergence results extend naturally from that of
backward Euler: a k-step BDF method with fixed ∆t
and k < 7 is convergent of order k if all initial values
are accurate to O((∆t)k) and the Newton iteration
converges to O((∆t)k+1).

This result extends to variable-stepsize BDF methods
provided the implementation is such that the method
is stable for ODEs.



We also have similar convergence results for semi-
explicit index-2 DAEs.

For other linear multistep methods applied to general
index-1 DAEs and Hessenberg index-2 DAEs, the
coefficients of the LMM must satisfy additional DAE
order conditions to attain order greater than 2.

(It turns out these conditions are automatically satisfied
by BDF methods.)



10.1.3 Radau Collocation and Implicit
Runge–Kutta Methods

The s-stage implicit RK method applied to the general
nonlinear DAE takes the form:

0 = F(tni,Yi,Ki),

tni = tn−1 + ∆tn ci,

Yi = yn−1 + ∆tn

s∑
j=1

aijKj, i = 1, 2, . . . , s,

yn = yn−1 + ∆tn

s∑
i=1

biKi.

We assume A is non-singular.



For the semi-explicit problem, the internal stages satisfy

Ki = f(tni, ,Xi,Zi),

Xi = xn−1 + ∆tn

s∑
j=1

aijKj,

0 = g(ti,Xi,Zi), i = 1, 2, . . . , s.

For the algebraic variables z it is often better to avoid
the quadrature step implied by the last step of a usual
RK method.

→ There is no corresponding integration in the DAE!

This makes stiffly accurate methods with asj = bj
desirable: the constraints are automatically satisfied at
the final stage; i.e.,

yn = Ys,

and there is no need for the final (quadrature) step.

We then set xn = Xs.



As for (non-BDF) multistep methods, there are
additional order conditions that such methods must
satisfy to have order > 2 for general index-1 and
Hessenberg index-2 DAEs.

Methods often exhibit order reduction as they do when
solving stiff ODEs.

This is perhaps not surprising given the close
relationship between DAEs and stiff ODEs.

A detailed discussion of the theory behind the causes
of order reduction is given in the text.

The rooted tree theory of Butcher has also been
extended to provide a complete set of necessary and
sufficient conditions for certain classes of DAEs, e.g.,
semi-explicit index-1, general index-1, and Hessenberg
index-2 and index-3.

Convergence results for Runge–Kutta methods that are
also collocation methods are given in the text.



10.1.4 Practical Considerations

Despite the nice order and convergence results, there
remain some practical issues to consider.

• Consistent Initial Conditions

A major practical difference between numerically
solving ODEs and DAEs is that the DAE system must
be initialized with values that are consistent with all
the constraints – even the hidden ones!

Sometimes there is not enough information for the
DAE to have a solution; sometimes there is too much
or the wrong type of information.

Consider a semi-explicit index-1 DAE, and suppose

x(0) = x0.



This is exactly all we need to theoretically solve the
problem: z(0) := z0 can be obtained from solving

0 = g(0,x0, z0),

then ẋ(0) can be evaluated, etc.

However, a DAE solver may require a value for z0 or
face a “cold start”, and there is no treatment of what
to do if there is more than one solution.

Example 1. Consider the semi-explicit index-1 DAE

u̇ = −(u+ v)/2 + q1(t),

0 = (u− v)/2− q2(t).

In this case, we can specify u(0) arbitrarily, and this
determines v(0) = u(0)− 2q2(0).

Hence we can determine u̇(0).



But now defining u = y1 + y2 and v = y1 − y2 yields
the DAE

ẏ1 + ẏ2 = −y1 + q1(t),

0 = y2 − q2(t).

This DAE requires y2(0) = q2(0) for consistency, so
although we can still arbitrarily specify y1(0), we cannot
determine ẏ1(0) without using ẏ2(0) = q̇(0).



Of course, the situation gets more complicated for
more general index-1 DAEs and higher-index DAEs.

Example 2. Recall the Hessenberg index-3 DAE for
the simple pendulum in Cartesian co-ordinates.

We note first that q(0) cannot be assigned arbitrarily;
e.g., given q1(0), q2(0) is determined (up to a sign)
from the constraint on the pendulum length.

Then from the (hidden) constraint on the velocity level,
one component of v is determined from the other.

In other words, the user’s specification of q(0) and
v(0) must be consistent with the constraints on the
position and velocity levels.

These conditions determine q̇(0) and hence λ(0).

In general, consistent initialization for high-index
systems is usually done on a case-by-case basis.



• Ill-Conditioned Newton Iteration Matrix

Recall, for explicit ODEs, the Newton iteration matrix
tends to I as ∆tn → 0.

For index-1 and Hessenberg DAEs, it can be shown
that the condition number of the Newton iteration
matrix is O((∆tn)−d), where d is the index.

For example, the Newton iteration matrix for backward
Euler applied to the semi-explicit index-1 DAE is(

(∆tn)−1I− fx −fz
−gx −gz

)
.

The condition number of this matrix is O((∆t)−1
n ).

For small ∆tn, the Newton iteration might fail.

These bad condition numbers can be ameliorated to
some extent by scaling the constraints (for semi-
explicit index-1 DAEs) and the algebraic variables (for
Hessenberg index-2 DAEs).



• Error estimation for index-2 DAEs

Recall, modern BDF codes estimate the local errors
using a weighted norm of a divided difference of y.

This error estimate still works for fully implicit index-1
DAEs, but it fails for index-2 problems!

See Example 10.6 in the text, where it is shown that for
a simple index-2 DAE, the standard way of estimating
the local truncation error by divided differences yields
estimates that approach 0 as ∆tn → 0 only for the
differential variables, not for the algebraic variables!

This will result in repeated rejected steps.

This problem can be fixed by not including the algebraic
variables (in particular the index-2 variables) in the
error estimate.

It has been shown that this strategy is safe: it turns
out the lower-index variables are still accurate (the
estimate only thinks they are not).

Note: The algebraic variables should not be removed
from the Newton convergence test!



10.1.5 Specialized RK methods for
Hessenberg Index-2 DAEs

We now focus on Runge–Kutta methods for
Hessenberg index-2 DAEs in order to take advantage
of the special structure (i.e., the pure index-2 nature
of the algebraic variables) of these problems.



• Projected Runge–Kutta methods

Recall, Radau methods are not preferred for BVPs
because they are not symmetric.

Gauss collocation methods were successful for
BVODEs, but because they do not have stiff decay,
they suffer from severe order reduction when applied
in a straightforward way to Hessenberg index-2 DAEs.

e.g., the midpoint method is only O(1) accurate for
the index-2 variable z.

Additional difficulties include potential instability and
no nice local error expansion.

Fortunately, all these problems can be solved by
projecting onto the constraint manifold at the end
of each step!

Note: This may mean that the piecewise polynomials
approximating x(t) and z(t) may become discontinuous
at the tn.



Suppose we take a step from xn−1, zn−1 using an
implicit RK method.

The idea behind projection is to perturb the resulting
xn, zn to satisfy

x̂n = xn + fz(tn,xn, zn)λn,

0 = g(tn, x̂n),

and take xn = x̂n as the numerical solution.

Note: The λn are not stored.

For a method with stiff decay, the constraint is already
satisfied, so there is no need to project.

For a collocation method without stiff decay, e.g.,
Gauss collocation, the projection restores all the nice
features that the method had for BVODEs, in particular
superconvergence for x at the mesh points.

A postprocessing step allows z to be determined from
x to the same order of accuracy.



• Half-explicit Runge–Kutta methods

A fully implicit discretization is overkill if the differential
equations are non-stiff; i.e., the stiffness enters only
via the constraints.

Many models for mechanical systems are like this.

One approach for taking advantage of this is via half-
explicit RK methods.

For a semi-explicit DAE, the half-explicit RK method
is defined by

Xi = xn−1 + ∆tn

i−1∑
j=1

aijf(tnj,Xj,Zj),

0 = g(tni,Xi,Zi), i = 1, 2, . . . , s,

xn = xn−1 + ∆tn

s∑
i=1

bif(tni,Xi,Zi),

0 = g(tn,xn, zn);



i.e., at each stage i, the Xi are evaluated explicitly,
and the Zi are obtained by solving a nonlinear system.

For semi-explicit index-1 DAEs, the order of accuracy
is the same as for ODEs.

→ these methods are in fact not very different from
applying an explicit RK method to

ẋ = f(t,x, z(x)).

There is generally order reduction when these methods
are applied to semi-explicit Hessenberg systems of
index 2, but techniques have been developed to address
this as well.



10.2 Methods for ODEs on Manifolds

The numerical solution of ODEs on manifolds forms an
interesting problem class in its own right; as discussed,
DAEs are not the only source of such problems.

Nonetheless, this provides a useful perspective for the
numerical solution of DAEs.

To recall, consider the nonlinear IVP

ẋ = f̂(x), x(t0) = x0,

such that there exists an invariant set M defined by
the algebraic equations

0 = h(x);

i.e.,
h(x0) = 0 =⇒ h(x(t)) = 0 ∀t.

Note 1. From the perspective of dynamical systems,
this could be forward or backward in time.



Approaches to solve this problem include

• solving the stabilized ODE

ẋ = f̂(x)− γF(x)h(x),

by choosing appropriate F(x) and γ;

• using some sort of stabilization at the end of each
step to bring xn closer to satisfying h(xn) = 0
(post-stabilization or co-ordinate projection);

• finding a numerical method that automatically
satisfies h(x) = 0; this is possible when h(x) is
(at most) a quadratic function.

Of these, we now discuss post-stabilization and co-
ordinate projection.



10.2.1 Stabilization of the Discrete
Dynamical System

If the ODE is not stiff, then we would like to use a
non-stiff method for its solution.

In order to enforce the constraint, we apply a
stabilization at the end of each step.

Suppose we use our favourite method to (tentatively)
advance the solution of the ODE as

x̃n = φf̂∆tn(xn−1).

then post-stabilize x̃n to obtain

xn = x̃n − F(x̃n)h(x̃n).



For post-stabilization to be effective, we must choose
F such that

‖I−HF‖ ≤ ρ < 1,

where H = hx.

With sufficient smoothness near M and ρ = O(∆tn),
the following will apply to an ODE method of order p.

• Stabilization does not change the method’s order of
convergence:

x(tn)− xn = O((∆tn)p).

• There exists a constant K that depends only on
local solution properties such that

‖h(xn)‖ ≤ K(ρ(∆tn)p+1 + (∆tn)2(p+1)).

•
‖h(xn)‖ = O((∆tn)2(p+1)), if HF = I.

Example 10.8 of the text shows some of these results.



A closely related stabilization method is the so-called
co-ordinate projection method.

In this case, after taking the tentative step with your
favourite numerical method to x̃n, we determine xn

that minimizes ‖xn − x̃n‖2 such that h(xn) = 0.

This is a constrained least-squares problem.

It turns out that performing a post-stabilization

with F = HT (HHT )
−1

(which satisfies HF = I)
corresponds to one Newton step for the solution to
this minimization problem.

So for ∆tn sufficiently small, the two methods are
essentially indistinguishable.

Note that ‖h(xn)‖ = O((∆tn)2(p+1)), so the invariant
is well satisfied and remains so for future steps without
the need for more than one iteration per step.

However, post-stabilization has the advantage of being
more general (and hence more flexible in choosing F),
so it can be more efficient.



10.2.2 Choosing the Stabilization Matrix

Post-stabilization steps are more effective as ‖I−HF‖
is made smaller.

The choice F = D(HD)
−1 achieves the optimum

value of ‖I−HF‖ = 0.

However, a given choice of D (and hence F) may be
(too) expensive to use.

For example, for the Euler–Lagrange equations of
motion for multi-body systems,

H =

(
G 0

∂(Gv)
∂q G

)
,

which involves using the evil matrix ∂(Gv)/∂q.



Example 3. Here is an algorithm for post-
stabilization applied to multi-body systems.

1. Use your favourite ODE integrator to tentatively
advance the system

q̇ = v,

M(q)v̇ = f(q,v)−GT (q)λ,

0 = G(q)v̇ +
∂(Gv)

∂q
v,

from (qn−1,vn−1) at time t = tn−1 to (q̃n, ṽn) at
time t = tn.

2. Let

F =

(
B(GB)

−1
0

0 B(GB)
−1

)
,

where B = M−1GT .

Post-stabilize:(
q̂n

v̂n

)
=

(
q̃n

ṽn

)
− F(q̃n, ṽn)h(q̃n, ṽn).



Note 2.

HF =

(
I 0
L I

)
, where L =

∂(Gv)

∂q
B(GB)

−1
;

thus (I−HF) 6= 0, but (I−HF)2 = 0!

So post-stabilizing with F twice is an excellent idea.

Note 3. The decompositions required in applying
F can be stored so that the second post-stabilization
is essentially free.

Note 4. F can be frozen over multiple steps.

3. Repeat post-stabilization step:(
qn

vn

)
=

(
q̂n

v̂n

)
− F(q̂n, v̂n)h(q̂n, v̂n).



Note 5. A sometimes-better (but generally more
expensive) F is(

GT (GGT )
−1

0

0 GT (GGT )
−1

)
.

Note 6. If the multi-body system has non-holonomic
constraints, then the DAE is index 2 and only one
stabilization using F is needed per step.

See Example 10.9 in the text to see some results of
this algorithm in action.


