CHAPTER 3: Basic methods,
basic concepts

Concentrate on 3 methods

e Forward Euler, (or just Euler's method)
e Backward Euler, (a.k.a. implicit Euler)
e Trapezoidal, (a.k.a. implicit mid-point)
for solving IVPs
y = flty), 0<t<ty
y(0) = Yo,

e Assume unique solution and as many bounded
derivatives as needed.

e Can think in terms of scalar ODE,
but vector interpretation often possible.



3.1 Forward Euler

Imagine discretizing [0,ts] by a mesh

Define At, =t, —t,_1, n'" step size,
(size of interval n)
n=12,...,N,

we then compute
IC =yo0,¥1,Y2, " ,¥YN-1, YN,

where
Yn = Y (tn)-
— Given only yq, generate y1,yo,- - -.



Review: Order notation

We often describe computational errors as a function
of At as At — 0 (At > 0).

Definition 1.
d = O((At)?)

if 4 p,C > 0 such that VAt > 0 sufficiently small,
Idl < C(AL)P.

Typically, we are interested in the largest p for which
this is true; iI.e.,

d
— d] ~ C + ||d|| decreases like (At)P as At — 0.
(At)P



In estimating computational complexity, we assume
N =0(x;), N = .
e.g.,
w = O(Nlog N)
= 4 C' such that
w<CNlogN as N — oc.

Consider Taylor's expansion:

: 1 y
Y(tn—1) + Aty (tn—1) + 5(Atf,ﬂ,J)?y(tn_l) 4 ...

= Y(ta—1) + AtnY (tn—1) + O((Ata)").

Y(tn)

Assuming O((At,)?) can be neglected ...

Yn = ¥Yn-1 + Atnf(tn—la Yn—l)-
This is forward Euler !



Note 1. e This is a explicit method:
v, IS given as an explicit function of past y values.

e This is a one-step method:
The only quantities that appear are y,,_1,yn.

e [t has a nice geometric interpretation:

Follow tangent line at (t,,_1,yn_1) for a horizontal
distance At,,.
Repeat as desired.



3.2 Convergence, Accuracy, Consistency,
0-stability

Rewrite forward Euler

Yo —¥Yn-1
— {1 (- ,¥Yn—1) = 0.
At (th—1,¥n-1)
Define
tn) — ulty—
Npu(t,) = u(tn) — u(tn-1) —f(tp_1,u(tp_1))

Aty

for any function u(t) defined at the mesh points
{t,,}N_, with u(tg) given.

Consider a function  yj(?) (mesh function)
such that Vi(tn) = Yn.
Clearly, Nuyn(t,) = 0.
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Define local truncation error

This is the amount by which the true solution fails to
satisfy the difference equation.

< Measures how closely the difference operator
approximates the differential operator.

A difference method is consistent (or accurate) of order
p if
d, = O((At,)?)

for a positive integer p.

For forward Euler,

dy = 5 () + O((AL)).  (verfy 1

— Forward Euler is accurate of order 1.



It is easy to design difference approximations to
be consistent. But the property we really want is
convergence <> consistency over many steps.

Let

At = max At,
1<n<N

and assume INAt is bounded independent of V.

A difference method is convergent of order p if the
global error e, = y(t,) — yn, €9 = 0 satisfies
e, = O((At)P) forn=1,2,... N.

Note 2. The order of consistency and convergence
do not have to be equal.

We would like to assume they are.

For that, we need the concept of O-stability.
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Definition 2. A difference method is 0-stable if
3 Atg, K > 0 such that for any mesh functions xX;,, zy,
with At < Aty

Ixn—2n| < Killxo—zoll+ max [INnxh(t;)—Nnzn(t;)ll}

1<n<N.

X,, <> Method in question to produce y,,.

z., <> Method in question with perturbed initial condition.

— Analogous to stability of differential equation.
O-stability <+ Stability of difference equation.

— Concept has limited use in proofs.
— Tricky to directly prove forward Euler is O-stable.

Theorem 1. Consistency + 0-stability = Convergence
order p order p

len|l < K max [|d;]| = O((A1)").

1<j<n



— As an error bound, this is very pessimistic and
cannot be used for practical error estimation.

e Another related error measure is the local error

"

the error made at each step
Let

yt) = fty(),
y(tn—l) — Yn-—1-

Then the local error is
l, =y(t,) — yn.

Usually,  dal = NGy (ta) | + O((A1)P+),
and Aty [N (£)]| = L]l (1 + O(A)).

— At,d,,l,, are closely related !
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3.3 Absolute stability

Recall the test equation:

Y= \y (scalar)
A — complex

y(0) =49 >0 (for convenience)

Exact solution: y(t,) = e Mnyp.

Consider forward Euler with fixed step size At,, = At:

Yn = Yn—1T At)\yn—l
= (1 + At)\)yn_l
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Three cases :

e ReA>0: |y@®)| = yoe*MNt = oo as t — oo
— Problem is unstable.
If eReMts is not too large, we can compute
meaningful solutions in a relative sense.

e Rel = (: distance between solution curves is
constant.

o Red < 0: |ly(t)]| = yoeRMNt = 0 as t — oo.
Solution is asymptotically stable.
— Absolute stability requirement:

HynH < Hyn—lH; n = 1,2,--~ .

Definition 3. The region of absolute stability of a
numerical method is the region in the complex z-plane
where

|ynll < llyn—1l
for the test equation y = Ay and z = AAt.
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Example 1. For forward Euler,

[ynll < lyn_all = 1 +ALN < 1
=[1+2 < 1
i
circle centred (—1,0) and radius 1
LA AR unstable
I stable \
ix 1 :
M\ /
L T

Suppose \ is a real negative number.
Then for stability, we must restrict At such that

At < = (verify)

Exercise: For A\ = —200, use forward Euler to solve
y = Ay, y(0) =1 with At = 0.011, 0.0099, 0.0049
for 100 steps each compare with the exact answer.
Comment on the difference between the last 2
solutions.
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The absolute stability restriction is a stability restriction
NOT an accuracy restriction !

e.g. If yo = 1071°, then the approximation y,, = 0
never has error larger than 1071°.

Because roundoff errors inevitably occur, if you use
a stepsize At outside of the stability region, the
numerical solution will blow up !

e For systems of linear, constant-coefficient equations,
the stability restriction is given by the eigenvalue
with the most negative real part.
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3.4 Stiffness and Backward Euler

Important rule of thumb:

We want to choose At, based on accuracy
requirements NOT stability requirements.

When we cannot do this the problem is called stiff.

What does this mean 7

e A given tolerance (accuracy) requires a certain
(1)
Aty, .

e Stability restriction also imposes a certain Atg).

e For stiff problems, Atq(f) < Atq(ll);
I.e., you get much more accuracy than you ask for.

What's wrong with that ? It's not for free !
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Example 2.

y = —100(y — sint), t >0,
y(0) = 1.
T+ my:lint
0T - plausible
dlllllll T T : ) T : mesgh

transient
region

Rapid variation at beginning requires small step. But
later, solution is smooth, so we would like to take a

large step.

Other scientists and engineers try to quantify stiffness
in terms of multiple scales; i.e., eigenvalues (time
constants) have widely differing values.

Then At, is restricted by the transients, even after
they have died off !
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The best way to understand stiffness is in a qualitative
sense:

Stiffness is characterized in terms of the behaviour
of an explicit method (like forward Euler) on a given
problem.

An IVP is stiff in some interval [0,t] if the stepsize
needed to maintain stability is much smaller than that
needed to meet the accuracy requirements.

Note 3. Stiffness depends on

e the IVP (DE, ICs, [O,tf]),
e the accuracy requirement,

e the absolute stability region of the method.

— If the tolerance is small enough, no problem is stiff!

Example 2 is stiff after about ¢ = 0.03.
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3.4.1 Backward Euler

We would like a method with a nice absolute stability
region so that we can take a large At even when the
problem is stiff.

Such a method is backward Euler.

It can be derived like forward Euler, but with Taylor
expansions about t = t,,.

This leads to:

Yn =Yn-1t Atnf(tna Yn)

Note 4. e Thisis a first-order method. (verify)

e Geometrically, the tangent is drawn from the future
point (tn,yn).
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e [t is an implicit method.
— The unknown y,, is on both sides of the equation.
So we need to solve a nonlinear system of equations
at each step.
— Each step costs more than a forward Euler step.

e Stability region: applying backward Euler to y = Ay,

Yn = Yn—1 Tt )‘Atyna
Yn—1
— n p— .
J 1 — AN

1_%\ N is the amplification factor for backward Euler.

( Recall: for forward Euler, it was (1 + AAt). )

For At > 0 and Re(\) < 0, we have

1
< 1.
TSV

— This method is unconditionally stable !
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3.4.2 Solving nonlinear equations

For any implicit method, equations need to be solved
at every step.

(Not a recipe anymore !)

If the equations are linear, specialized techniques may
be used (e.g., Gauss elimination).

Usually the equations are nonlinear.

We will discuss two methods:

e Functional (or fixed-point) iteration

e Newton iteration
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e Functional iteration

Guess (O) = ¥Yn—1,

then iterate
vy — v A (b, YY) v =0,1,2,. ...

Advantage: simple !

Disadvantage: Theory tells us that for functional
iteration to converge, we must have

AtH H<1

But for stiff problems ||af|\ is large.

— You have to make At small !
(This defeats the purpose !)

Functional iteration is used for implicit (predictor-
corrector) methods applied to non-stiff problems.
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Example 3.

y(l) = 1, A<O.

Exact solution: — y(t) = .
Apply backward Euler:

1 1

tn) 2
Solve this equation by functional iteration:

1 1

D =g+ 8t 3 (682 - 1) - 3.

n

v=0,1,....

Under what conditions will this iteration converge
rapidly?
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Define the error at iteration (v + 1) to be

eyt yn —yi Y.
Then e*D = At M, (y2 — ()2 (verify)

= At \t, (yn_|_y(V)) (v)

Q

1
2At, NV ( use y, ~ y) ~ - )
— Iteration will converge if

1
2AL, A 1 At, < —
| | <1 or < oA

e.g., if A= —500, At, < 0.001.

Stepsize will likely be restricted due to stability, not
accuracy !

— We don’t want that !
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e Newton iteration (some review !)

For a scalar nonlinear equation

given an initial guess x,
we produce a sequence of iterates

gD = ) _ g(@")) , v=12....
g'(z))

For a system of nonlinear equations,

this generalizes to

%)
LD () [_g

~1
o } g(x), v=1,2,....

X:x(y)
Note 5. It is bad practice to compute inverses!
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Instead solve the linear system for the update 5.

Og

ox x:x(V)é(V) - _g(X(V))7

then update: x( D) = x() 4 §0),

Variants of Newton's method are used in virtually
all modern stiff ODE codes.

For backward Euler,

g(Yn) —Yn —Yn—-1— Atnf(tna Yn) — 07

leading to the Newton iteration

yq(lz/—i-l) _ y'r(zy) .

ean ] 68y ALy ).

Y=Yn
v=0,1,2,....

I- Atng—;] gy @) iteration matrix
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The cost of forming and solving the linear systems
(for 8)1) is the dominant cost in an implicit solver.

We will iterate until
Iyt —y| < NTOL.

NTOL: specified by the user,
well above roundoff error.

We can take as initial guess

7(10) —Yn-1-

— It is sometimes possible to do better.

Because this is such a good guess, convergence can
occur in only a few Newton iterations.

Software can be designed so that if convergence
does not occur quickly, At,, can be decreased.
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— Many other tricks go into practical Newton codes;

e.g., damped Newton
x D = x4 W 0<p<.

Frozen Jacobian:
— do not update g—; at each iteration (or even
each step !)
Then each iteration costs O(m?), not O(m?).
Review: Matrix decompositions !

— Approximating the Jacobian matrix
In real applications, ODE systems are often large
and complicated.
This makes the computation of g—; a difficult and
error-prone task.
A convenient technique is to use difference
approximations to automate this process.

Given y(*), perturb one component as follows
Ui=y;+e yi=yj—¢ 00<el

Evaluate f = f(t,,¥), f="f(t,,¥).
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Then the §t* column of g—;‘: is approximated by

f 1~ =
a—z—(f—f).
(‘9yj 2€

— How do you choose € ?
If computer has 2d significant digits,

choose e=10"¢
e.g., a good choice in double precision is
e=10""
Note 6. — This strategy is not foolproof !

— It may be very expensive
(especially if g—f, has many zeros (sparse)).

— More sophisticated and reliable software exists
— Basic question: How to choose ¢.

Also automatic differentiation software.

— Most general-purpose software has an option for
finite-difference Jacobians.

— Good as a check for obvious programming errors!
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3.5 A-Stability and Stiff Decay

The perfect world: the numerical method mimics all
properties of the DE for all DEs.

The real world: methods that capture essential
properties for a class of DEs.

For all stable solutions to the test equation,

()l < [y(ta—1)l-

— Numerical method should satisfy

|yn‘ S ‘yn—1|-

This leads to the concept of A-stability.
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Definition 4. A numerical method is A-stable if its
region of absolute stability contains the entire left-half
of the complex z-plane (z = \At).

e.g., backward Euler is A-stable.

But there are two problems with this definition:

e No distinction made between cases

Re(N) < —1

and
—1 < Re(N) <0, [Zm(N)|>1.

The latter cases gives rise to a highly oscillatory
exact solution that does not decay much.
— This has not mattered to us so far.
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e In the stiff limit Re(\) < —1,

y(tn)| < Jy(tn—1)];
But absolute stability only requires
[Yn| < |yn—1l.

This 1s too weak sometimes !

In particular, it allows Y| = |Yn_1]|.
Consider a sightly generalized test problem

y = Ay —g(t)),

where g(t) is bounded, but otherwise arbitrary.
: (L _ 1 \ —
Rewrite as ey = A(y—g(t)), where e = e A = €A

When € = 0, we get the reduced solution y(t) = g(t).
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A numerical method has stiff decay if for fixed ¢,, > 0,
‘yn — g(tn)‘ — 0 as AtnRe()\) 0.

This is a stronger requirement than absolute stability
in the very stiff limit; it is not concerned with other
parts of complex z-plane.

— Skips transient phase but gives good description of
long-term (slowly varying !) behaviour.
Potential for efficient use, but danger for misuse !

Backward Euler has stiff decay:

_ Yn — g(tn)
1 — AAt,

Yn—9(tn) —0 as At,Re()\) — —oo.

With At,, = 0.1, on Example 2:

y = —100(y —sint), t>0,
y(0) = 1,

33



we get

'“'l‘ Solaal!
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3.6 Symmetry and Trapezoidal Method

Forward Euler is based on Taylor expansion at ¢,,_1.
Backward Euler is based on Taylor expansion at ¢,,.

Both are first-order accurate.
— Generally too inefficient in practice.

Better accuracy obtained by centering expansions at

At,
byl =tp—1+ —(—.
n—sz 9

y(tn) =y <t
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(verify)

Subtract and divide by At,:

— 2
y(tn) Ai(tn_ﬂ =9 <tn_%>+(A2tZ) i (tn_%>+0((Atn)4). (verify)

35



But

2
(Al;n) 0 (tn_%>+@((Atn)4). (verify)

i (8, 1) = 3l +ita1)] -

This yields the (implicit) trapezoidal method:

Aty

Vn =Yn—1+ N [f(tn, yn) + f(tn_1, Yn—l)}-

Note 7. e This is an implicit method.
e It is second-order accurate.

e [t is symmetric:
— If you change t = —7

)

integrate from right to left on [t,_1,t.,],

the answer does not change !
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More formally, consider a general numerical method

Yn =Y¥Yn-1T Atnw(Y'rL—l:}’n; Atn)

e.g., for trapezoidal method,
¢ — % f(tn—lv YH—1> =+ f(t?”w y’n) :| .

A method is symmetric if it is invariant under the
transformation

Yn —7 ¥Yn—-1, ¥Yn—-1 —7 ¥Yn, Atn — _Atna

by, = th_1, tn_1 — Tn.

— Important for reversible flows.

)

e.g., energy-conserving.

Transform trapezoidal rule:

1
Yn—1=Yn — Atn [5 (f(tn—la Yn—l) + f(tna Yn))} .

Rearrange to get the original rule ! (verify)
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e Trapezoidal method is O-stable.

e Check absolute stability:

2 + A\At,

Yn =5 AL Yn—1- (verify)
If Re(A) > 0, gfiﬁig > 1. A-stable in exactly
If Re(A) <0, |35522| < 1. the left-hand plane.

/ just like the
exact solution
unstable
y
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e What about stiff decay ?

li = —1+0.
AtnReg\r)l%—oo 2 — )\Atn #

= No stiff decay. (typical of symmetric methods)

— Solution is basically oscillatory

YUYn = —Yn—1-

e Example 5. Solve Example 2 with trapezoidal rule.

WM

\

L i
need small stepsize to resolve this !
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3.7 Non-smooth Problems

We usually assume “sufficient smoothness” of all
derivatives. — This is often the case, but not always !

In general, if f(¢,y) has k bounded derivatives at y (%),
l.e.,

dJ
—f(t,y(t))H <M, j=0,1,...,k

S 7T

to<t<t;

then y(t) has k 4+ 1 bounded derivatives

dJ
|

yHgmL i=1,2,...  k+1.

So if f(t,y) is discontinuous but bounded, then y(¢)
has a discontinuous but bounded first derivative.

But the higher derivatives are not generally bounded, so
the Taylor series expansion is invalid and discretization
across such a point may yield inaccurate results.
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Suppose there is a t € [0, t¢] where f is discontinuous.

To get a (non-smooth) solution, we solve 2 problems:
yi="£(ty1), 0<t<i, yi(0)=yo,

and  y2=1f(t,y2), t<t<ty, ya2t)=yi(t).

The numerical method does not know about ¢.
We can expect the usual accuracy if we break the
problem up at ¢ |

Example 4. Let 7 > 0 be a parameter and

flt,y) =t —gr, Jj7<t<(j+1)7, 7=0,1,...,J.
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— We may not know where ¢t is beforehand !

e What if we blindly step over it ?
We get an O(Atj;) error, regardless of the (formal)
order of accuracy of the method.

The error is generally O(TAt) at each step.

So if we take O(1/At) steps (discontinuity is jumped
over many times during integration), error is O(1).

Similarly if 7 = O(1/At) (sharp teeth), error is O(1).
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The common way to describe discontinuities in f(t,y)
is in terms of switching functions g(t,y),

£(ty) if glt,y) <O,
£, y) :{ Frty) ifglty) > 0

e.g., simulations involving dry friction.

The standard practice is to use an event location
algorithm that combines an interpolant of the
numerical solution with a nonlinear algebraic equation
solver to locate the time t, such that g(t.,y(t.)) = 0.

Note however that this becomes more complicated
when g is a vector (i.e., there are multiple events)
because the first such ¢, must be detected.

Alternatively, one could simply rely on adaptive step-
size control to detect discontinuities and take small
steps over them.

However, this approach is generally neither as efficient
nor robust as using event location.
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In general, a method of order p matches the first p+ 1
terms in the Taylor series of the exact solution and has
a truncation error of O(||yPT1||AtR).

Example 5. Consider the harmonic oscillator
i+ w?u =0, u0) =1, 4(0) =0, 0<t<ty,

with exact solution u(t) = cos(wt).

Noting
|ulP]| = P,

we see that the higher derivatives of the solution grow
in size for high frequencies w > 1.

Thus the local error is O(AtPT1P+1).

So in order to resolve solutions to such highly oscillatory
problems, we must take At < 1/w, independent of p!

In fact, increasing p if At > 1/w is pointless.

44



