
CHAPTER 4: One-step Methods

So far, we have looked at low-order methods
→ OK for low accuracy or “non-smooth” problems.

• Not competitive if you want a high-accuracy solution
to a relatively smooth problem (also common).
→ It pays to use a high-order method
(each step more expensive; but many fewer steps !)

basic methods

one step

non-stiff stiff

linear
multistep

stiffnon-stiff

- Taylor series
- Runge-Kutta

you are
here

1

• One-step methods use only information on one
subinterval [tn−1, tn] to advance the solution.

Note: The division non-stiff / stiff
l

explicit / implicit

2

• Taylor series methods
Taylor’s theorem for a function of several variables

F (x, y) = F (x̂, ŷ)

+

[
∂F

∂x
(x̂, ŷ)(x− x̂) +

∂F

∂y
(x̂, ŷ)(y − ŷ)

]
+

1

2!

[
∂2F

∂x2
(x̂, ŷ)(x− x̂)2

+2
∂2F

∂x∂y
(x̂, ŷ)(x− x̂)(y − ŷ)

+
∂2F

∂y2
(x̂, ŷ)(y − ŷ)2

]
+ · · ·

+
1

n!

n∑
j=0

(
n

j

)
∂nF

∂xj∂yn−j
(x̂, ŷ)(x− x̂)j(y − ŷ)n−j

+ · · ·

3

• Just use Taylor series !

yn = yn−1+∆tnẏn−1+
(∆tn)2

2!
ÿn−1+· · ·+(∆tn)p

p!
y

(p)
n−1,

where

ẏn−1 = f(tn−1, yn−1),

ÿn−1 =
∂f

∂t
+
∂f

∂y

dy

dt
=
∂f

∂t
+
∂f

∂y
f,

...
yn−1 =

∂2f

∂t2
+ 2

∂2f

∂t∂y
f +

∂f

∂y

∂f

∂t
+
∂2f

∂y2
f

2
+
(∂f
∂y

)2

f.

Local truncation error (∆tn)p

(p+1)! y
(p+1)(tn−1) +O((∆tn)

p+1).

Messy! (use symbolic or automatic differentiation)

→ look for methods that only use f .

4

4.1 Basic Runge-Kutta Methods

Many RK methods are based on quadrature rules
l

numerical integration

Quick review: evaluate
∫ b
a
f(t)dt.

Idea: Replace f(t) with an interpolating polynomial
φ(t) and then integrate φ(t) exactly.

Suppose we have s interpolation points c1, c2, · · · , cs.
Lagrange interpolating polynomial is

φ(t) =

s∑
j=1

f(cj)Lj(t),

where Lj(t) =
∏s

i=1
(i6=j)

t−ci
cj−ci.

Then ∫ b

a

f(t)dt ≈
s∑
j=1

wjf(cj),

5

where wj =
∫ b
a
Lj(t)dt.

Example 1.

Because y(tn) = y(tn−1) +

∫ tn

tn−1

ẏ(t)dt︸ ︷︷ ︸
approximate by quadrature

Left-hand sum:
∫ tn
tn−1

ẏ(t)dt ≈ ∆tnẏn−1

→ forward Euler

Right-hand sum:
∫ tn
tn−1

ẏ(t)dt ≈ ∆tnẏn
→ backward Euler

Trapezoidal rule:

∫ tn

tn−1

ẏ(t)dt ≈ ∆tn
2

[ẏn−1 + ẏn]→ trapezoidal method.

6

Midpoint rule:

∫ tn

tn−1

ẏ(t)dt ≈ ∆tnẏn−1
2

= ∆tnf(tn−1
2
, yn−1

2
)

Let’s generate an approximation to yn−1
2

:

yn−1
2
≈ 1

2
(yn−1 + yn). (still implicit)

or take half a step of forward Euler:

yn−1
2
≈ ŷn−1

2
= yn−1 +

∆tn
2
f(tn−1, yn−1),

yn = yn−1 + ∆tnf(tn−1
2
, ŷn−1

2
).

• This is an explicit method !
This is the idea of Runge-Kutta methods:
high order is obtained by repeated f evaluations.

7

Note 1. – This method is not linear in f .
– First stage uses forward Euler (O(∆tn)).

But contribution is multiplied by (powers of) ∆tn,
So yn can have high order !

– Local truncation error is

dn =
y(tn)− y(tn−1)

∆tn
− f

(
t
n−1

2
, y(tn−1) +

∆tn

2
f(tn−1, y(tn−1))

)
...

= O((∆tn)
2
). (verify !)

→ Call this method ERK2.

• Classical fourth-order (explicit) RK method (ERK4):

k1 = f(tn−1, yn−1),

k2 = f(tn−1
2
, yn−1 +

1

2
∆tn k1),

k3 = f(tn−1
2
, yn−1 +

1

2
∆tn k2),

k4 = f(tn, yn−1 + ∆tn k3),

yn = yn−1 +
∆tn

6

(
k1 + 2(k2 + k3) + k4

)
.

8

• Example 2. ẏ = −5ty2 + 5
t − 1

t2
,

y(1) = 1, tf = 25.
Verify the orders of forward Euler, ERK2, ERK4
Exact solution: y(t) = 1

t .

Note 2. • So far, stages (s) = order (p).
This is not necessary !
It is not even possible for p > 4.

• These methods are not unique;
e.g., other two-stage, second-order ERKs exist.

• (See text, p. 79.)

en(∆t) ≈ c(∆t)p
e2n(∆t

2) ≈ c
(

∆t
2

)p
}

p = log2

(
en(∆t)

e2n(∆t
2)

)
.

We can verify order of accuracy p by halving ∆t
and comparing errors.

9

• Choice of the method depends on accuracy
requirement.
Given ∆t, if forward Euler has error e1,
then with 2∆t, ERK2 is more efficient if its error e2

satisfies e2 < e1.
(Same goes for ERK4.)

• For ∆t = 0.2, we have instability polluting the error.
Notice that p is never exactly an integer.
This is especially true when e approaches roundoff.
For predictable results, we want to live where
truncation error � roundoff error.

10

4.2 General RK Methods

Given the ODE system ẏ = f(t,y), the general
s-stage RK method can be written as

ki = f

tn−1 + ∆tnci, yn−1 + ∆tn

s∑
j=1

aijkj

 , i = 1, 2, · · · , s,

yn = yn−1 + ∆tn

s∑
i=1

biki.

Compact notation (Butcher array)

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...

cs as1 as2 · · · ass

b1 b2 · · · bs

c A

bT

Note 3. We will always choose

ci =

s∑
j=1

aij, i = 1, 2, · · · , s.

11

• The RK method is explicit if A is strictly lower
triangular.
Then each ki is expressed in terms of
k1,k2, · · · ,ki−1.

• Historically, the first RK methods were explicit.

• The RK method is implicit if any aij on or above
the diagonal is non-zero.

Implicit RK methods are useful for stiff IVPs and
BVPs.

• Example 3. Some examples of ERKs:

– Forward Euler:
0 0

1
– One-parameter family of second-order methods:

0 0 0

α α 0

1− 1
2α

1
2α

12

α = 1↔ explicit trapezoidal method (verify!)
α = 1

2 ↔ explicit midpoint method (verify!)

There are 3 one-parameter families of three-stage,
third-order ERK methods.
Here is one of them:

0 0 0 0
2
3

2
3 0 0

2
3

2
3 − 1

4α
1

4α 0
1
4

3
4 − α α

Classical ERK4:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

(verify !)

13

• There are s-stage explicit methods of order s, but
only for s = 1, 2, 3, 4.
→ ERKs cannot have p > s.
→ When p > 4, it is necessary that s > p.

Note 4. ki = f

tn−1 + ∆tnci,yn−1 + ∆tn

s∑
j=1

aijkj︸ ︷︷ ︸


this can be interpreted as an approximation
to y(tn−1 + ∆tnci) (call it Yi)

Then the RK method can be written

Yi = yn−1 + ∆tn

s∑
j=1

aijf(tn−1 + ∆tncj,Yj), i = 1, 2, · · · , s,

yn = yn−1 + ∆tn

s∑
i=1

bif(tn−1 + ∆tnci,Yi).

14

4.3 Convergence, 0-stability, and Order
for RK Methods

• All the schemes we have looked at are consistent
(they are at least first order).

• For one-step schemes (under mild restrictions) it
can be shown that

consistency ⇒ 0-stability.

• And we recall

consistency + 0-stability ⇒ convergence.

So, RK methods are convergent.

• What about the order ?
Use Taylor series (in principle)
→ Expand the RK method in a Taylor series.

15

Use the RK coefficients to match terms with the
Taylor series of the exact solution.

This is not trivial for high s or p !

• Let’s try it for a 2-stage, 2nd-order ERK:

0 0 0

a21 a21 0

b1 b2

We want a relationship between a21, b1, b2 for the
scheme to be second-order accurate.

k1 = f(tn−1, yn−1),

k2 = f(tn−1 + ∆tna21, yn−1 + ∆tna21k1),

yn = yn−1 + ∆tn(b1k1 + b2k2),

y(tn) = y(tn−1) + ∆tnẏ(tn−1) +
(∆tn)2

2
ÿ(tn−1) +O((∆tn)

3
).

↑ ↑
we have to match these terms

16

Note 5.

yn−1 + ∆tna21k1 = yn−1 + ∆tna21f(tn−1,yn−1)

= yn−1 + ∆tna21ẏ(tn−1).

k2 = f(tn−1 + ∆tna21,yn−1 + ∆tna21k1)

= f(tn−1,yn−1) + ∆tna21
∂f

∂t
(tn−1,yn−1)

+∆tna21 k1︸︷︷︸ ∂f∂y(tn−1,yn−1) +O((∆tn)2).

f(tn−1,yn−1) or ẏ(tn−1)

17

Now

ÿ(tn−1) = ḟ(tn−1,yn−1) =
df

dt
(tn−1,yn−1)

=
∂f

∂t
(tn−1,yn−1)

+
∂f

∂y
(tn−1,yn−1)ẏ(tn−1,yn−1).

So k2 = ẏ(tn−1) + ∆tna21ÿ(tn−1) +O((∆tn)2).

∴ y(tn) = y(tn−1) + ∆tn

[
b1ẏ(tn−1)

+ b2
(
ẏ(tn−1) + ∆tna21ÿ(tn−1) +O((∆tn)2)

)]
= y(tn−1) + ∆tn(b1 + b2)ẏ(tn−1)

+ (∆tn)2a21b2ÿ(tn−1) +O((∆tn)3).

18

∴

b1 + b2 = 1

a21b2 =
1

2

→ 2 equations, 3 unknowns
→ A one-parameter family of solutions.

Exercise: Let α = a21 be the parameter.
Verify that the Butcher tableau matches that
presented earlier.

19

• For the general case of order p, consider

ẏ = f(y),

y(tn−1) = yn−1.

For the exact solution,

ẏ = f := f (0),

ÿ = ḟ =
∂f

∂y
f := f (1),

...
y = f̈ =

∂ ḟ

∂y
f := f (2),

...

y(k) = f (k−1) =
∂f (k−2)

∂y
f := f (k−1).

20

Taylor expansion at yn−1:

y(tn) = yn−1 + ∆tnẏ(tn−1) +
(∆tn)2

2!
ÿ(tn−1)

+ · · ·+ (∆tn)p+1

(p+ 1)!
y(p+1)(tn−1) + · · ·

= yn−1 + ∆tnf
(0)
n−1 +

(∆tn)2

2!
f

(1)
n−1

+ · · ·+ (∆tn)p+1

(p+ 1)!
f

(p)
n−1 + · · ·

For an s-stage RK method to be order p, we need

s∑
i=1

biki = f
(0)
n−1+

∆tn

2
f
(1)
n−1+· · ·+ (∆tn)p−1

p!
f
(p−1)
n−1 +O((∆tn)

p
).

→ We could determine relationships between the
coefficients aij, bj, cj by Taylor series (brute force).

21

There is an elegant theory based on rooted trees
developed by J.C. Butcher (1960s) to give the order
conditions of a general s-stage RK method. It is
difficult to understand but relatively easy to use.
From it we get necessary and sufficient conditions
for an s-stage RK method to be of order p.

22

4.4 Absolute Stability Regions for ERK
Methods

Recall, the absolute stability region is the region in
the complex z-plane (z = λ∆tn) where |yn| ≤ |yn−1|
when the method is applied to the test equation

ẏ = λy.

Recall

Yi = yn−1 + ∆tn

s∑
j=1

aijf(tn−1 + cj∆tn, Yj)

= yn−1 + ∆tnλ︸ ︷︷ ︸
z

s∑
j=1

aijYj.

23

In matrix form,

Y =

 Y1

...

Ys



Y = yn−11 + zAY, 1 =


1

1
...

1

 , (verify)

or
Y = (I− zA)−11yn−1.

24

Using this in

yn = yn−1 + ∆tn

s∑
i=1

bif(tn−1 + ∆tnci, Yi)

= yn−1 + λ∆tn

s∑
i=1

biYi,

or yn = yn−1 + zbTY

= yn−1

[
1− zbT (I− zA)−11

]
.

But for ∆tn ↔ z sufficiently small
(I− zA)−1 = I + zA + z2A2 + · · ·+ zkAk + · · ·

∴ yn = R(z)︸︷︷︸
amplification factor

yn−1,

where if the RK method is order p,

R(z) = 1 + z + z2

2! + z3

3! + · · ·+ zp

p! +
∑
j>p

zjbTAj−11︸ ︷︷ ︸∑
j>p z

jbTAj−2c

.

25

Note 6. bTAkc = 1
(k+2)! (verify !)

k = 0, 1, . . . , p− 1 if method is order p.

For an ERK with s stages︸ ︷︷ ︸
Aj−1=0 for j>s

and order p,

R(z) = 1+z+ z2

2! + · · ·+ zp

p! +
∑s
j=p+1 z

jbTAj−11.

Note 7. (For ERKs)

• If s = p, R(z) does not depend on bT ,A, c.
→ All ERKs with s = p have the same absolute
stability region !

• R(z) is a polynomial of degree s.
∴ |R(z)| → ∞ as |z| → ∞;
i.e., stability region is bounded (a problem can
always look stiff) not good stiff solvers.

• It is fairly easy to plot a stability region using the
contour function in Matlab.

• There is no “perfect” ERK method.

26

4.5 Error Estimation and Control

You need stepsize control for both reliability and
efficiency.
Any constant stepsize routine will perform poorly if
variation of solution is not constant.

• We choose “optimal” stepsize for next step.

• User specifies error tolerance ETOL.

• We try to (roughly) equate local errors for each
step:

‖ln‖ ≈ ETOL.
Recall

‖ln‖ = ∆tn‖dn‖(1 +O(∆tn))
↑

local truncation error

Note 8. – ln is a vector with same length as yn.

27

∗ If (yi)n is very large (or very small),
you may want a relative tolerance
(or an absolute tolerance).
∗ If components of yn differ in size, you may

want a specific tolerance for each component,

ETOLi = ATOLi + |(yi)n|RTOL.

– We don’t want to use a formula for local error
e.g., explicit trapezoidal rule (for scalar ODE)

ln ≈ ∆tndn =
(∆tn)

3

8

[
∂2f

∂y2
f

2
+2

∂2f

∂t∂y
f+

∂2f

∂t2

]
+O((∆tn)

4
)

This defeats the purpose of trying to avoid partial
derivatives!

Idea: Look at difference between two solutions
yn, ŷn of different orders to estimate error
(usually orders differ by 1).
Design methods so that ŷn− yn estimates the
local error of the less accurate solution yn.

28

So if ‖ŷn − yn‖ ≤ ETOL,
step is accepted;
<Compute “optimal” ∆tn for next step>

Else step is rejected;
<Compute new “optimal” ∆tn for this step>

i.e., try again !

• How do you compute the new ∆tn ?
Suppose we got rejected with stepsize ∆tn with
method of order p.
Then ‖ln(∆tn)‖ = ‖ŷn−yn‖ ≈ c(∆tn)p+1,

or ‖ŷn−yn‖
c(∆tn)p+1 ≈ 1.

We want a new stepsize ∆̃tn such that

‖ln(∆̃tn)‖ ≈ c(∆̃tn)p+1 ≈ frac ETOL.

frac ≈ 0.9 is a safety factor to avoid rejections.

∴
(

∆̃tn
∆tn

)p+1‖ŷn − yn‖ ≈ frac ETOL.

→ We can compute ∆̃tn from this.

29

Note 9. – In practice, you don’t want ∆tn to
change rapidly from step to step (otherwise local
error estimate is unreliable). So restrict

1

α
∆tn ≤ ∆̃tn ≤ α∆tn, α ≈ 5.

– Added restriction after rejection to avoid multiple
rejections

∆̃tn ≤ ∆tn.
– There must be a minimum ∆tn (∼ 10−14)

below which we cannot take a step.
– This does not tell you how to take the first step !

• Embedded ERK methods:
Idea: Two ERK methods, orders p, p+ 1.
Recycle as much information as possible:
→ Share all the stages.

c A

bT
c A

b̂T
−→

c A

b̂T

bT

order p+ 1 order p p+ 1 (p) pair

30

Explicit trapezoidal rule and forward Euler: a 2(1)
embedded pair.

0 0 0

1 1 0
1
2

1
2

1 0

Normally: use one extra function evaluation for
order p+ 1 over order p.

Famous pairs: Fehlberg 4(5)
Dormand–Prince 5(4)

Note 10. – Modern codes advance with the
higher-order estimate ŷn
This is called local extrapolation.
You add the error (ŷn − yn) to the estimate yn

yn + (ŷn − yn) = ŷn,

but now (strictly speaking) we don’t really have
an error estimate anymore !

31

– DoPr 5(4) was designed with this in mind:
coefficient of truncation error for ŷn is minimized.
∗ also the RK scheme used by ode45

∗ has fourth-order interpolant

yn−1 ∼ O(∆t5)

yn ∼ O(∆t5)

in between ∼ O(∆t4)

∗ “first same as last” (FSAL)

• Step doubling:
A way to estimate error with one method.
→ Take one step of 2∆tn: y2∆tn.

Take two steps of ∆tn: y∆tn.

Then ‖y∆tn−y(tn)‖ ≈ 2‖ln(∆tn)‖ ≈ 2c(∆tn)p+1.
‖y2∆tn−y(tn)‖ ≈ ‖ln(2∆tn)‖ ≈ c(2∆tn)p+1.

∴ ‖y∆tn − y2∆tn‖ ≈ 2(2p − 1)c(∆tn)p+1.

32

→ 2c(∆tn)p+1 ≈ ‖y∆tn−y2∆tn‖
2p−1 = 2‖ln(∆tn)‖.

Then use
(

∆̃tn
∆tn

)p+1‖y∆tn−y2∆tn‖
2p−1 ≈ frac ETOL.

Note 11. Step doubling gives an accurate error
estimate, but it is more expensive than an embedded
pair . . . if you have one !

A word about global error.
After solving a problem, re-solve with same method
and all step sizes halved, then estimate error as above.

→ If all estimates are below ETOL, you are done !

→ If not, you will at least have to refine step sizes in
regions where error is too large.

Note 12. This means keeping track of the entire
solution.

Usually we want to avoid this for IVPs, so we
concentrate on controlling the local error.

33

4.6 Sensitivity Analysis

Model parameters (e.g., g) or initial conditions are
rarely known exactly.

In that sense, the exact solution of a given IVP may
be viewed as one member of a family of neighbouring
trajectories.

→ It does not make sense to waste resources by solving
a given IVP accurately if other errors are much larger.

To assess solution quality, we often need a sensitivity
analysis:

How much do solutions change when parameters are
perturbed ?

Consider ẏ = f(t,y;p),
y(t0) = y0, t0 < t < tf .
p ↔ (constant) parameters.

Let solution to this problem be y(t).

34

Perturb: p̄ = p + φ
Call solution ȳ(t)

Expand: ȳ(t) = ȳ(t;p + φ)
≈ y(t;p) + ∂y

∂p(t;p)φ.

Then
‖ȳ(t)− y(t)‖ ≤ ‖P(t)φ‖,

where P(t) = ∂y(t;p)
∂p .

To calculate P, differentiate
ẏ = f(t,y;p), y(t0) = y0,

with respect to p:

∂

∂p
(ẏ) =

∂

∂p

(
dy

dt

)
=
d

dt

(
∂y

∂p

)
= Ṗ

∂

∂p
f(t,y;p) =

∂f

∂p

∂p

∂t︸︷︷︸
0

+
∂f

∂y

∂y

∂p
+
∂f

∂p
=
∂f

∂y
P +

∂f

∂p

∂

∂p
y(t0) = 0

35

⇒ Solve Ṗ = ∂f
∂yP + ∂f

∂p

P(t0) = 0

Note: This is a linear problem in P.

In practice, we solve the original IVP with a lax error
tolerance and compute P simultaneously for the same
time steps.

This can be done efficiently.

Then bounds on ‖φ‖ can be used to compute bounds
on ‖ȳ(t)− y(t)‖.

Public domain software is available (DASPK3.0).

A similar treatment can be applied to perturbations in
the ICs.

Sensitivity of parameters (the effect of parameter
uncertainty on solutions) is one of the sources of
uncertainty considered in uncertainty quantification.

36

Example 4. (Toy car)

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v tanψ

L
v̇ = a− γv

ψ steering angle

a acceleration︸ ︷︷ ︸
take as constant parameters: a=100,ψ=1

v velocity

γ friction

L car length

37

→ Investigate sensitivity to perturbation in ψ.

Ṗ1 = −vP3 sin θ + P4 cos θ

Ṗ2 = vP3 cos θ + P4 sin θ

Ṗ3 =
1

L

[
P4 tanψ +

v

cos2ψ

]
Ṗ4 = −γP4

38

4.7 IRK and Collocation

• IRKs have more free parameters than ERKs.
→ For a given s, we can get higher p.
e.g., implicit midpoint has one stage and order 2.

→ R(z) no longer a polynomial (in fact it is now
rational function), so IRKs can solve stiff problems.

• IRKs can be designed on quadrature.

– Pick a quadrature formula. (points, weights)
– Construct stages to approximate y at the

quadrature points.
– Use these in the quadrature formula.

Recall implicit midpoint:

39

yn = yn−1 +

∫ tn

tn−1

ẏ(t)dt.︸ ︷︷ ︸
≈∆tnf

(
t
n−1

2
,y
n−1

2

)

Example 5. • Gauss methods: order 2s (maximum)

1
2

1
2

1

3−
√

3
6

1
4

3−2
√

3
12

3+
√

3
6

3+2
√

3
12

1
4

1
2

1
2

s = 1, p = 2 s = 2, p = 4
implicit midpoint

• Radau methods: order 2s− 1 (stiff decay)

1 1

1

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

s = 1, p = 1
backward Euler

40

• If A is nonsingular and asj = bj,
j = 1, 2, . . . , s, (cs = 1)

we say the RK method is stiffly accurate
(i.e., it has the property of stiff decay).

Note: This is a sufficient (but not necessary)
condition for stiff decay.

• Lobatto methods: order 2s− 2

0 0 0

1 1
2

1
2

1
2

1
2

s = 2, p = 2
(Yet another) trapezoidal method.

41

4.7.1 Collocation

A common idea in numerical analysis.

Idea: The solution to the ODE is probably pretty
complicated.
(It may not be expressible in terms of elementary
functions, e.g., sin t, et, etc.)
Choose to represent the solution, e.g., as a polynomial
(↔ a “simple space”).
Then force the polynomial to satisfy the ODE at a
number of points.
→ Hopefully the polynomial will not deviate too much
from the solution away from these points.
This process is called collocation, and the points where
the polynomial is forced to satisfy the ODE are the
collocation points.

Choose s distinct points

0 ≤ c1 < c2 < · · · < cs ≤ 1.

42

Find polynomial φ(t) of degree at most s that
collocates the ODE ẏ = f(t, y) at these points.

φ(tn−1) = yn−1,

φ̇(ti) = f(ti, y(ti)) i = 1, 2, · · · , s,

where ti = tn−1+∆tnci are the collocation points.

This defines φ(t) uniquely (s + 1 equations, s + 1
unknowns). (verify !)

Then we take yn = φ(tn).
→ This gives an s-stage implicit RK method.

Let’s see how.

First, note φ̇(t) is a polynomial of degree at most
s− 1 that interpolates s points f(ti, φ(ti)).

Define Ki = φ̇(ti).

43

Now write φ̇ as a Lagrange interpolant,

φ̇(tn−1 + τ∆tn) =

s∑
j=1

Lj(tn−1 + τ∆tn)Kj,

where

Lj(tn−1 + τ∆tn) =
s∏
i=1
i 6=j

(τ − ci)
cj − ci

.

Now∫ ti

tn−1

φ̇(t)dt = φ(ti)− φ(tn−1) = ∆tn

s∑
j=1

(∫ ci

0
Lj(r)dr

)
︸ ︷︷ ︸

aij

Kj,

∫ tn

tn−1

φ̇(t)dt = φ(tn)−φ(tn−1) = ∆tn

s∑
j=1

(∫ 1

0
Lj(r)dr

)
︸ ︷︷ ︸

bj
verify! (HINT: r = τn−1 + τ∆tn)

Kj.

44

Then

Ki = f(ti, φ(ti))

= f

tn−1 + ∆tnci, yn−1 + ∆tn

s∑
j=1

aijKj

 ,

and yn = yn−1 + ∆tn

s∑
j=1

bjKj.

Note 13. • Gauss, Radau, and Lobatto methods
are collocation methods given their cj, aij, bj
determined as before. → Easy to derive !

• For an s-stage RK method based on collocation,

s ≤ p ≤ 2s︸︷︷︸
true for all RK methods

• Radau generalizes backward Euler:
→ A-stable and has stiff decay (good for stiff IVPs).

45

• Gauss, Lobatto are symmetric (good for BVPs).
(Gauss generalizes midpoint; Lobatto generalizes
trapezoidal rule.)
Both A-stable.

46

4.7.2 Implementation of IRKs

IRKs are challenging to implement because of the
nonlinear systems that need to be solved at each step.

This also makes them usually less efficient than implicit
multistep methods.

Recall the general RK method,

Yi = yn−1 + ∆tn

s∑
j=1

aijf(tn−1 + ∆tncj,Yj), i = 1, 2, · · · , s,

yn = yn−1 + ∆tn

s∑
i=1

bif(tn−1 + ∆tnci,Yi).

At Newton iteration ν, let

δi = Y
(ν+1)
i −Y

(ν)
i , ri = Y

(ν)
i −yn−1−∆tn

s∑
j=1

aijf(Y
(ν)
j).

47

Then the Newton iteration is
I−∆tna11J1 −∆tna12J2 · · · −∆tna1sJs

−∆tna21J1 I−∆tna22J2 · · · −∆tna2sJs
...

−∆tnas1J1 −∆tnas2J2 · · · I−∆tnassJs




δ1

δ2
...

δs



= −


r1

r2

...

rs

 ,

where Ji = ∂f
∂y(tn−1 + ∆tnci, Y

(ν)
i), i = 1, 2, · · · , s.

→ A system of s ·m equations.

• Can we take shortcuts to make it faster?
♣ Take

Ji =
∂f

∂y
(tn−1,yn−1);

i.e., evaluate Ji once.
→ Only one LU decomposition required.

More iterations required, but each is much cheaper!

48

♦ Freeze Ji over several steps.
→ More time spent on software development.

♥ Use diagonally implicit RK (DIRK); i.e., choose
A to be lower triangular:

a11 a11

c2 a21 a22

...

cs as1 as2 · · · ass

b1 b2 · · · bs

If all aii = γ, singly diagonally implicit RK (SDIRK).
→ s (m×m) systems with same iteration matrix

But: ♣ Not collocation anymore.
♦ Stage order: 1.
♥ Maximum order of s-stage DIRK is s+ 1.
♠ If you want stiff decay, then max order is s.

To increase max stage order, use “explicit” SDIRK
(ESDIRK) method (a11 = 0, all other aii = γ).

Popular as implicit part of implicit-explicit (IMEX)
RK methods.

49

4.7.3 Order Reduction

A word about order reduction (important for DAEs).
Consider a very stiff problem,

ẏ = λ(y − g(t)), 0 < t < 1,

where 0 < 1
−Reλ � ∆tn � 1.

→ Two small parameters: ∆tn and 1
Re(λ).

In such cases, the order of RK method reduces to the
stage order (or stage order + 1).

→ DIRKs have stage order 1 and so are not
recommended for very stiff problems

Radau is good!

As mentioned, ESDIRKs are popular as well, especially
those designed to satisfy so-called DAE order
conditions.

50

4.7.4 SIRK Methods

DIRK methods exploit the lower-triangular structure of
A to improve the efficiency of the linear algebra when
solving nonlinear systems of equations.

Seeking lower-triangular matrices A can be restrictive.

Another approach is to use a similarity transformation
T to take A to a simple form S:

T−1AT = S.

Similarly transforming the variables

δ̂i = T−1δi,

each block of the Newton iteration matrix becomes

(I−∆tnSJi)δ̂ = −r̂i,

where r̂i = T−1ri.

51

Now any lower-triangular matrix S yields the DIRK
structure for the transformed variables δ̂.

If we require S = aI, we have singly implicit RK (SIRK)
methods.

The name comes from the fact that S has a single
eigenvalue a.

This structure makes the linear algebra of SIRK
methods equivalent to that of SDIRK methods.

→ at most one m×m matrix is formed and factored
per step.

STRIDE (Burridge, Butcher, Chipman) was an almost-
famous code that attempted to do this.

The bottleneck is the computation of T.

52

