
CHAPTER 8: Finite Difference

Methods For BVPs

Use knowledge of IVPs, but no solving IVPs!

y′ = f(x,y), a < x < b,

g(y(a),y(b)) = 0.

Define a mesh π (partition)

π = {a = x0 < x1 < · · · < xN−1 < xN = b},

∆xn = xn − xn−1 = n
th

stepsize (subinterval length)

We wish to solve for

y0,y1, · · · ,yN , where yj ≈ y(xj).



Note 1. • Solve for all yj at once!
→ No method for BVPs can be explicit.

Implicit methods are no less convenient than explicit
methods!

• Multistep methods don’t really make sense either.
(What are “past” values ?)

• Symmetric implicit RK are natural.
→ They treat both directions equally.



8.1 Midpoint (and Trapezoidal)
Method(s)

Recall the midpoint method

yn − yn−1

∆xn
= f

(
xn−1/2,

1

2
(yn + yn−1)

)
, n = 1, 2, · · · , N.

→ Nm equations.

We also must satisfy the BCs

g(y0,yN) = 0 → m equations.

(N+1)m equations for (N+1)m unknowns yj.︸︷︷︸
m components

j = 0, 1, · · · , N .



Example 1. y′ = Ay + q(x)

with A =

 0 1 0
0 0 1
−2λ3 λ2 2λ


has exact solution

y =

 u

u′

u′′

 with u =
eλ(x−1) + e2λ(x−1) + e−λx

2 + e−λ
+cosπx.

BCs: u(0), u(1), u′(1) prescribed.

Solve problem for λ = 1, 50, 500.



Table 1: Maximum errors for Example 1 using the
midpoint method: Uniform meshes.

N λ Error Rate λ Error Rate
10 1 .60e-8 50 .57
20 .15e-2 2.0 .32 .84
40 .38e-3 2.0 .14e-1 1.9
80 .94e-4 2.0 .34e-1 1.9

N λ Error Rate
10 500 .96
20 .90 .09
40 .79 .19
80 .62 .35

Table 2: Maximum errors for Example 1 using the
midpoint method: Nonuniform meshes.

N λ Error Rate λ Error Rate
10 50 .14 500 *
20 .53e-1 1.4 .26e-1
40 .14e-1 1.9 .60e-2 2.1
80 .32e-2 2.2 .16e-2 1.9



Note 2. • λ = 1 with uniform mesh→ good results,
second-order convergence.
(Because y(x) is smooth, high-order methods could
be used to obtain very accurate solutions.)

• λ = 50 or 500 with uniform mesh
→ accuracy, convergence rate deteriorate!
Errors generated from where mesh was not fine
enough propagate and pollute solution!

• Even with crude nonuniform mesh:
→ accurate results + second-order convergence.
It is possible to generate more sophisticated meshes
to produce accurate solutions with N dependent
only on ETOL, NOT λ!

For multiple shooting, N grows linearly with λ.



8.1.1 Quasi-Linearization

Focus on Newton’s method:

Newton’s method applied to midpoint discretization of
nonlinear BVP

is the same as

Midpoint discretization applied to Linearized BVP
l

somehow apply Newton to the problem!
l

quasi-linearization



Let y(0) be an initial guess of the BVP solution
and write

y′(ν+1) = f(x,y(ν)) +
∂f

∂y
(x,y(ν))(y(ν+1) − y(ν))

0 = g +
∂g

∂y(a)

(
y(ν+1)(a)− y(ν)(a)

)
↑ +

∂g

∂y(b)

(
y(ν+1)(b)− y(ν)(b)

)
↑ ↑
Ba Bb

g,Ba,Bb all evaluated at y(ν).



Denoting A(x) = ∂f
∂y(x,y(ν)(x)),

we find y(ν+1) satisfies the linear BVP

y′ = A(x)y + q(x), a < x < b,

Bay(a) + Bby(b) = β,

where q(x) = f(x,y(ν)(x))−A(x)y(ν)(x),

β = −g(y(ν)(a),y(ν)(b)) + Bay
(ν)(a)

+Bby
(ν)(b).

→ Defines a sequence of linear BVPs that (hopefully!)
converges to the solution of the nonlinear BVP.

So if we can solve linear BVPs, we can solve nonlinear
BVPs!

Note 3. The iterates y(ν)(x) are never evaluated
except at mesh points.

Also, linearization and discretization commute
(it doesn’t matter what order you do them in).
(easy to verify)



Example 2. u′′ + eu+1 = 0, u(0) = u(1) = 0.

Let y =

(
u
u′

)
then y′ =

(
y2

−ey1+1

)
,︸ ︷︷ ︸

f

0 < x < 1.

BCs (linear, homogeneous):

Bay(0) + Bby(1) = 0,

where Ba =

(
1 0
0 0

)
, Bb =

(
0 0
1 0

)
. (verify!)

Jacobian ∂f
∂y =

(
0 1

−e−y1+1 0

)
.

Quasi-linearization at iteration ν :

y
′

= A(x)y + q(x),

where A(x) =
∂f

∂y
(x, y

(ν)
(x))

=

(
0 1

−e−y
(ν)
1 +1 0

)
,

q(x) = f
(ν) − Ay

(ν)
,

y = y
(ν+1)

.



Then solve linear BVP for sequence of ν’s.

Use with initial guess u(0)(x) = c2x(1−x), 0 ≤ x ≤ 1.

Obtain convergence with midpoint method and uniform
mesh with N = 10 in 2 Newton iterations.
c2 = 0.5, 10 gives lower, upper solution.

In practice, we solve for Newton correction at y(ν):

η(x) = y(ν+1) − y(ν),

then set y(ν+1) = y(ν) + η.

η(x) solves the linear BVP

η′ = A(x)η + q(t), a < x < b,

Baη(a) + Bbη(b) = β,

where A,Ba,Bb are as before.



But q,β simplify to

q(x) = f(x,y(ν))− y′(ν)

β = −g(y(ν)(a),y(ν)(b))

with y′(ν) =
y

(ν)
n − y

(ν)
n−1

∆xn
for the midpoint

For midpoint applied to linear problem,

yn − yn−1

∆xn
= A(xn−1/2)

(yn + yn−1

2

)
+ q(xn−1/2),

n = 1, 2, · · · , N,

Bay0 + BbyN = β.

This is a large sparse linear system of m(N + 1)
equations:

Lyπ = r,

where



L =


S1 R1

S2 R2
. . . . . .

SN RN

Ba Bb

,

}m
}m

xy
N + 1

yπ =


y0

y1
...

yN−1

yN

, r =


q(x1

2
)

q(x3
2
)

...
q(xN−1

2
)

β

,

and

Sn = −
[

1

∆xn
I +

1

2
A(xn−1/2)

]
,

Rn =

[
1

∆xn
I− 1

2
A(xn−1/2)

]
,

n = 1, 2, · · · , N.

• See Algorithm 8.1, p200.



8.1.2 Consistency, 0-stability,
Convergence

The concepts/definitions are very similar
(if not identical in some cases) as in the IVP case.

Rather than repeat them here, we refer to the
corresponding section in the text.



8.2 Solving the Linear Equations

Having discretized a linear BVP, we end up with

Lyπ = r,

where L is sparse: e.g., if m = 3 and N = 100, there
are 1818 possibly non-zero entries out of 91,809 (i.e.,
only 2% of entries are non-zero).

We need algorithms that take advantage of sparsity!
i.e., no operations with zeros
(e.g., multiplying by 0, adding 0).

Also algorithms that do not ’fill in’ zeros
(or else we destroy the sparsity!).

It is very nice if L is banded:

→ All nonzero entries are near the main diagonal.

If so, LU decomposition can run with truncated loops
in O(m3N) instead of O(m3N3).



For separated BCs, we can do it!

Ba =

(
Ba1

0

)
} k

, Bb =

(
0

Bb1

)
} m− k

→ permute rows of Ba to top of L!
(Don’t forget to permute the corresponding rows of r!)



matrix L,

matrix L



8.3 Higher-Order Methods

Midpoint and trapezoidal methods are second order.

If you have a sufficiently smooth solution and you
want high accuracy, then a higher-order method is
more efficient.

Two ways to get higher order:
higher-order RK or acceleration techniques.



8.3.1 Collocation

We prefer symmetric methods for BVPs.
→ collocation at Gauss or Lobatto points.

We studied these IRK methods in the context of IVPs.

For BVPs, the idea is to quasi-linearize, then write
down the collocation equations for the linear system as
a large sparse system for the unknown solution values
at mesh points and internal stage values.

• This system can be solved all at once (but a new form of L)

or internal stage values can be eliminated locally leading to

almost block-diagonal form (the old form of L).

Example 3.

y′ = Ay + q(x),

A =

 0 1 0
0 0 1
−2λ3 λ 2λ2

 , y =

 u
u′

u′′

,



u(x) unknown;
u(0), u(1), u′(1) specified.

λ = 1 (easy) Order 6 convergence.
λ = 50 Good results even on uniform mesh.

(Non-uniform mesh is better.)
λ = 500 Uniform mesh not very good;

need a better non-uniform mesh to
obtain full convergence order (of 4).

Table 3: Maximum errors for Example 3 using
collocation at three Gaussian points: Uniform meshes.

N λ Error Rate λ Error Rate
10 1 .60e-8 50 .54e-1
20 .94e-10 6.0 .66e-2 3.0
40 .15e-11 6.0 .32e-3 4.4
80 .24e-14 5.9 .73e-5 5.5

N λ Error Rate
10 500 .71
20 .50 .50
40 .27 .91
80 .89e-1 1.6



Table 4: Maximum errors for Example 3 using
collocation at three Gaussian points: Non-uniform
meshes.

N λ Error Rate λ Error Rate
10 50 .25e-2 500 .54e-3
20 .12e-3 4.4 .14e-3 1.9
40 .27e-7 5.5 .75e-4 .90
80 .40e-7 6.1 .33e-4 1.2



8.3.2 Acceleration techniques

Idea: Stick with a low-order discretization method,
but use it more than once!

• Extrapolation:
Idea: Apply the same method on different meshes.
Use to eliminate successive Taylor series terms.

Suppose the global error on a given mesh π looks
like en = y(xn)− yn = c(∆xn)2 +O((∆x)4)
where c varies slowly with x, independent of ∆x.

Dividing π in half and using the same method,

en = y(xn)− ỹ2n =
1

4
c(∆xn)2 +O((∆x)4).

⇒ y∗n = 1
3(4ỹ2n − yn) is O((∆x)4)!

→ can repeat to obtain even higher order.



• Deferred correction:
Idea: Apply same method to same mesh,
but use solutions to update equations.

↓
make more accurate

Focus on expansion of local truncation error
(not expansion of global error).

e.g., applying trapezoidal rule to y′ = f(x,y) yields

dn =

r∑
j=1

(∆xn)
2j
Tj
[
y(xn−1/2)

]
+O((∆xn)

2r+2
),

where Tj[z(x)] =
−1

22j−1(2j + 1)!
f
(2j)

(x, z(x)).

Let yπ = {yn}Nn=0 be the numerical solution
obtained by applying trapezoidal rule to BVP on
mesh π, and let fn = f(xn,yn).



Then, e.g.,

T1
[
y(tn−1/2)

]
≈ T1

[
yn−1/2

]
≡ T1,n−1/2

=
1

24(∆xn)2
(−fn−2 + fn−1 + fn − fn+1),

n = 2, 3, · · · , N − 1.

Now add this correction to the RHS of the
trapezoidal discretization

ỹn − ỹn−1

∆xn
=

1

2

[
f(xn, ỹn) + f(xn−1, ỹn−1)

]
+ (∆xn)

2
T

1,n−1
2
,

n = 1, 2, · · · , N,

g(ỹ0, ỹN) = 0.

Process can be repeated for higher orders, but the
approximations can become cumbersome.

• Acceleration methods are faster for simple problems.

High-order Gauss collocation does better for difficult
(stiff) problems.



8.4 More on Solving Nonlinear BVPs

Newton’s method has rapid (quadratic) convergence
provided the initial guess is “sufficiently good”!

For IVPs, often yn−1 is sufficiently close to yn.

For BVPs, no such initial guess for yπ is available.

→ One of the most important aspects of a
general-purpose BVP solver is the Newton solver!



8.4.1 Damped Newton

For
h(yπ) = 0,

at iteration ν, Newton’s method is :

Solve

(
∂h

∂y

(
y(ν)
π

))
η(ν)
π = −h(y(ν)

π )

Update y(ν+1)
π = y(ν)

π + η(ν)
π

→ Take a step of length 1 in direction η
(ν)
π .

If y
(ν)
π is still “far” from the solution yπ, the iteration

may diverge!

Idea: (Damped Newton)

Update yπ(ν + 1) = y
(ν)
π + γη

(ν)
π

γ ∈ (0, 1] is the damping parameter.
chosen to ensure some minimal decrease in ‖h‖.
e.g., ‖h(y

(ν+1)
π )‖2 ≤ (1− δ)‖h(y

(ν)
π )‖2

where δ > 0, but small; say δ = 0.01.



Now we have theory that says under some conditions,

a sequence {γ(ν)
π }∞ν=1 can be found such that

Newton’s method will converge globally,
i.e., from any initial guess!

Note 4. • We have not said how to compute γ
(ν)
π .

- Although such a sequence may exist,
we may not be able to find it!

• It may not make sense to take a step of any non-
zero length in the Newton direction from a given
(sufficiently poor) iterate.

→ There is no substitute for a good initial guess!

• When successful, γ
(ν)
π → 1 as ν →∞;

i.e., the local convergence properties of Newton’s
method kick in.



8.4.2 Shooting for initial guesses

(If possible) guess only unknown components of y(a)

(instead of entire y
(0)
π ), and let BVP solver find y

(0)
π .

This approach to obtaining an initial guess has obvious
limitations because it involves shooting.

But the advantage is that a lot less is being asked of
shooting: the goal is only to find an initial guess for
the solution rather than the solution itself.

In other words, for a given guess for y(a), the
integration just needs to get to the end (x = b);
it does not have to also satisfy g(y(a),y(b)) = 0.



8.4.3 Continuation

• A general and powerful approach

Idea: Embed the given problem in a family of problems

φ(yπ;µ) = 0, µ0 ≤ µ ≤ µ1,

where φ(yπ;µ0) = 0 is easy (solvable),

and φ(yπ;µ1) = 0 is the problem you want
to solve.

At each continuation step, solve

φ(yπ;µ+ ∆µ) = 0 for yπ(t;µ+ ∆µ),

starting with initial guess yπ(t;µ)
(or something fancier based on yπ(t;µ)).



→ Can be very successful in practice.
But it is hard to automate for difficult problems.

The biggest question is: how to do the embedding ?
e.g., simple interpolation between µ0, µ1 may not work!

• Example 4. (Modified)
Consider

u′′ + eeu = 0,

u(0) = u(1) = 0.

Suppose you have no clue for an initial guess.

Re-write problem as

u′′ + µeu = 0,

u(0) = u(1) = 0.

Start from µ = 0. (solution is trivial! u(x) ≡ 0)
↓

kills off the nonlinearity eu



Go to µ = e. (the problem you want to solve)
↓

gradually introduce the nonlinearity

But it is not possible to obtain both solutions with
this one embedding!



8.5 Error Estimation and Mesh Selection

IVP solvers control local error
(because this is the more convenient).

BVP solvers control global error. (Why not?)

• Process similar to extrapolation
e.g., for midpoint or trapezoidal method on mesh
π, re-solve problem with π halved.

Then ỹ2n − yn = 3
4c(∆x)2 +O((∆x)4)

↑ ↑
solution on solution on π
halved π

So global error satisfies

en = y(tn)− yn ≈
4

3
(ỹ2n − yn)

and e2n = y(tn)− ỹ2n ≈
1

3
(ỹ2n − yn).



In practice, we would like a cheaper estimate in order
to adapt the mesh on the fly (dynamically).
e.g., use the local leading error term

ên ≈ (∆xn)k‖y(k)(xn)‖, for some 1 ≤ k ≤ p.

→ Often sufficient to use when selecting a mesh despite
the fact that ên itself is usually not that reliable.

The next mesh is chosen to equidistribute ên.
i.e., pick the next mesh so that

‖êi‖ ≈ ‖êj‖ for all i, j = 1, 2, · · · , N.

This does not have to be precise for it to work well!

We roughly minimize max1≤n≤N ‖ên‖ for fixed N .

N is then chosen so that

max
1≤n≤N

‖ên‖ ≤ ETOL.


