
CHAPTER 9: DAEs

• DAE theory is more recent than ODE theory.

→ There are similarities, but differences too!

Consider two functions y(t), z(t) related by

ẏ(t) = z(t), 0 ≤ t ≤ tf .

To recover z(t) from y(t),
we must differentiate (an automated process).

To recover y(t) from z(t),
we must integrate (tricky! also need y(0)).

↑
side condition

Note 1. y(t) is smoother than z(t).



To solve a DE, you must integrate
↔ smoothing.

If y satisfies ẏ = Ay + q(t),
then y is one derivative smoother than q(t).

A DAE involves both integration and differentiation.

Because ODEs are a subset of DAEs, we can see the
process of integration.

However, these processes may be intertwined!
(That’s where the fun begins.)



9.1 Index

One might hope that (repeated) differentiation of
constraints might reduce a DAE to an ODE.

It turns out it is possible to do this unless the problem
is singular.

The number of differentiations required is called the
(differential) index of the DAE.

Thus ODEs have index 0.

Note 2. Higher-index DAEs are harder to solve.

Example 1. Let q(t) be a given smooth function.

• The scalar equation

y = q(t)

is a (trivial) index-1 DAE.
(With a differentiation, you obtain an ODE for y.)



• Consider

y1 = q(t)

y2 = ẏ1

Take d
dt of first equation: ẏ1 = q̇(t) = y2

Now take d
dt of this equation:

ẏ2 = q̈(t)

This is an index-2 DAE (constraint differentiated
twice to get ODE for y2).

• The system

u = q(t)

y3 = ü

is index 3. (verify!)



Note 3. Before, when we had a system of m
first-order ODEs, we needed m (independent)
initial/boundary conditions.

Now the DAEs are determined by the right-hand sides!
→ No extra conditions are needed!

In general, a DAE will have l degrees of freedom
where 0 ≤ l ≤ m.

• It may not be obvious what l pieces of information
are needed to specify the solution of the DAE!
Often, all m components may have initial values
prescribed.

→ Too many conditions!

→ They must be consistent.

e.g., if from y(t) = q(t) we get the ODE ẏ(t) = q̇(t),
we must specify y(0) = q(0).



e.g., from y1 = q(t), we obtained ẏ2 = q̈(t)
y2 = ẏ1(t) ẏ1 = y2(t),

obviously we must have y1(0) = q(0).
But we must also satisfy the hidden constraint
y2 = q̇(t) by specifying y2(0) = q̇(0).

This is an important difference between index-1 DAEs
and higher-index DAEs (index > 1).

→ Higher-index DAEs have hidden constraints!
l

derivatives of explicitly stated constraints

Index n ↔ (n − 1) hidden derivatives of explicit
constraints.

For the index-3 example, the hidden constraints are

u̇ = q̇(t) and y3 = q̈(t). (verify)



The most general form of a DAE is

F(t,y, ẏ) = 0,

where ∂F
∂ẏ may be singular.

An important special case is the
semi-explicit DAE ↔ ODE with constraints:

ẋ = f(t,x, z),

0 = g(t,x, z).

Index 1 if ∂g∂z is nonsingular. (verify)

For the semi-explicit index-1 DAE,
we can distinguish between differential variables x and
algebraic variables z.

Algebraic variables may be one derivative less smooth
than differential variables.

→ Algebraic variables may not be differentiable!



In general, a DAE variable y can have differential and
algebraic components.
→ This makes the numerical solution of DAEs harder
when index > 1.

Semi-explicit form is nice because differential /
algebraic variables are decoupled.

Note 4. Any DAE can be written in semi-explicit
form with index increased by one as follows:
For F(t,y, ẏ) = 0, let ẏ = z.

Then ẏ = z,

0 = F(t,y, z).

Note 5. This re-writing doesn’t make a given DAE
any easier to solve!



It is also possible to take a semi-explicit index-2 DAE

ẋ = f(t,x, z),

0 = g(t,x, z),

to a fully implicit, index-1 form: Let ẇ = z.

Then ẋ = f(t,x, ẇ),

0 = g(t,x, ẇ).

→ These problem classes are equivalent!

Note 6. Index depends on the solution,
not just on what the DAE looks like!

Example 2.

ẏ1 = y3,

0 = y2(1− y2),
0 = y1y2 + y3(1− y2)− t.



Then y2(t) = 0 or y2(t) = 1.
(Suppose y2(t) is continuous so it does not jump
arbitrarily between 0 and 1.)

If y2(t) = 0 : y3(t) = t, (verify)

y1(t) =
1

2
t2 + y1(0). (verify)

→ index-1 DAE in semi-explicit form.

If y2(t) = 1 : y1(t) = t, (verify)

y3(t) = 1. (verify)

→ This is an index-2 DAE.

Note 7. No initial values required in this case!



What if we replace 0 = y2(1− y2) with its derivative?

→

ẏ1 = y3,

ẏ2 = 0, ←− verify

0 = y1y2 + y3(1− y2)− t.

Now if y2(0) = 0, index = 1;
(y2(t) = 0 is the solution case 1.)

if y2(0) = 1, index = 2.
(y2(t) = 1 is the solution case 2.)

→ The index depends on the IC!

• Formal definition of (differential) index:
For the DAE F(t,y, ẏ) = 0, the index
along solution y(t) is the minimum number of
differentiations required to uniquely solve for ẏ in
terms of y and t;
i.e., define an ODE for y.



Note 8. These differentiations are often not done in
practice!

But index helps you determine the difficulty level of
the problem and to choose appropriate software.

Note 9. Recall for IVPs, we had nice theory
guaranteeing existence, uniqueness, and continuous
dependence on ICs.
→ No such theory held for BVPs.
→ We have no such theory for IV DAEs.



9.1.1 Special DAE Forms

The general DAE F(t,y, ẏ) = 0 can include problems
that are not well-defined mathematically or cannot be
discretized directly (i.e., without reformulation).

Fortunately, DAEs that arise in practice often appear
as ODEs with constraints.

→ Differential and algebraic variables can be identified
and treated appropriately.

→ Algebraic variables can be eliminated (in principle!)
with the same number of differentiations.

→ These are called Hessenberg forms.



• Hessenberg index-1:

ẋ = f(t,x, z),

0 = g(t,x, z),
∂g

∂z
nonsingular ∀t.

Also called semi-explicit index-1 DAE.
→ Very closely related to implicit ODEs because
we can solve (in principle) for z in terms of x, t
(implicit function theorem).

• Hessenberg index-2:

ẋ = f(t,x, z),

0 = g(t,x),
∂g

∂x

∂f

∂z
nonsingular ∀t.

Note 10. g is independent of z.

Also called pure index-2 DAE (algebraic variables are
index-2 only, not a mixture of index 1 and 2).



Example 3. Incompressible fluid flow considered as
an index-2 DAE:

∂u

∂t
= ν∇2u− (u ·∇)u−∇p,

∇ · u = 0. (incompressibility condition constraint)

u = u(x, y, z, t) = vector of fluid velocities differential
p = p(x, y, z, t) = pressure algebraic

Applying method of lines yields

Mu̇ + (K + N(u))u + Cp = f ,

CTu = 0,

CTM−1C nonsingular,

where u, p are the vectors of the nodal values.
→ An index-2 DAE in Hessenberg form.

Note 11. Index-2 variables can be viewed as
Lagrange multipliers. Here, p forces u onto ∇ ·u = 0.



• Hessenberg index-3:

ẋ = f(t,x,y, z),

ẏ = g(t,x,y),

0 = h(t,y),

(
∂h

∂y

∂g

∂x

∂f

∂z

)
nonsingular ∀t.

Example 4. Mechanical systems with holonomic
constraints: → Second-order ODEs (Newton’s law,
Mẍ = F) subject to constraints (e.g., pendulum arm
has fixed length).

q̇1 = v1,

q̇2 = v2,

v̇1 = −λq1,

v̇2 = −λq2 − g,

0 = q
2
1 + q

2
2 − 1.

(verify index 3)



Some important observations about DAEs:

1. In practice, DAEs often arise as limits of singular
perturbations of ODEs, e.g.,

ẏ = f(t,y, z)

ε ż = g(t,y, z),

as ε→ 0.

The solution of the DAE is then called the reduced
solution of the ODE.

2. A higher-index DAE can be the result of a
“simplified” lower-index DAE (or ODE) and hence
“simpler” to solve.

3. A given DAE can be “close” to another DAE with
a different index. So generally one needs more than
just the concept of index to quantify stability.



9.1.2 DAE Stability

The definition of index suggests it is a local quantity,
subject to the solution relative to which it is defined.

For a rigorous stability analysis, we consider
perturbations of linear DAEs and their relationship
to index and stability bounds.

(As usual, for stability of nonlinear problems, we form
a variational problem.)

We wish to analyze the behaviour of the solution in
terms of the perturbations to the data.

Consider the linear ODE

ẏ = A(t)y + q(t), 0 < t < 1,

where we have normalized tf to 1 and subject to
homogeneous initial or boundary conditions.



Then

‖y‖ := max
t∈[0,1]

|y(t)| ≤ κ
∫ 1

0

|q(s)| ds = κ‖q‖1.

So for the trivial index-1 DAE y(t) = q(t), we have

‖y‖ ≤ ‖q‖.

For the semi-explicit index-1 DAE

ẋ = Ax + Bz + q1(t)

0 = Cx + Dz + q2(t),

where A,B,C,D are bounded functions of t and D
has a bounded inverse, we similarly get

‖y‖ ≤ κ‖q‖,

where yT = (xT , zT ) and qT = (qT1 ,q
T
2 ).



The (generic) stability constant κ involves bounds on
D−1 and the stability constant of the underlying ODE
for x after substituting for z.

This bound can actually be tightened to

‖z‖ ≤ κ‖q‖, ‖x‖ ≤ κ‖q‖1.

For the general linear index-1 DAE

E(t)ẏ = A(t)y + q(t)

subject to homogeneous initial or boundary conditions,
we can write

E(t) = S(t)

(
I 0
0 0

)
T−1(t),

where S(t), T(t) are nonsingular matrices with
uniformly bounded condition numbers.



Then a change of variables(
x
z

)
= T−1y

yields a semi-explicit system (see above) (verify!)
and (as before) a stability estimate

‖y‖ ≤ κ‖q‖,

where κ contains condition numbers of the
transformations S and T.

In summary, a linear index-1 DAE is stable if

• it can be transformed into a semi-explicit system
and then into an ODE by eliminating the algebraic
variables (no differentiations!)

• the transformations are well-conditioned

• the underlying ODE is stable.



For higher-index problems, we must differentiate some
of the constraints, in general p differentiations for an
index-(p+ 1) DAE to obtain an index-1 DAE.

Hence, the best case for a stability bound is

‖y‖ ≤ κ
p+1∑
j=1

‖q(j−1)‖.

Having the bound depend on (high-order) derivatives
of q is not generally desirable.

Fortunately for DAEs in Hessenberg form, this bound
can be improved:

For index-2 DAEs in Hessenberg form (D ≡ 0 and CB
nonsingular in the semi-explicit index-1 form), we have

‖x‖ ≤ κ‖q‖, ‖z‖ ≤ κ‖q̇‖.

Hence, direct discretization of higher-index DAEs other
than Hessenberg index-2 may be problematic.



9.2 Index Reduction and Stabilization

Often the best way to solve a high-index DAE is to
reduce its index via (analytic) differentiation(s).

The DAE is viewed as an ODE with an invariant.

Recall an index-(p+ 1) DAE in Hessenberg form (with
m ODEs and l constraints) requires p differentiations
to eliminate the AEs (and obtain an ODE of size m).

The AEs and their first p − 1 derivatives form an
invariant set (define a constraint manifold) of size pl.

The solution of the ODE is required to remain on (or
close to) this set, so the problem really has only m−pl
degrees of freedom.

Alternatively, one can imagine using the AEs to
eliminate pl of the m unknowns in the original ODE
to obtain an ODE with reduced size m− pl.

We expand on these ideas in the following subsections.



9.2.1 Reformulation of Higher-Index
DAEs

Recall the DAEs that model the motion of mechanical
systems:

q̇ = v,

M(q)v̇ = f(q, v)−G
T
(q)λ,

0 = g(q),

where

• q are generalized body positions,

• v are generalized velocities,

• λ are Lagrange multiplier functions,

• g(q) are the (holonomic) constraints,

• G = ∂g/∂q has full row rank for all t,

• M is a (symmetric) positive definite mass matrix,

• f are the applied forces.

Let xT = (qT ,vT ).



Differentiate the constraint twice, first to yield
constraints on the velocity level

0 = ġ = Gv

and then on the acceleration level

0 = g̈ = Gv̇ +
∂(Gv)

∂q
v.

Solving for λ,

λ = (GM−1GT )
−1
(
GM−1f +

∂(Gv)

∂q
v

)
(verify!)

we can obtain an ODE for x = (qT ,vT )T

q̇ = v,

Mv̇ = f −GT (GM−1GT )
−1
(
GM−1f +

∂(Gv)

∂q
v

)
.

(verify!)



Note 12. In practice, the matrix ∂(Gv)
∂q is not

computed explicitly, rather only its product with v.

Note 13. The ODE system has size m and is the
result of unstabilized index reduction.

The constraints on the position and velocity levels
define an invariant set of dimension 2l

h(x) :=

(
g(q)
G(q)v

)
= 0.

The exact solution of the ODE system with consistent
ICs h(x(0)) = 0 satisfies h(x(t)) = 0 for all t > 0.

For the mechanical system, the constraint Jacobian

H =
∂h

∂x
=

(
G 0

∂(Gv)
∂q v G

)

has full row rank 2l; so on the constraint manifold, the
ODE has dimension m− 2l.



Example 5. For the simple pendulum,

−λ = q2g − v21 − v22; (verify!)

so the ODEs to be satisfied are

q̇1 = v1,

q̇2 = v2,

v̇1 = (q2g − v21 − v22)q1,

v̇2 = (q2g − v21 − v22)q2 − g,

with invariants

0 = q21 + q22 − 1,

0 = q1v1 + q2v2.

(verify!)



9.2.2 ODEs with Invariants

ODEs with invariants arise in other ways besides just
from index reduction of DAEs; e.g., conservation of
mass, energy, momentum, charge, etc.

We have seen how DAEs lead to ODEs with invariants.

The relationship goes both ways: the ODE with
invariant system

ẋ = f̂(x),

h(x) = 0,

is equivalent to the index-2 Hessenberg DAE

ẋ = f̂(x)−D(x)z,

0 = h(x),

where D(x) is any bounded matrix function such that
HD has a bounded inverse for all t.



These two systems share the same exact solution,
specifically z(t) ≡ 0, but a numerical solution will
generally not satisfy this (unless it is exact).

But this does not mean that the Hessenberg index-2
DAE is (precisely) the same as the DAE that may have
led to the ODE with invariant.

Note 14. D defines the direction of the projection
onto the constraint manifold.

A common choice is orthogonal projection, D = HT .

Sometimes, it may be OK in practice to simply
integrate the ODE and have it turn out that h(x) ≈ 0.

But other times it is not, e.g., if the problem is not
stable off the manifold or h(x) must be zero to within
roundoff errors not just to within truncation errors.

It turns out instability off the manifold is a typical
consequence of index reduction.



To see this, consider a (nonsingular) change of variables

q→
(
q̃1

q̃2

)
=

(
g(q)
g⊥(q)

)
,

such that ∂g⊥/∂q is orthogonal to GT ; i.e., the
new variables are the constraints themselves and their
orthogonal complement.

Differentiating the constraints twice, we obtain

¨̃q1 = 0.

This leads to a mild instability known as drift.

If q̃1(0) = ε1 and ˙̃q1(0) = ε2, then

q̃1(t) = ε1 + ε2t,

˙̃q1(t) = ε2.



Theorem 1. For a given time tn, the numerical
solution q̃n obtained from a numerical method of order
p applied to the index-1 formulation of an index-3 DAE
and consistent initial conditions satisfies

‖q̃n‖ ≤ (∆t)p(Atn +Bt2n), ‖ ˙̃qn‖ ≤ (∆t)pCtn,

where A, B, and C are constants and ∆t is the
maximum step size used.

We see violation of the original constraint grow
quadratically in time.

Drift is the result of differentiation!

It is not present in the original DAE (and hence also
not in the equivalent ODE restricted to the manifold).

Proof:

Let q̃(t; q̃j) be the exact solution at time t to the
index-1 problem with initial value q̃j at time t = tj.

Let q̃n(q̃j) be the numerical solution at time tn to the
index-1 problem with initial value q̃j at time t = tj.



Let q̃0 = 0 at the initial time t = t0.

The local error satisfies

q̃(tn; q̃n−1)− q̃n(q̃n−1) = O((∆t)p+1).

Because ¨̃q = 0,

‖q̃(tn; q̃j+1)− q̃(tn; q̃j)‖

≤ (∆tj)
p+1(A+ 2B(tn − tj+1))

Adding up these inequalities for j = 0 to n − 1 gives
the desired bound on ‖q̃n‖.



Rather than converting the ODE to a DAE, we consider
stabilizing the ODE with respect to the invariant set

M = {x : h(x) = 0}.

On M (i.e., when h(x) = 0), the ODE

ẋ = f̂(x)− γF(x)h(x)

has the same solution as

ẋ = f̂(x).

M will also be attracting if the matrix HF is positive
definite and γ > 0 is sufficiently large.

The stabilized system may not even be stiff!

This leads to the potential of using non-stiff solvers
instead of being condemned to using stiff ones when
solving a DAE.



Example 6. Consider the simple pendulum subject
to the ICs q(0) = (1, 0)T and v(0) = (0,−5)T .

This problem is simple enough that a solution obtained
with ode45 remains on the unit circle in q-space for
one orbit to 4 significant figures.

If we perturb the IC for q to q(0) = (1,±0.5)T and
repeat the calculation, we see the manifold is unstable.

If however we use γ = 10 and

DT = H =

(
2q1 2q2 0 0
v1 v2 q1 q2

)
,

we see the manifold is stable.



One of the first stabilization methods is by Baumgarte.

Baumgarte stabilization writes

0 = g̈ + γ1ġ + γ2g,

then tries to choose parameters γ1, γ2 such that

x2 + γ1 x+ γ2 = 0

has roots with negative real parts, making the ODE
for g stable, and thus stabilizing the invariant set.

Unfortunately, the choice of γ1, γ2 is tricky in practice.



9.2.3 State-Space Formulation

Differentiating the constraints of an index-(p+1) DAE
yields an ODE with a larger size (higher dimension).

The number of degrees of freedom remains m−pl, but
we have m ODEs and pl AEs.

An alternative to invariant stabilization is to use the
AEs to define a reduced ODE of size m− pl.

The advantages include the reduced ODE system size
as well as the guarantee that there is no drift (the
constraints are satisfied automatically).

The drawbacks center around the process of eliminating
the constraints.

Constraints often contain strong nonlinearities.

This not only makes the process complex and
expensive, it must be updated (the same elimination
procedure may not always work) and monitored (it may
become singular) as the solution proceeds.



9.3 Modelling with DAEs

Many researchers are awakening to the fact that their
favourite mathematical models are (better) described
as DAEs instead of ODEs.

This revelation can lead to new and fruitful perspectives
on an otherwise old problem.

But there is a tradeoff in the formulation, analysis, and
solution of the DAE formulations
→ now less familiar / straightforward.

High-index DAEs are unstable, so direct discretization
generally leads to disaster
→ some reformulation is required (can be costly).

It is important to keep in mind that for a semi-explicit
DAE, the ODE is solved to within truncation errors
whereas the constraints are solved to roundoff errors.

→ more importance on the constraints (invariants)!

Sometimes this makes sense, but not always.



Example 7. Consider the solution of a PDE by the
method of lines.

Normally, the mesh used in the method of lines to
convert the PDE to a system of coupled ODEs is fixed.

Of course, we appreciate the limitations of using a
fixed mesh, so one can imagine a method of lines
for which the mesh used for the spatial discretization
automatically adapts to concentrate in the areas where
it is most needed as the solution evolves in time.

Moving mesh methods achieve this by equidistributing
some measure of the solution (e.g., arc length) on each
subinterval of the mesh.

However, strictly enforcing this equidistribution as
an algebraic constraint does not guarantee solution
accuracy, so in some sense a lot of effort is expended
on a non-essential goal
→ satisfying such a constraint only approximately often
more than suffices.


