
Chapter 1 - Getting Started

1.1 Introduction

Ordinary differential equations are ubiquitous in science
and engineering, especially when mathematically
modelling how physical systems evolve.

Many courses on ODEs focus on analytical solution
techniques.

Unfortunately these techniques often cannot handle
the large, complicated, and nonlinear systems of ODEs
that arise in practice.

This course is about solving ODEs numerically.

Along the way, we will also touch on topics such as
automatic differentiation, quadrature, and the solution
of partial differential equations.

We emphasize that any use of numerics should be
complementary to analysis: numerical algorithms
and software should be based on solid theory, and it is
generally ill-advised to attempt to numerically solve a
problem for which you have done no analysis.

1

We study numerical methods to understand what is
meant by a numerical solution and what can reasonably
be expected from a numerical method and/or software.

In this course we emphasize the use of realistic problems
as examples; toy problems only take you so far in life.

We make good use of the popular problem-solving
environment (PSE) Matlab. However, alternate
environments, in particular Maple, will also be used.

2

Review of ODEs

An ODE represents a relationship between a function
and its rates of change; e.g.,

ẏ(t) = y(t), 0 ≤ t ≤ 10.

This does not completely specify the solution.

Often (but not always!) solutions are specified by
means of an initial value; e.g., y(0) = 1.

In this case, the ODE has the unique solution y(t) = et.

This is called an initial-value problem (IVP).

Many IVPs in practice have unique solutions.

3

Conditions on the solution can be specified in a more
complicated way.

Consider

y′′(x) + y(x) = 0, 0 ≤ x ≤ b.

A solution to this ODE may be specified by conditions
at both ends of the interval; e.g., y(0) = 0, y(b) = 0.

This is called a boundary-value problem (BVP).

This BVP always has the trivial solution y(x) ≡ 0.

But for certain values of b, this BVP has infinitely many
solutions; e.g., b = 2π, y(x) = c sinx is a solution for
any constant c.

In general, a BVP may have no solution; e.g., if b = 2π
and y(b) 6= 0.

With a BVP, anything is possible!

4

A comment on analytical solutions

It is easy to think that one should always use
an analytical solution (whenever one exists) over a
numerical solution.

This may not be true 100% of the time.

For example, small changes to a problem can
dramatically change its analytical solution.

See dsolveDemo.m

Even simple-looking problems may not have a solution
expressible in terms of any familiar functions.

(If Maple cannot find an analytical solution to your
ODE, it usually means that one does not exist.)

Systems of ODEs rarely have explicit solutions!

5

Analytical vs. numerical

Analytical solutions provide a lot of insight, but often
we have to turn to plotting software to plot particular
solutions anyway.

So why bother with an analytical solution at all?

It depends on what you want from a solution.

Analytical solutions can give you insight on things
such as asymptotic behaviour of solutions as t → ∞,
singular behaviour, or dependence on initial conditions
or other parameters.

These things are hard to elicit from numerical solutions
because each numerical solution is an isolated solution
to a problem with a particular choice of parameters,
time interval, etc.

On the other hand, numerical solutions to all the
problems in dsolveDemo.m are obtained with ease.

We often combine analytical and numerical techniques
to solve a given problem.

6

1.2 Existence, Uniqueness, and

Well-Posedness

This is not about being fussy.

These things tell you whether in fact you can solve a
given problem, and if so, how well.

We will see problems that have no solution. In this
case, we expect trouble!

We will also see problems with more than one solution.
In this case, we can expect some trouble computing
the “correct” one.

We note that although theory can guarantee the
existence of a unique solution, there is no substitute for
an understanding of the phenomena being modeled.

Existence and uniqueness are much simpler for IVPs.

We study systems of explicit ODEs of size m:

ẏ(t) = f(t,y(t)). (1a)

7

y(t) is really a vector of size m; i.e.,

y(t) =

y1(t)
y2(t)

...
ym(t)

.

The same goes for the vector f(t,y(t)).

An IVP is defined by having all the values of y known
at some “initial” point; without loss of generality, we
take this point to be t = 0:

y(0) = y0. (1b)

Roughly speaking, if f(t,y) is smooth for all (t,y) in
a region R containing the initial data (0,y0), then the
IVP (1) has a unique solution. This takes care of most
IVPs in practice.

8

Note 1. We are guaranteed by theory that the
solution extends to the boundary of R.

However, this does not mean the solution for given
initial data (0,y0) exists throughout an interval
t ∈ [a, b] that is completely contained in R!

What does this mean?

Consider the IVP

ẏ = y2, y(0) = 1.

The right-hand side f(t, y) = y2 is smooth everywhere
in (t, y); i.e.,

R = {−∞ < t < ∞, −∞ < y < ∞}.

You might think the solution exists for all t for this
problem (or any IVP for this ODE).

9

However, the unique solution for this problem is

y(t) =
1

1 − t
.

So the solution that starts at (0, 1) exits the top of R

as t → 1−; it does not exist for all t!

This kind of thing does happen for real problems too!

It is usually reasonable to ask that a numerical
approximation do a good job until the solution becomes
too large for the computer arithmetic used.

Both existence and uniqueness can be problematic for
implicit ODEs

F(t,y(t), ẏ(t)) = 0.

For example, obviously the ODE

[ẏ(t)]2 + 1 = 0

has no real solutions.

10

As another example of an implicit ODE, consider now
how the solutions y of a system of algebraic equations

F(y, λ) = 0

depends on a (scalar) parameter λ.

Taking d/dλ by using the Chain Rule, we get

∂F

∂y

dy

dλ
+

∂F

∂λ
= 0.

This is an implicit system of first-order ODEs. If we
can find one solution y0 for some parameter value λ0

(i.e., F(y0, λ0) = 0) then we can formulate an IVP for
y = y(λ).

11

If the Jacobian matrix

J :=
∂F

∂y

is non-singular, we can write the ODEs explicitly as

dy

dλ
= −J−1∂F

∂λ
.

Problems occur when J is singular, and this happens
for many interesting problems!

In such cases we say that solutions bifurcate; i.e., the
number of solutions changes.

At this point we would need analysis plus software to
sort out the behaviour of the solutions near this point.

12

Suppose we want to compute steady-state solutions of
the ODE

ẏ = y2 − λ.

This corresponds to solving

F (y, λ) := y2 − λ = 0.

If λ ≥ 0, one steady-state solution is y(λ) =
√

λ.

To study the general dependence of the steady state
on λ, we could compute it as the solution of the IVP

2y
dy

dλ
− 1 = 0, y(1) = 1. (2)

If y 6= 0, we can write the ODE in explicit form and
solve for values of λ decreasing from 1.

But this ODE is singular when y = 0, corresponding in
this case to λ = 0.

So the singular point (0, 0) means there may be more
than one solution to the IVP passing through this point;
in fact we know y(λ) = −

√
λ is another solution.

13

We can solve the IVP (2) using standard software, but
we will run into trouble as we approach (0, 0).

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ

y

14

Technical point: Lipschitz condition

For future reference, we define more precisely what we
mean by “smooth” f(t,y).

1. f(t,y) is continuous in R

2. Sufficiently many y derivatives of f are also
continuous.

Technically, f must satisfy a Lipschitz condition; i.e.,
there exists a constant L such that for all pairs (t,y1)
and (t,y2) in R, we have

‖f(t,y1) − f(t,y2)‖ ≤ L‖y1 − y2‖.

15

For single equations, the Mean Value Theorem states
that

f(t, y1) − f(t, y2) =
∂f

∂y
(t, ŷ)(y1 − y2),

where ŷ lies in the open interval with endpoints y1 and
y2. So f satisfies a Lipschitz condition if

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

≤ L ∀ (t, y) ∈ R.

For vectors f , we must find a bound such as this for
all first partial derivatives of f .

In some sense we are applying the scalar Mean Value
Theorem to each component of f for each component
of y.

Each application will generally involve a different mean
value ŷ, but this fact is often only implied in print.

16

Well-posedness

Roughly speaking, a problem is well-posed if small
changes to the data lead to small changes in the
solution.

Such a problem is also said to be well-conditioned or
insensitive to perturbation.

This has to be a property of the problem if we want to
solve it (directly) on a computer.

The numerical methods that we study can be viewed
as the exact solution to a problem that is “close” to
the one we wish to solve.

This is the best one can hope for with finite arithmetic.

Consider the motion of a simple pendulum:

θ̈(t) + sin θ = 0, θ(0) = 0, θ̇(0) = ω0,

where θ(t) is the angle the pendulum makes with the
vertical at time t.

17

If ω0 = 0, the pendulum does not move.

If ω0 is small enough, the pendulum will oscillate
forever.

If ω0 is large enough, the pendulum will revolve forever.

Somewhere in between there is a magical value ω∗

0

such that the pendulum will approach a vertical
configuration.

Clearly this solution is unstable: any perturbation of
ω∗

0 leads to a very different type of solution.

The IVP with θ̇(0) = ω∗

0 is ill-posed (ill-conditioned,
sensitive to perturbation) on sufficiently long time
intervals.

On physical grounds, one can deduce that the ill-posed
solution satisfies

θ(∞) = π and θ̇(∞) = 0.

Using conservation of energy, we find that ω∗

0 = 2.

18

Thus, the IVP

θ̈(t) + sin θ = 0, θ(0) = 0, θ̇(0) = 2,

is unstable.

What happens if we try to solve it anyway using, e.g.,
Matlab’s ode45?

See unstableIVP.m

This unstable solution is more naturally described by a
BVP:

θ̈(t) + sin θ = 0, θ(0) = 0, θ(∞) = π.

Note 2. When formulating a problem as a BVP, it is
not always clear what BCs to use!

e.g., why not use θ̇(∞) = 0?

One problem with this BC is that besides the solution
we want, it also admits (at least) one other solution;
i.e., θ(t) ≡ 0.

19

Finding a non-trivial solution when a trivial one exists
can be challenging!

But this BVP is defined on an infinite interval1;
existence, uniqueness, and well-posedness are not as
clear anymore! Besides, all the software we discuss is
meant for problems on finite intervals.

One way to solve such a problem is to truncate the
infinite interval at a (sufficiently large) finite point; this
point is idealized as being at infinity.

See stableBVP.m

Note 3. 1. This approach does not always work!

2. One should solve a sequence of problems, with
increasing interval size, to validate the computed
solution. The Matlab function bvpxtend helps.

For this example, we could have gotten away with a
much smaller interval (as small as [0, 7]).

Also, the solution would have improved upon lowering
the tolerances on the solution to the IVP.

1It is not unusual for physical problems to be defined this way.

20

Another example: Projectile problem

Consider the planar 2 motion of a projectile fired from
a cannon. The equations of motion are

y′ = tanφ,

v′ = −g sinφ + νv2

v cos φ
,

φ′ = − g

v2
,

where y is the height of the projectile above the cannon,
v is the velocity of the projectile, and φ is the angle (in
radians) of the projectile with respect to the horizontal.

The independent variable x measures the horizontal
distance of the projectile from the cannon.

The constant ν represents air resistance, and g = 0.032
is the (appropriately scaled) gravitational constant.

2We ignore 3D effects such as cross winds or rotation.

21

We take y(0) = 0 and assume that v(0) = v0 is given.

The usual projectile problem is to choose the cannon
elevation φ(0) so that y(b) = 0.

Note 4. There are 3 BCs corresponding to 3 first-
order derivatives in the system of ODEs.

Does this problem have a solution?

Not when b is outside of the cannon’s range!

When b is exactly equal to the cannon’s range, there
is exactly one solution.

If b is within the cannon’s range, there are two solutions
(one which is more direct than the other).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

22

Existence and uniqueness questions are much easier to
answer for IVPs than for BVPs.

Theoretical results about uniqueness and number of
solutions for BVPs exist, but they are often so narrow
that they are rarely used in practice.

That is why it is of great help to have some
understanding of what things should look like or how
they should behave.

Determining the exact number of solutions is very
difficult; usually the best we can do is find a solution
that is “close” to some initial guess.

There is a real possibility of obtaining a “wrong” (i.e.,
unintended) solution when solving BVPs!

23

Stability

Stability is key to understanding how numerical
methods behave when solving (1).

Numerical methods typically produce approximations
yn ≈ y(tn) on a mesh

0 = t0 < t1 < t2 < . . . < tN = b

that is chosen by the solver; i.e., the integration starts
with y0 and in general takes steps of size ∆tn =
tn − tn−1 to obtain yn.

What the solver actually does is not what you might
expect!

First we define the local solution ỹ(t) as the solution
to the (local) IVP

˙̃y = f(t, ỹ), ỹ(tn) = yn;

i.e., this problem takes yn as the exact initial value.

24

We call it a local IVP because we imagine taking only
one step with it.

The solver actually tries to find yn+1 such that the
local error

ỹ(tn+1) − yn+1

does not exceed error tolerances set by the user.

However the global (or “true”) error is

y(tn+1) − yn+1;

i.e., solvers do not control global error (directly)!

How the error propagates can be analyzed by writing

y(tn+1)−yn+1 = y(tn+1) − ỹ(tn+1)+ỹ(tn+1) − yn+1

The second difference is the local error.

The first difference is the difference at tn+1 of two
solutions of the ODE (1a) with different “initial” values
at tn: one starts at y(tn); the other starts at yn.

25

This term is a characteristic of the ODE, so it cannot
be controlled by the solver.

If the IVP is unstable (i.e., neighbouring solutions
rapidly spread apart), then we see that global errors
can be large even if local errors are small.

On the other hand, if the IVP is stable (i.e.,
neighbouring solutions come together), then global
errors will be comparable to local errors.

This gives us a fundamental limitation on all numerical
methods that we consider: if the IVP is unstable, no
matter how well you control the local error, the
global error will eventually become large.

How quickly this actually happens depends on how
unstable the problem is and how accurately the local
error is controlled.

26

Example

Consider the IVP

ẏ = 5(y − t2), y(0) = 0.08.

Ignoring the initial condition, the exact solution is

y(t) = t2 + 0.4t + 0.08 + Ce5t.

This IVP is unstable because neighbouring solutions
(with constants C1 and C2) differ by (C1 − C2)e

5t;
i.e., they exponentially diverge from each other!

So even if we had a quasi-magical numerical method
that only made a tiny error in its first step (and was
exact the rest of the time), the error in the quasi-
magical numerical solution would grow exponentially
and eventually result in an unacceptable numerical
solution yn.

27

Stable vs. unstable

Consider the direction field and solution curves for the
ODE

ẏ = (cos t)y. (3)

0 2 4 6 8 10 12

−6

−4

−2

0

2

4

6

t

y

We can see solution curves diverging in some regions
and converging in others.

This example shows that it is an over-simplification to
simply say a problem is stable or unstable!

28

Note 5. Stability depends on direction; i.e., some
problems are unstable when solved forward in time but
stable when solved backward in time.

Note 6. It is very possible that for systems of ODEs
you can have one component be stable while another
be unstable at the same time. In such cases the
coupling of the components to each other (and then
to the solver!) may make the overall behaviour very
complicated to sort out.

29

A numerical experiment

The simplest method for the numerical solution of IVPs
is Euler’s method3.

Starting from a given approximation yn at time t =
tn, it uses a fixed step size ∆t and marches the
approximate solution forward according to the formula

yn+1 = yn + ∆t f(tn,yn),

tn+1 = tn + ∆t, n = 0, 1, 2,

This method has a nice geometric interpretation.

We can imagine that f(t,y) specifies a velocity field
for y.

Then Euler’s method can be thought of as sampling
the velocity field at the point (tn,yn), assuming it is
constant, and following it for a length of time ∆t.

3Those in the biz also call it forward Euler.

30

This amounts to following the tangent line to the
velocity field at (tn,yn) for some length of time ∆t.

This procedure is repeated starting from (tn+1,yn+1)
to approximate yn+2, etc.

See forwardEulerDemo.m and
forwardEulerDemo2.m

Given initial time t = 0, initial value y0, final time
t = b, right-hand side function f(t,y), and step size
dt, some Matlab code to implement Euler’s method
might look like:

t = 0;

y = y0;

while t <= b

y = y + dt*feval(f,t,y)

t = t + dt

end

As you can imagine, the answer gets more accurate
as you reduce ∆t; but of course more work has to be
done to get to t = b.

31

Note: There is no inherent need to assume ∆t is a
constant.

In fact if we could estimate how big a step size ∆tn+1

starting from tn we could get away with and still satisfy
the given tolerance, then we could take that instead.

This generally yields a more efficient algorithm than
one with fixed step size.

Consider now the solution to (3) with IC y(0) = 2:

y(t) = 2esin t.

The local solution starting from the point (tn, yn) is

ỹ(t) = yne(sin t−sin tn).

We now plot the local and global errors when Euler’s
method with a constant step size ∆t = 0.1 is used to
integrate (3) from t = 0 to t = 3.

32

0 0.5 1 1.5 2 2.5 3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

local error
global error

For this problem, we notice that the local error is never
very large.

This is somewhat fortunate because we are not making
any attempt to control it!

By definition, the local and global errors are the same
after the first step.

After that, the global errors grow or decay according
to the stability of the problem.

33

Backward error analysis

This is a powerful tool for studying the errors produced
by a numerical method.

The (usual) method of forward error analysis is that
you somehow keep track of all the errors you make as
you step through your computational procedure. At
the end of the day, you bound all these errors.

Conversely, backward error analysis looks at the
numerical solution as the exact solution to a perturbed
problem. Then one asks how far is the perturbed
problem from the original one.

All the Matlab solvers produce piecewise-smooth
numerical solutions S(t) on the whole interval [0, b].

As a simple case, you can imagine connecting the
output values yn and yn+1 with a straight line and
taking that line4 to be the solution everywhere in
[tn, tn+1].

4This line is also called a linear interpolant.

34

Usually the yi are known to higher accuracy than
second order, and so we will have to do something
more sophisticated than simple linear interpolation for
the approximations within the interval to be as accurate
as those at the end points.

The residual r(t) of such an approximation is the
amount by which the S(t) fails to satisfy the ODE:

r(t) := Ṡ(t) − f(t,S(t)).

In other words, S(t) is the exact solution to the
perturbed ODE

Ṡ(t) = f(t,S(t)) + r(t).

So in the sense of backward error analysis, S(t) is
a good approximation if it satisfies an ODE that is
“close” to the original; i.e., ‖r(t)‖ is small.

35

Not only is this a perfectly fine definition of what
constitutes a “good” solution, but also if the IVP
is well-posed, then ‖r(t)‖ small plus well-posedness
implies S(t) is “close” to y(t) — the usual definition
of a “good” solution.

In other words, in general a solver tries to produce
an approximate solution with a small residual.

Matlab’s BVP solver bvp4c does this directly; IVP
solvers such as ode45 or ode15s do it indirectly.

In the case of Matlab’s newest BVP solver bvp5c,
there is a remarkable relationship between the residual
and the global error, so in this case control of the
global error by means of residual control is more direct
than usual.

36

1.3 Standard Form

ODEs are not always kind enough to come in a form
ready for software to solve.

ODEs are most commonly accepted by IVP solvers in
the form of systems of first-order equations:

ẏ(t) = f(t,y(t)).

The Matlab IVP solvers accept the more general
form

M(t,y)ẏ(t) = F(t,y(t)),

where M(t,y) is a non-singular5 mass matrix. Of

course we could write f(t,y) := M(t,y)
−1

F(t,y), but
sometimes it is more convenient and/or more efficient
to not do this.

5If M is singular, then (at least locally) we have a differential-algebraic
equation (DAE).

37

The usual way to convert higher-order ODEs to first
order is by introducing new dependent variables to
represent all the old dependent variables and their
derivatives.

It is easy to see what to do by example.

Consider the two-body problem.

This describes the orbit of one body under the
gravitational attraction of a much heavier body (like a
planet orbiting a sun).

With the origin at the centre of the “sun”, the
Cartesian coordinates u(t) and v(t) of the “planet”
satisfy

ü(t) = − u(t)

[u2(t) + v2(t)]3/2
,

v̈(t) = − v(t)

[u2(t) + v2(t)]3/2
.

38

To convert to a first-order system of ODEs, we define

y(t) = (u(t), u̇(t), v(t), v̇(t))T .

Then

ẏ(t) =

ẏ1(t)
ẏ2(t)
ẏ3(t)
ẏ4(t)

=

y2(t)

− y1(t)

[y2
1(t)+y2

3(t)]
3/2

y4(t)

− y3(t)

[y2
1(t)+y2

3(t)]
3/2

.

A Matlab script to define this might look like

function ydot = twobody(t,y)

% define this variable for efficiency

r3 = (y(1)^2 + y(3)^2)^(3/2);

ydot = [y(2); -y(1)/r3; y(4); -y(3)/r3];

39

The two-body problem and the pendulum problem
are derived from Newton’s laws of motion, hence the
second derivatives.

If there is no dissipation, then there are no terms
involving first derivatives. This leads to the form

ÿ = f(t,y),

with initial position y(0) and initial velocity ẏ(0) given.

Of course we could write this as a first-order system,
but there are efficient numerical methods6 that make
it worth dealing with the second-order form directly.

Note 7. There are similar methods that deal directly
with the form

ÿ = f(t,y, ẏ)

(or even higher-order generalizations of this) but there
seem to be no computational advantages to do this in
the IVP context. There are computational advantages
for BVPs, however.

6called Runge–Kutta–Nyström methods

40

A very useful trick is to introduce additional unknowns
(including constants) in order to compute quantities
related to the solution.

Consider the Sturm–Liouville eigenvalue problem

y′′(x) + λy(x) = 0, y(0) = 0, y(2π) = 0. (4)

For special values of λ (known as eigenvalues) there are
non-trivial solutions y(x) (known as eigenfunctions).

As it stands, (4) only defines y(x) up to a multiplicative
constant. We can determine a unique solution by
normalizing the solution by the condition

∫ 2π

0

y2(x) dx = 1. (5)

A convenient way to impose (5) is by introducing the
variable

y3(x) =

∫ x

0

y2(x′) dx′.

41

We also need to note that λ is unknown, so we
introduce the variable

y4(x) = λ.

Defining as usual y1(x) = y(x) and y2(x) = y′(x), we
can write (4) in standard form as

y′

1 = y2,

y′

2 = −y4y1,

y′

3 = y2
1,

y′

4 = 0,

subject to

y1(0) = 0, y1(2π) = 0, y3(0) = 0, y3(2π) = 1.

Note 8. Matlab’s BVP solvers bvp4c and bvp5c

accept problems with unknown parameters, but most
other BVP solvers require the problem to be in standard
form as just described.

42

1.4 Control of the Error

Error control is important for both efficiency and
reliability.

The more accuracy you want, the more the
computation will cost.

Solvers attempt to meet the accuracy requested with
the minimum amount of computational effort.

Solvers can request two kinds of tolerances: a scalar
relative tolerance RelTol and a vector of absolute
tolerances AbsTol.

To simplify matters, some codes only accept a value
for RelTol.

Also, if a scalar is supplied for AbsTol, it is applied as
a vector with the same value for each component.

It is also required that RelTol, AbsToli > 0 for all i.

The default settings in Matlab for these tolerances
are RelTol = 10−3 and AbsTol = 10−6.

43

The default RelTol is meant to ensure sufficient
accuracy for plotting purposes.

RelTol =10−5 is more typical for scientific computing.

RelTol =10−10 should be about the lowest value you
should reasonably be expected to use. For this purpose
the solution you compute will be essentially “exact”7.
In fact, in double precision, the minimum allowable
value of RelTol is 2.22045 × 10−14: obtaining more
digits of accuracy is simply not feasible without going
to higher precision floating-point arithmetic.

Solvers produce vectors yn that approximate the
solution y(tn) on a mesh 0 = t0 < . . . < tn = b.

Roughly speaking, they aim to produce an
approximation that satisfies

|yi(tn) − yn,i| ≤ RelTol|yi(tn)| + AbsTol (6)

for each component of the solution.

7assuming things go as they should!

44

An important rule of thumb

From Brennan, Campbell, and Petzold (1996):

We cannot emphasize strongly enough the
importance of carefully selecting these tolerances
to accurately reflect the scale of the problem.
In particular, for problems whose solution
components are scaled very differently from each
other, it is advisable to provide the code with
vector-valued tolerances. For users who are not
sure how to set the tolerances RTOL and ATOL,
we recommend starting with the following rule
of thumb. Let m be the number of significant
digits required for solution component yi. Set
RTOLi = 10−(m+1). Set ATOLi to be the value
at which |yi| is essentially insignificant.

45

Inequality (6) defines a so-called mixed error control:
if RelTol = 0, we have pure absolute error control; if
AbsTol = 0, we have pure relative control.

A mixed strategy is generally employed because each
pure strategy has difficulties associated with it.

Pure relative error control requires that

∣

∣

∣

∣

yi(tn) − yn,i

yi(tn)

∣

∣

∣

∣

≤ RelTol.

There are two serious problems with this:

1. yi(tn) may vanish.

2. It is possible to ask for impossible accuracy (e.g.,
16 digits in double precision) and a solver might not
indicate any problems except to incur a much higher
computational cost and possibly to produce answers
that are more accurate at less stringent tolerances.

46

A pure absolute error control requires that

|yi(tn) − yn,i| ≤ AbsTol, i = 1, 2, . . . , m.

Here the problem is that you need to judge how large
the solution components will be, and you can get into
trouble if you are off by too much.

Re-writing the pure absolute error control criterion as

∣

∣

∣

∣

yi(tn) − yn,i

yi(tn)

∣

∣

∣

∣

≤ AbsTol

|yi(tn)| , i = 1, 2, . . . ,m,

we see that a pure absolute error control of AbsTol

on yi(t) corresponds to a pure relative error control of
AbsTol/|yi(tn)|.

So if |yi(tn)| is very large (e.g., 1011), even an
unremarkable AbsTol (e.g., 10−6) may lead to an
impossible accuracy request.

The other problematic situation for pure absolute error
control occurs when |yi(t)| < AbsTol.

47

In this case, any yn,i such that |yn,i| < AbsTol will
pass the test, and an acceptable approximation will
have no correct digits!

This would be fine if yi(t) was uninteresting at such low
levels and stayed there! The danger is that it might
grow later and become interesting again (then it would
be hard to have much confidence in the solution).

Note 9. Thankfully, you often have a correct digit or
two in such cases even if you didn’t expect it based on
your choice of AbsTol8.

One reason for this is that the solver may have
needed the accuracy on this small component to
attain a specified accuracy on another component that
depended on it.

Another reason is that the solver may have been forced
to take a small step size for another component. This
step size is generally smaller than necessary for other
components, so they are computed more accurately
than required.

8But this is not a free lunch!

48

Example: Proton transfer

This example of proton transfer in a H2 − H2 bond is
taken from Lapidus, Aiken, and Liu (1973).

The phenomenon is described by the following ODEs:

ẋ1 = −k1x1 + k2y,

ẋ2 = −k4x2 + k3y,

ẏ = k1x1 + k4x2 − (k2 + k3)y,

subject to the initial conditions

x1(0) = 0, x2(0) = 1, y(0) = 0,

for 0 ≤ t ≤ 8 × 105. The constants are

k1 = 8.4303270 × 10−10, k2 = 2.9002673 × 1011,

k3 = 2.4603642 × 1010, k4 = 8.7600580 × 10−6.

49

It turns out that this is a stiff problem.

See LapidusAikenLiu.m

It is not rare when modelling chemical reactions
that concentrations below a certain threshold have
negligible effects and so are uninteresting.

It makes sense to set AbsTol to reflect these thresholds.

Although theoretically these are positive quantities, if
they are small enough, a solver may generate negative
numbers.

These negative numbers are usually within AbsTol, and
they decrease in magnitude with decreasing tolerances.

Note that this is completely permitted by the error
control mechanism!

Sometimes this is nothing more than a small
annoyance; other times a problem will not tolerate
any negative values and become unstable.

How to have robust error control while maintaining
non-negativity of solution components is an open
question.

50

Robertson’s problem (1966)

This is a popular benchmark problem for stiff IVP
solvers. It describes a chemical reaction governed by
the IVP

ẏ1 = −0.04y1 + 104y2y3, y1(0) = 1,

ẏ2 = 0.04y1 − 104y2y3 − 3 × 107y2
2, y2(0) = 0,

ẏ3 = 3 × 107y2
2, y3(0) = 0,

on the interval 0 ≤ t ≤ 4 × 106.

It is easy to show that yi(t) ≥ 0, i = 1, 2, 3 and

y1(t) + y2(t) + y3(t) ≡ 1

for all t ≥ 0.

This problem is included in Matlab as the demo
program hb1ode.

51

Here is what the solution (produced by ode15s) looks
like:

10
−4

10
−2

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

y
1

y
2
 × 104

y
3

52

Hindmarsh and Byrne (1976) use this problem to show
the performance of their code EPISODE for stiff IVPs.

With AbsTol = 10−6, a small negative component
emerges. It grows rapidly in magnitude, and soon the
numerical solution becomes unacceptable; see table.

t y1 y2 y3

4e5 4.9394e−03 1.9854e−08 9.9506e−01
4e7 3.2146e−05 1.2859e−10 9.9997e−01
4e9 –1.8616e+06 –4.0000e−06 1.8616e+06

Table 1: Robertson’s problem; steady-state solution
computed using EPISODE.

We emphasize here that the unsatisfactory performance
is a consequence of the problem and what is asked of
the solver!

Other solvers exhibit similar problems operating in this
way (including ode15s).

53

Accuracy: Too much vs. too little

We have seen that you can ask for too much relative
accuracy.

However, asking for too little accuracy can give you
other headaches!

It is tempting to ask for as little accuracy as you can
get away with because computational expense increases
with increased requested accuracy.

Moreover often data of a problem are only known to a
digit or two.

However, it is dangerous and pointless to ask for too
little accuracy!

Solvers are based on theory that is only valid when
step sizes are sufficiently small. If you ask for little
accuracy, a solver may take steps that are too large for
reliable results.

54

Recall: solvers only directly control local errors; they
control global errors indirectly. The local errors are
made to be smaller than the requested tolerances so
that in the end the global errors will be smaller than
(or comparable to!) the tolerances.

If an IVP is unstable or its solution is highly oscillatory,
then asking for too little accuracy leads to grossly
inaccurate answers: the solution may be physically
unrealistic, (or worse) the solution may be plausible
but incorrect, or the computation may fail entirely.

If the solver is reputable, unsatisfactory results are
usually a consequence of IVP instability; other solvers
would (at best!) exhibit similar behaviour under the
same circumstances.

55

A general plan

In general you should never solve an IVP once and
think that you have your final answer.

You can expect to have to solve it several times,
especially if the problem is new to you, until you find
an appropriate range for the tolerances.

A general plan is to solve a sequence of problems with
decreasing tolerances to ensure you have achieved the
accuracy you desire.

56

1.5 Qualitative Properties

We have seen problems with solutions that have certain
qualitative properties that are implied by the ODEs.

Generally speaking, numerical solutions will not inherit
these properties.

Although there are specialized methods that do
preserve certain qualitative solution properties, we do
not consider them here.

The important exception to this is that standard
numerical methods do preserve linear invariants.

Consider the standard IVP:

ẏ(t) = f(t,y(t)), y(0) = y0.

57

If there exists a constant, non-zero vector c such that
cT f(t,y) = 0 for all (t,y(t)), then y(t) satisfies the
linear invariant9

cTy(t) ≡ cTy0 = constant.

Linear invariants express physical laws such as
conservation of mass or charge.

We have seen that the H2 − H2 bond problem and
Robertson’s problem possessed linear invariants. (The
sum of the components was always equal to 1.)

It turns out (see Shampine, 1998) that all standard
numerical methods for IVPs preserve linear invariants
(to within roundoff errors).

Just because linear invariants are satisfied does not
mean that a numerical solution is any good! (See
results from EPSIODE.)

9also called a linear conservation law

58

However, if a standard method does not satisfy linear
invariants (to within roundoff errors), then either there
is a bug in the implementation or the rounding errors
in the computation are significant.

What other kinds of invariants are there?

For example, the frictionless pendulum system
preserves energy.

A general numerical solution to this problem will have
an energy that is only approximately constant:

Suppose the solver at time tn produces approximations

yn,1 = θ(tn) + e1, yn,2 = θ̇(tn) + e2,

where e1, e2 are small errors.

Given that the energy of the pendulum system is

E(θ, θ̇) =
1

2
θ̇2 − cos θ,

59

the energy of the numerical solution is approximately

E(yn,1, yn,2) ≈ E(θ(tn), θ̇(tn))+ θ̇(tn)e2+sin θ(tn)e1.

So the error in the energy is comparable to the errors
in the components; hence E ≈ constant.

This is often OK.

However, long-term qualitative behaviour of the
solution may depend critically on this difference.

Of course you can make this difference smaller by
asking for more accuracy, but this can be prohibitively
expensive for long-time simulations.

If conservation of a nonlinear invariant (such as energy
for the pendulum) is critical, then it is best to search
for a specialized numerical method that will do this.

But again, there is no free lunch!

Satisfying the nonlinear invariant without incurring
exorbitant computational costs does come at the
expense of (so-called pointwise) accuracy.

60

For example, in the case of the pendulum, you might
get the proper height of the orbit, but you would get
the wrong period of motion!

So after a while, the position of the pendulum would
not be approximated well.

As another example, the 2-body problem satisfies two
nonlinear invariants:

1. Conservation of energy

E =
ẋ2(t) + ˙y(t)

2

2
− 1

r(t)
,

where r(t) =
√

x2(t) + y2(t).

2. Conservation of angular momentum

L = x(t)ẏ(t) − y(t)ẋ(t).

61

Here is a picture of some typical behaviour:

−2 −1.5 −1 −0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x(t)

y(
t)

With tight tolerances, the orbit is closed; energy and
angular momentum are constant to within plotting
accuracy.

With the default tolerances, ode15s removes energy
from the system; the satellite falls into the fixed body.
The same is true for ode113. On the other hand,
ode45 adds energy to the system, and the satellite
spirals away from the fixed body.

62

Note 10. Some energy is lost when using
ode15s even for tight tolerances! i.e., the satellite
will fall into the fixed body if the interval of integration
is sufficiently long.

(Analogous comments can be made for ode113 and
ode45.)

This is a qualitatively different behaviour of the system
to that which is correct!

If a nonlinear invariant like energy conservation is
important for this reason, you will have to turn to
more exotic numerical methods such as symplectic or
variational integrators.

The overall shape of the orbit will be preserved, but, as
mentioned, the exact position on the orbit for a given
time will be lost.

The only way to have your cake and eat it too is to
pay for it.

In other words, you cannot have it both ways on a
fixed budget unless that budget is sufficiently large.

63

