
Chapter 2 - Initial-Value Problems



2.1 Introduction

Numerical methods for IVPs are distinguished by
whether or not they use previous values yn−1, yn−2,
etc., along with the current value yn in order to
compute yn+1.

If they do not, they are called one-step methods;
otherwise they are called multi-step methods1.

In this course we will only study the popular linear
multi-step methods. We will see that this only means
that the methods are linear functions of the coefficients,
not that the IVP is linear.

IVPs can be stiff or non-stiff.

Stiffness is about efficiency; i.e., it is a computer
science thing. Correctly distinguishing between stiff
and non-stiff IVPs may be important when choosing a
numerical method for their solution.

1In the text they are also referred to as methods with memory.

1



No entirely satisfactory definition of stiffness exists in
a mathematical sense, although its symptoms may be
easy to recognize, e.g., ∆t restricted by stability, not
accuracy; “widely varying time constants”; etc.

My pragmatic definition of stiffness is that an instance
of a problem is stiff if it is more efficient to obtain a
numerical solution by using a stiff solver rather than a
non-stiff solver.

By “instance” of a problem, I mean a given IVP (i.e.,
ODEs, ICs, time interval) plus a given order of method
and tolerance.

One (perhaps) unintuitive conclusion of this definition
is that in principle, no IVP is stiff if the tolerance is
small enough.

A general approach to solving IVPs (in Matlab) is to
start with a non-stiff solver (like ode45). This solver
uses a one-step method based on an embedded pair of
explicit Runge–Kutta (RK) formulas (of orders 4 and
5) popularized by Dormand and Prince.

2



If this proves unsatisfactory, or if you had reason to
believe the IVP was stiff to begin with, it is then
recommended to try ode15s. This solver uses a multi-
step solver based on numerical differentiation formulas
(NDFs) of orders 1 through 5.

NDFs are modifications of the classical backward
differentiation formulas (BDFs). The modifications
are to make the implementation more efficient. It is
possible to run ode15s as a variable-stepsize, variable-
order BDF method by setting option ’BDF’ to ’On’.

If the IVP has a smooth and/or expensive right-hand
side function f(t,y), then the solver ode113 is often
more efficient than ode45. This solver uses multi-step
predictor-corrector methods based on the family of
Adams methods of orders 1 through 13.

Solvers known as type-insensitive solvers also exist
(although not in Matlab) that attempt to diagnose
stiffness internally and choose the appropriate type of
solver automatically. These solvers can be particularly
effective because they can switch back and forth from
stiff to non-stiff solvers as the problem dictates.

3



2.2 Numerical Methods for IVPs

A standard result from ODE theory is that if y1(t) and
y2(t) are solutions to

ẏ(t) = f(t,y), (1)

and if f satisfies a Lipschitz condition with constant L,
then for t1 < t2, we have

‖y1(t2) − y2(t2)‖ ≤ ‖y1(t1) − y2(t1)‖e
L(t2−t1).

The classical situation is that L(b − 0) is of moderate
size. This tells us that the IVP consisting of (1) with

y(0) = y0

is moderately stable.

However, this is only a sufficient condition: stiff
problems are (very) stable, yet L(b − 0) ≫ 1.

4



A stiff problem is very stable in the sense that solutions
of the ODE that start near the solution to the IVP
converge to it very rapidly; i.e., over a distance that is
small compared to the interval of integration.

So some solutions change very rapidly, yet the solution
of interest varies slowly (leading to the concept of
“multiple time scales”, stiffness ratios, etc.).

Finally recall that although numerical methods
approximate the solution on a mesh, all of the
Matlab solvers are supplemented with (inexpensive)
interpolants S(t) for approximating the solution
between mesh points.

As we will see, BDF methods are based on polynomial
interpolation anyway, so it is natural to obtain
continuous, piecewise-polynomial interpolants.

Things are less natural in the case of explicit
RK (ERK) methods. The continuous, piecewise-
polynomial interpolants in this case are also referred to
as continuous extensions of the RK formula.

5



2.2.1 One-step methods

One-step methods use only information from the
current step.

We focus on explicit Runge–Kutta (ERK) methods.

Along the way we develop some implicit Runge–Kutta
(IRK) methods.

Of course IRK methods can be used for solving stiff
IVPs; however they are also the method of choice for
solving BVPs.

We first take up the special case of the quadrature
problem.

Strictly speaking, quadrature is an old-fashioned word
that refers to the numerical approximation of definite
integrals.

Let f(x) be a real-valued function of a real variable,
defined on a finite interval a ≤ x ≤ b.

6



We seek to compute the value of the definite integral

∫ b

a

f(x) dx.

Note: This is a real number.

In the context of the initial-value problem, we have

ẏ = f(t), y(0) = y0.

The local solution at tn satisfies

˙̃y = f(t), ỹ(tn) = yn.

This connects to the classical quadrature problem via

ỹ(tn + ∆t) = yn +

∫ tn+∆t

tn

f(t) dt.

Thus computing yn+1 ≈ ỹ(tn+∆t) requires numerical
approximation to a definite integral.

7



A basic tactic in numerical analysis

Replace any “difficult”2 function f(t) with an
interpolating polynomial P (t) and use that instead.

The idea is that polynomials are easy to deal with.

For example, approximate f(t) on [tn, tn + ∆t] by
P (t) = f(tn) (a constant interpolating polynomial).

It is easy to integrate P (t) to obtain

∫ tn+∆t

tn

f(t) dt ≈

∫ tn+∆t

tn

P (t) dt = ∆tf(tn).

This is known as the left-hand rectangle rule.

2This could mean anything from “complicated” to “unknown”.

8



Similarly we could use a constant interpolating
polynomial P (t) = f(tn + ∆t) to obtain

∫ tn+∆t

tn

f(t) dt ≈

∫ tn+∆t

tn

P (t) dt = ∆tf(tn + ∆t).

This is known as the right-hand rectangle rule.

It turns out that the optimal constant interpolating
polynomial is P (t) = f(tn + ∆t/2), leading to

∫ tn+∆t

tn

f(t) dt ≈

∫ tn+∆t

tn

P (t) dt = ∆tf(tn + ∆t/2).

This is known as the mid-point rule.

All of these schemes approximate the integral by the
area of a rectangle.

9



The next generalization from here would be to use
a linear interpolant P (t). The most natural one
interpolates f(t) at both end points:

P (t) =

(

(tn + ∆t) − t

∆t

)

f(tn)+

(

t − tn
∆t

)

f(tn+∆t).

Integrating this P (t) leads to the approximation

∫ tn+∆t

tn

f(t) dt ≈
∆t

2
[f(tn) + f(tn + ∆t)].

Standard interpolation theory tells us the accuracy of
these approximations for smooth f(t).

If P (t) is the unique polynomial of degree less than s
that interpolates a smooth function f(t) at s distinct
nodes3 tn,i := tn + ci∆t ∈ [tn, tn + ∆t], i.e.;

P (tn,i) = f(tn,i), i = 1, 2, . . . , s,

3These are also sometimes called abscissae.

10



then P (t) is given by the Lagrange form

P (t) =

s
∑

i=1

fn,i

s
∏

j=1
j 6=i

t − tn,j

tn,i − tn,j

,

and for all t ∈ [tn, tn + ∆t], there is a t̂ ∈ [tn, tn + ∆t]
such that

f(t) − P (t) =
f (s+1)(t̂)

(s + 1)!

s
∏

j=1

(t − tn,j).

If f(t) is sufficiently smooth, |f (s+1)(t̂)| is bounded,
hence there is a constant C such that

|f(t) − P (t)| ≤ C(∆t)s, for all t ∈ [tn, tn + ∆t].

We express this as

f(t) = P (t) + O((∆t)s).

11



Now it is easy to see that

∫ tn+∆t

tn

f(t) dt =

∫ tn+∆t

tn

P (t) dt + O((∆t)s+1).

Hence for the left-hand rectangle rule

yn+1 = yn + ∆tf(tn),

we have a local error

ỹ(tn + ∆t) − yn+1 = O((∆t)2).

12



Similarly, for the right-hand rectangle rule

yn+1 = yn + ∆tf(tn + ∆t),

we have a local error of the same order:

ỹ(tn + ∆t) − yn+1 = O((∆t)2).

For the trapezoidal rule,

yn+1 = yn +
∆t

2
[f(tn) + f(tn + ∆t)],

we have a local error

ỹ(tn + ∆t) − yn+1 = O((∆t)3).

13



For general polynomial interpolation at s nodes, the
interpolatory quadrature formula

∫ tn+∆t

tn

f(t) dt = ∆t
s

∑

i=1

bjf(tn +ci∆t)+O((∆t)p+1)

leads to a numerical method

yn+1 = yn + ∆t
s

∑

i=1

bjf(tn + ci∆t)

with local error O((∆t)p+1), where interpolation theory
guarantees us that p ≥ s. 4

For example, it can be shown that the midpoint rule
has local error O((∆t)3), which is larger than you
might expect on general grounds.

4This is possible for special choices of the nodes ci.

14



Order conditions for quadrature formulas

To determine how accurate a given quadrature formula
is, we expand ỹ(t+∆t) and yn+1 in Taylor series about
tn and see how many terms agree:

ỹ(tn + ∆t) = ỹ(tn) +

p
∑

i=1

(∆t)i ỹ
(i)(tn)

i!
+ O((∆t)p+1)

= yn +

p
∑

i=1

(∆t)if
(i−1)(tn)

i!
+ O((∆t)p+1).

Now we use

f(tn + ci∆t) =

p−1
∑

j=0

(ci∆t)jf
(j)(tn)

j!
+ O((∆t)p).

15



Using this result,

yn+1 = yn + ∆t

s
X

i=1

bi

0

@

p
X

j=1

(ci∆t)
j−1f(j−1)(tn)

(j − 1)!

1

A+ O((∆t)
p+1

)

= yn +

p
X

j=1

(∆t)j

 

s
X

i=1

bic
j−1
i

!

f(j−1)(tn)

(j − 1)!
+ O((∆t)p+1).

So we see that ỹ(tn + ∆t) = yn+1 + O((∆t)p+1) if
and only if

1

j
=

s
∑

i=1

bic
j−1
i , j = 1, 2, . . . , p. (2)

Equations (2) are known as the order conditions for
quadrature (or the quadrature conditions).

They are simple algebraic expressions that can be used
to check the order of accuracy of a given quadrature
formula without the pain of doing Taylor expansions.

16



Using 1 node (s = 1), for j = 1 we see that 1 = b1.

For j = 2, we have

1

2
= b1c1.

Thus if c1 6= 1/2, the best that we can do is to have
ỹ(tn + ∆t) = yn+1 + O((∆t)2).

Choosing c1 = 1/2, for j = 3 we find

1

3
6= 1 ×

(

1

2

)2

.

Hence if c = 1/2, ỹ(tn + ∆t) = yn+1 +O((∆t)3), and
this is the best that can be done.

17



Convergence of quadrature formulas

We first establish the stability of the quadrature ODE.

If f = f(t), then it is easy to see that f satisfies a
Lipschitz condition with L = 0.

Thus our previous result on distances between
neighbouring solutions says that if y1(t) and y2(t)
are solutions of ẏ = f(t) and t1 < t2 then

‖y1(t2) − y2(t2)‖ ≤ ‖y1(t1) − y2(t1)‖.

However it is easy to prove a stronger result.

A solution y(t) of ẏ = f(t) satisfies

y(t) = y(t1) +

∫ t

t1

f(t′) dt′.

18



Letting y = y1, y2 and t = t1, t2, and subtracting,

y1(t2) − y2(t2) = y1(t1) − y2(t1);

i.e., the local error of a step from tn moves us to a
solution of the ODE that is parallel to the solution
through yn.

Let the true error at tn be

en = y(tn) − yn.

Of course, y0 = y(0) implies that e0 = 0.

In Chapter 1, we wrote that in general

en+1 = y(tn+1) − ỹ(tn+1) + ỹ(tn+1) − yn+1.

The second difference is the local error that we assume
is bounded in magnitude by C(∆tn)p+1.

19



We assume the first difference can be bounded by

‖y(tn+1) − ỹ(tn+1)‖ ≤ ‖y(tn) − ỹ(tn)‖eL∆tn.

Putting these together,

‖en+1‖ ≤ C(∆tn)p+1 + ‖en‖e
L∆tn.

Thus we see that the error contains two components,
one that is the local error introduced at each step by
the numerical method and the other that is propagation
of error from past steps by the ODE stability.

For quadrature problems, life is simpler because there is
no amplification of past errors, and local errors simply
add up when computing the bound.

20



So if we solve a quadrature problems with a constant
∆t = (b − 0)/n, we have a uniform bound

‖en‖ ≤ nC(∆t)p+1 ≤ (b − 0)C(∆t)p;

i.e.,
yn = y(tn) + O((∆t)p), for all n.

This is why we say the order of a method is p when
the local error is O((∆t)p+1).

For variable step sizes, it is easy to modify the proof
to show that the global error is O((∆T )p) where
∆T = max ∆tn.

21



Local error estimation

The local error associated with yn+1 of a method of
order p is

len = ỹ(tn + ∆t) − yn+1.

If we also apply a method of order p + 1 to obtain
y∗

n+1, we notice

est := y∗
n+1 − yn+1

= [y∗
n+1 − ỹ(tn + ∆t)] + [ỹ(tn + ∆t) − yn+1]

= len + O((∆t)p+2);

i.e., est is a computable, leading-order estimate of
the local error len.

Of course ∆t needs to be small enough for this to hold.

In other words, we can estimate the error in yn+1 by
comparing it to the more accurate y∗

n+1.

Generally the most expensive part of taking a step is
evaluating f .

22



So the trick to making local error estimation practical
is to have a pair of methods that share as many of
these function evaluations as possible.

Note that we have assumed y∗
n+1 is the more accurate

approximation.

If this is the case, why not use it instead of yn+1 to
advance the integration?

Advancing with (the more accurate) y∗
n+1 is called

local extrapolation; most modern codes do this.

Note however that our error estimate was for yn+1,
not for y∗

n+1.

This means we do not really know what the error is for
y∗

n+1, but we assume it is less than est.

IVP solvers control the estimated local error: a
tolerance τ is specified, and if est > τ , the step is
rejected and a smaller one is tried.

23



We can see how to adjust the step size by writing out
another term in the expansion of the local error:

len := (∆t)p+1φ(tn) + O((∆t)p+2),

where we have written φ(tn) to be more explicit than
simply C.

Now suppose we were to take a step from tn of size
σ∆t. Then the local error would be

(σ∆t)p+1
φ(tn) + O((σ∆t)p+2) = σ

p+1(∆t)p+1
φ(tn) + O((∆t)p+2)

= σ
p+1

est + O((∆t)
p+2

).

We can now predict the largest ∆t that will pass the
error test: simply choose σ such that |σp+1est| ≈ τ ;
i.e.,

∆tnew := σ∆t = ∆t

(

τ

|est|

)
1

p+1

.

24



The solver will keep trying to find a step size for which
|est| ≤ τ until it succeeds or gives up.

It may give up because it has done too much work;
more often it will give up if it predicts that it will need
a step size that is too small for the precision of the
computer. This is a similar situation to asking for too
much accuracy.

However, a successful step may estimate that the local
error is smaller than necessary; hence we might think
about taking a larger step size for the next step.

This increases efficiency!

It turns out that we can use the above estimate for σ
to also tell us what ∆t to choose for the next step:

(σ∆t)
p+1

φ(tn+1) + O((σ∆t)
p+2

) = σ
p+1

(∆t)
p+1

φ(tn) + O((∆t)
p+2

)

= σ
p+1

est + O((∆t)p+2).

This is generally how modern codes choose their step
sizes, but there are various “practical” details missing.

25



For example, the range of allowable σ must be
restricted in practice because est will not be reliable if
∆t changes by a lot.

Also, several approximations are made in deriving the
formula for σ, so it should not be taken too seriously.

In particular, the value actually used by the software is
actually ασ, where α is a fudge factor of about 0.9.

This is meant to be conservative.

Rejected steps are expensive, so we wish to avoid these
if at all possible.

This conservative strategy is to obtain the lion’s share
of the benefit while reducing the risk of failure.

For those who are familiar with digital control, there are
step size controllers based on classical control theory
(i.e., proportional-integral-derivative (PID) control).

26



Estimation and control of the local error are of critical
importance in practice: Without them, we have no
way of knowing that we have computed a meaningful
solution to an IVP.

Estimation and control of the local error do not have
to be expensive!

The minor added expense more than pays for itself in
increased step sizes: constant step-size strategies are
worst-case strategies because they are restricted by the
smallest step sizes required to resolve the problem or
maintain stability anywhere the entire interval.

For example, the proton transfer problem of Section 1.4
has a boundary layer of approximate width 10−10.

To resolve this we need a step size on this order.

But the problem is posed on a time interval [0, 106].

So with a constant step size, we would need 1017 steps!

27



Even with a computer capable of 10 GFlops, this
computation would still take more than 11.5 days5,
instead of a few seconds on a modest laptop.

Step sizes used by a variable step-size solver in solving
this problem range from 7×10−14 inside the boundary
layer to 4 × 104 where the solution is slowly varying.

5This also excludes the tremendous cumulative effects of round-off errors!

28



Runge–Kutta methods

For general IVPs, the local solution satisfies

˙̃y = f(t, ỹ), ỹ(tn) = yn.

Integrating this, we obtain

ỹ(tn + ∆t) = yn +

∫ tn+∆t

tn

f(t, ỹ(t)) dt.

The key difference is of course the presence of ỹ(·) on
both sides of the equation.

Approximating the integral with a quadrature formula
leads to
Z tn+∆t

tn

f(t, ỹ(t)) dt = ∆t

s
X

j=1

bjf(tn,j, ỹ(tn,j)) + O((∆t)p+1).

However, we still have the problem that the values
ỹ(tn,j) are unknown.

29



There are 2 basic approaches to dealing with this
problem; but first let us consider a few familiar yet
important formulas for which this is not a problem.

For the left-hand rectangle rule,

∫ tn+∆t

tn

f(t, ỹ(t)) dt = ∆t f(tn, ỹ(tn)) + O((∆t)2)

= ∆t f(tn,yn) + O((∆t)2),

leading to the (forward) Euler (FE) method :

yn+1 = yn + ∆t f(tn,yn).

For this method, we have

yn+1 = ỹ(tn + ∆t) + O((∆t)2),

so it is a first-order explicit Runge–Kutta method.

30



The right-hand rectangle rule leads to the backward
Euler (BE) method :

yn+1 = yn + ∆t f(tn+1,yn+1).

Because the unknown appears on both sides of the
equation, this is an implicit Runge–Kutta method.

Of course we did not have such difficulties with
quadrature problems!

Also this method is no more accurate than forward
Euler, so why would anyone bother with it?

The main reason is to overcome stiffness.

It so happens that backward Euler is also the lowest-
order BDF method (BDF1) that we will derive later.

31



The trapezoidal rule6

yn+1 = yn + ∆t

(

1

2
f(tn,yn) +

1

2
f(tn,yn+1)

)

is a second-order IRK method; it is used in ode23t.

Because the formula is invariant under the
transformation7

yn → yn+1, yn+1 → yn,

tn+1 → tn, tn → tn+1, ∆t → −∆t,

the trapezoidal rule is said to be symmetric.

This is particularly useful for time-reversible flows; such
formulas do not have a preferred direction.

Normally IVPs have a sense of preferred direction
dictated by the time variable. BVPs do not, however,
and so symmetric formulas are popular BVP solvers.

6In the context of PDEs, this method is more commonly known as the
Crank-Nicolson method.

7This transformation reverses the direction of time.

32



Approximating intermediate values yn,j

Let’s suppose we already have a way to obtain

yn,j = ỹ(tn,j) + O((∆t)p);

i.e., we have local approximations that are of the global
order of the method.

In other words, we assume there is a constant C such
that

‖ỹ(tn,j) − yn,j‖ ≤ C(∆t)p.

Using the Lipschitz condition that we have assumed
on f , we have

‖f(tn,j, ỹ(tn,j)) − f(tn,j,yn,j)‖ ≤ L‖ỹ(tn,j) − yn,j‖

≤ LC(∆t)p.

33



So if we use (the computable) f(tn,j,yn,j) in place of
f(tn,j, ỹ(tn,j)), we can see

Z tn+∆t

tn

f(t, ỹ(t)) dt = ∆t

s
X

i=1

bif(tn,j, yn,j)+O((∆t)p+1).

Thus if we can use another method to compute
intermediate values yn,j that are (locally) accurate
to O((∆t)p), we can use them in a method of the
form

yn+1 = yn + ∆t
s

∑

i=1

bif(tn,j,yn,j)

that will be locally accurate to O((∆t)p+1).

34



Explicit RK methods

ERK methods use the strategy of forming intermediate
values by “mini” ERK methods within the larger one.

For example, all ERK methods start with a mini forward
Euler step.

This mini FE step has local accuracy O((∆t)2), so it
can be used as an acceptable intermediate value for
any quadrature scheme with global accuracy p = 2.

For example, the trapezoidal quadrature rule leads to a
two-stage, second-order ERK method known as Heun’s
method :

yn,1 = yn,

yn,2 = yn + ∆tf(tn,yn,1),

yn+1 = yn + ∆t

(

1

2
f(tn,yn,1) +

1

2
f(tn+1,yn,2)

)

.

35



Similarly, we can use Heun’s method to produce the
intermediate values for a quadrature formula to obtain
an ERK of order 3, etc.

This leads us to the general form of the ERK method:

yn,i = yn + ∆t
i−1
∑

j=1

aijfn,j, i = 1, 2, . . . , s,

yn+1 = yn + ∆t

s
∑

i=1

bifn,i,

where
fn,j := f(tn + cj∆t,yn,j).

Note 1. The sum over j is empty when i = 1.

Note 2. You will often see fn,i simply written as Ki.

36



If we translate the quadrature order conditions to this
notation, we find that a method will have (global)
order p (for quadrature problems) if and only if

1

j
=

s
∑

i=1

bic
j−1
i , for all j = 1, 2, . . . , p.

These will certainly be necessary conditions for a
general ERK method to have order p, but they are
not sufficient because in general f = f(t,y), not
f = f(t) as it was for quadrature problems.

Sadly it is (likely!) beyond the scope of this course
to go into the details of a full derivation of the order
conditions for RK methods.

Here are the number of order conditions τ as a function
of order p:

p 1 2 3 4 5 6 7 8 9 10

τ 1 2 4 8 17 37 85 200 486 1205

As we can see τ grows combinatorially with p.

37



The Butcher tableau

The coefficients defining a Runge–Kutta method are
conveniently presented in tableau form, a notation due
to Butcher:

c A

bT

It is a common assumption that

s
∑

j=1

ai,j = ci, i = 1, 2, . . . , s,

This ensures that the time variable is treated
consistently.

With this assumption we can then make the
interpretation that

yn,i ≈ y(tn + ∆t ci).

38



For an ERK, A is strictly lower-triangular : all entries
on and above the diagonal are 0 (and are usually not
displayed).

An entire theory in terms of “rooted trees” exists (and
was originally developed by John Butcher) that gives
the order conditions for a general RK method in terms
of its coefficients.

For example, here are the general RK order conditions
up to order 3:

Order 1:
s

∑

i=1

bi = 1

Order 2:
s

∑

i=1

bici =
1

2

Order 3:
s

∑

i=1

bic
2
i =

1

3
,

s
∑

i,j=1

biaijcj =
1

3!

39



Since then there have been modifications to this theory
(most notably by Peter Albrecht) that make these
conditions even more palatable, especially to the non-
graph theorist.

Here is what those order conditions look like:8

Order 1: b
T
e = 1

Order 2: b
T
c =

1

2

Order 3: γ2 :=
c2

2
− Ac

b
T
c
2
=

1

3
, b

T
γ2 = 0

Order 4: γ3 :=
c3

3
− Ac

2

b
T
c
3
=

1

4
, b

T
γ3 = 0,

b
T
Aγ2 = 0, b

T
Cγ2 = 0.

where b = (b1, b2, . . . , bs)
T , e = (1, 1, . . . , 1)T , c =

(c1, c2, . . . , cs)
T , C = diag (c), and expressions like ck

are understood to apply componentwise.
8In reality, they are linear combinations of the other order conditions.

40



Stages (s) vs. order (p)

Much effort has gone into finding theory for the
minimum number of stages (function evaluations) s
for a given ERK to have order p.

Here is a summary of some results:

p 1 2 3 4 5 6 7 8

s 1 2 3 4 6 7 9 10

Order 14 seems to be the highest order for which an
ERK method has been constructed.

For linear, constant-coefficient problems, it is
possible to have schemes with s = p for any s, but this
is not true for the general problem beyond s = p = 4.

However, this consideration may not be as important
as it might seem.

Extra stages may allow for a more accurate method,
and hence larger steps — perhaps even large enough
to offset the extra cost!

41



Besides, the real issue is in having a pair of formulas
that share stages so that the local error can be
inexpensively estimated.

Deriving so-called embedded RK pairs that share many
stages is a challenging task!

We use the following Butcher tableau notation to
describe embedded pairs:

c A

bT

b̂T

There are a couple of conventions used when talking
about embedded pairs of RK methods.

The text9 prefers to labels the pairs (p, p + 1).

For example, the Fehlberg pair from 1970 is denoted
F (4, 5); the popular pair of Dormand and Prince

9and hence Matlab?

42



(DOPRI5) from 1980 is the formula used in ode45,
hence its name.

Note 3. F (4, 5) uses 6 stages, whereas DOPRI5 uses
7 stages. The extra stage is used to design a more
accurate formula, and in practice DOPRI5 performs
somewhat better than F (4, 5).

There is another convention when it comes to
describing embedded pairs.

In this case, there is a distinction between which
method is used to advance the integration and which
is used to provide the error estimate.

Suppose a pair methods have orders p and p̂, where the
main method of order p is embedded in the (auxiliary)
method of order p̂.

Then the embedded pair is denoted as p(p̂).

Nowadays, p = p̂ + 1; i.e., we always do local
extrapolation (the main method is of higher order),
but in the past this was not always the case.

43



So for example, the Fehlberg pair F (4, 5) really was
derived as a 4(5) pair, whereas the Dormand–Prince
pair DOPRI5 was derived as a 5(4) pair.

In other words, Fehlberg did not intend to use local
extrapolation, but Dormand and Prince did.

Here is the extended Butcher tableau of the Euler–
Heun (1,2) pair:

0

1 1

1
1
2

1
2

44



Autonomous form

To make the algebra a little simpler, much of the
analysis on ODEs is given in terms of the autonomous
ODE f = f(y).

It is always possible to convert a non-autonomous ODE
of size m of the form ẏ = f(t,y) to an autonomous
ODE Ẏ = F(Y) of size m + 1 by adding an extra
variable that corresponds to time.

Noting ṫ = 1, we let

Y(t) := (yT , t)T , F(Y) := (f(t,y)T , 1)T .

Assuming we have the initial condition y(0) = y0, this
is translated to Y(0) = (yT

0 , 0)T .

Note that this is mainly a technique used for analysis;
most software packages do not require the user to enter
the problem in autonomous form; it is generally more
efficient to handle the non-autonomous form directly.

45



“First Same As Last” (FSAL)

There is a common way to squeeze a little more
efficiency out of an embedded ERK pair.

Consider the Bogacki–Shampine 3(2) pair (BS3(2))
used as the integration method in ode23.

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

7
24

1
4

1
3

1
8

The extended Butcher tableau emphasizes the presence
of the abscissa c4 = 1.

The function evaluation associated with this is used
with the auxiliary formula to form ŷn+1, which is used
to form the error estimate.

46



However, this is precisely the same function evaluation
that is required at the first stage of the next step!

So this information can be saved; it does not have to
be recomputed (if the step is accepted), thus saving
one function evaluation per step; i.e., this method
essentially costs 3 function evaluations per step, not 4.

This is called the “first-same-as-last” (FSAL) property.

The actual algorithm is: Evaluate the 3rd-order result
yn+1 from the 3rd stage. This is the approximation
at tn+1. The 4th stage uses f(tn+1,yn+1) to compute
ŷn+1, which is differenced from yn+1 to form the error
estimate. Set fn+1,1 = f(tn+1,yn+1); this is the first
function evaluation of the next step.

You can imagine that deriving embedded pairs with
the FSAL property makes an already difficult task even
more so.

The 7-stage Dormand–Prince pair implemented in
ode45 has this property; in practice is costs little
more than 6 stages per step; this is the minimum
required for an ERK to be 5th order anyway.

47



Continuous extensions

Plotting packages generally just draw straight lines to
connect data points.

However, RK formulas of medium to high order take
such large steps that joining the output points by
straight lines is noticeably poor.

For graphs to be smooth, or in general to obtain
solution values between output points that are of
the same accuracy as the output points, we need
an (inexpensive) interpolant or continuous extension.

This is also called the dense output feature when
talking about RK methods.

Continuous extensions are a relatively recent
development for RK methods.

The idea is to use the function evaluations and the
intermediate solution values in [tn, tn+1] to form a
polynomial interpolant that has the same order of
accuracy as the yn+1.

48



For example, BS3(2) uses yn, fn, yn+1, and fn+1

(all information that is available anyway) to construct
a cubic Hermite interpolating polynomial through the
solution and its slopes at both end points.

Interpolation theory then guarantees us that the
interpolant has the same order of accuracy as yn+1.

This construction on each subinternval yields a
piecewise-cubic polynomial S(t) ∈ C1[0, b].

ode45 also has a continuous extension associated with
it, without requiring any extra stages; however this
continuous extension is only 4th order.

The form of the polynomial interpolant itself is not
easy to write down (or look at).

49



It is expressed as a function of a parameter θ ∈ [0, 1]
with variable coefficients bi(θ), so it looks a lot like the
evaluation of yn+1:

S(tn + θ∆t) = yn +

s∗
∑

i=1

bi(θ)fn,i,

where s∗ is the number of stages used to form the
interpolant.

Hopefully, s∗ ≤ s and the stages coincide, but this
is not necessarily the case; i.e., extra stages may be
required to form the interpolant.

For consistency, bi(0) = 0 and bi(1) = bi.

50



2.2.2 Linear Multi-step methods

Once we have reached tn, we generally have values yn,
yn−1, . . . and slopes fn, fn−1, . . . that are available
for use in computing yn+1.

It is natural to use quadrature here as well.

But now instead of writing

ỹ(tn + ∆t) = yn +

∫ tn+∆t

tn

f(t, ỹ(t)) dt,

interpolating f at s values tn,j ∈ [tn, tn + ∆t], and
exactly integrating the interpolant, we take tn,j = tn−j

because we already have yn−j and fn−j.

The family of methods so derived is called Adams–
Bashforth methods.

The first method in this family is denoted AB1, but it
is identical to the forward Euler method (it interpolates
only fn).

51



Interpolating fn and fn−1 leads to AB2

yn+1 = yn + ∆tn

[(

1 +
r

2

)

fn −
(r

2

)

fn−1

]

,

where r = ∆tn/∆tn−1.

Note 4. The non-uniform mesh spacing must be
taken into account explicitly in the formula; i.e. the
coefficients are not fixed!

For theoretical purposes, ∆t is often assumed constant;
then AB2 simplifies to

yn+1 = yn + ∆t

[

3

2
fn −

1

2
fn−1

]

.

Adams–Bashforth methods are explicit linear multi-
step methods.

52



To derive an implicit family of methods, we interpolate
using fn+1 as well.

This family of methods is known as Adams–Moulton
methods.

The first method in this family is denoted AM1, but
it is identical to the backward Euler method. It is a
one-step method, but it uses only fn+1.

The second member in this family, denoted AM2, is
also a one-step method, but it uses fn+1 and fn. It is
identical to trapezoidal rule.

The accuracy of Adams methods can be analyzed in a
manner similar to what we did for RK methods.

It turns out that, for a given order k, AMk methods
are more accurate and stable than ABk methods.

Which method is preferable for a given problem
depends on how difficult (costly) it is to solve the
nonlinear equations at each step for the AM methods.

For non-stiff problems, we can do this by functional
iteration.

53



Functional iteration

For concreteness, consider AM1: we want to solve the
algebraic equations

yn+1 = yn + ∆tf(tn+1,yn+1)

for yn+1.

Suppose we have a guess y
[ν]
n+1. Then functional

iteration leads to the iteration

y
[ν+1]
n+1 = yn + ∆tf(tn+1,y

[ν]
n+1).

This process is known as “updating” or “correcting”
the current iterate; hence the implicit formula is often
called a corrector.

54



Assuming the algebraic equations have a solution, the
Lipschitz condition on f implies

‖yn+1 − y
[ν+1]
n+1 ‖ = ‖∆t f(tn+1, yn+1) − ∆t f(tn+1, y

[ν]
n+1)‖

≤ ∆t L‖yn+1 − y
[ν]
n+1‖.

Thus if ∆t L < 1, y
[ν+1]
n+1 is closer to yn+1 than y

[ν]
n+1

was, leading to convergence.

In fact, this argument is a proof that for ∆t sufficiently
small, the algebraic equations have a solution, and this
solution is unique.

Clearly, the convergence rate increases as ∆t decreases.

This is important because each iterate costs an
evaluation of f , so if we need many iterates, it might
make more sense to use an ERK with a smaller step
size to achieve the same accuracy.

We want ∆t to be as large as we can afford; one
important way to reduce the number of iterations is to

make a good initial guess y
[0]
n+1.

55



An easy and natural way to do this is to use an explicit
formula, consequently known as a predictor.

For AMk formulas, a natural predictor is ABk or
AB(k − 1).

Another important way to reduce the cost of the
iteration is to note that in practice the iteration
only needs to carried out until the accuracy of the
integration is not adversely affected, and not necessarily
until the equations are satisfied exactly.

Note however that functional iteration is only practical
for non-stiff problems: if L(b − 0) is not large then
choosing ∆t small enough so that ∆t L < 1 will not
restrict ∆t greatly.

For non-stiff problems, normally the accuracy
requirement forces ∆t to be small enough to ensure
rapid convergence.

56



Predictor-Corrector Methods

Combining the ideas on how to lower the cost of
functional iteration, we come up with an important
class of methods known as predictor-corrector methods.

The idea here is that a prediction is made with an AB
formula, and a fixed number of corrections are applied
with an AM formula.

In fact, the number of corrections is usually only 1!

Heun’s method in fact can be interpreted in this way:

yn,1 = yn,

yn,2 = yn + ∆t f(tn,yn,1),

yn+1 = yn + ∆t

(

1

2
f(tn,yn,1) +

1

2
f(tn+1,yn,2)

)

.

57



This is equivalent to a prediction yn,2 = y
[0]
n+1 using

forward Euler (AB1) followed by one correction using
trapezoidal rule (AM2).

Note that we also need to evaluate f(tn+1,yn+1) for
the next step.

This leads to a PECE method (predict-evaluate-
correct-evaluate).

You might think it would be better or more natural to
use AB2 to predict for AM2, but it is not necessary,
and there are advantages to using AB1.

First it is easy to see that a predictor of order k−1 plus
one corrector iteration of order k leads to a predictor-
corrector formula of order k; the leading term is not
the same anymore even though its order is.

58



It is important to realize that a predictor-corrector
method is an explicit method: despite its use of an
implicit formula, the implicit formula is never fully
evaluated.

Hence, predictor-corrector methods should only be used
for non-stiff problems.

One practical difficulty with implementing implicit
methods is deciding on how accurately to solve the
implicit equations.

This issue does not apply to predictor-corrector
methods because only a fixed number of correction
iterations are ever performed; no measure of
convergence is present.

59



BDF Methods

From time tn, the backward differentiation formula
of order k (BDFk) approximates y(tn+1) by the
polynomial P(t) that interpolates yn+1 and the
previous k solution values yn, yn−1, . . . , yn−k+1.

Of course, because we are using this interpolant to
define yn+1, we need one more condition to completely
specify P(t).

The final condition is that we force P(t) to satisfy the
ODE at tn+1; i.e.,

Ṗ(tn+1) := f(tn+1,P(tn+1)) = f(tn+1,yn+1).

We say that P(t) collocates the ODE at tn+1.

This is an important concept in the solution of
differential equations that will come up again in the
solution of BVPs.

60



BDF1 uses a linear polynomial that interpolates the
solution at tn and tn+1.

The interpolant has a constant slope, so the collocation
condition reduces to

yn+1 − yn

∆tn
= f(tn+1,yn+1),

or
yn+1 = yn + ∆tnf(tn+1,yn+1).

BDF2 uses a quadratic polynomial interpolant at tn−1,
tn, and tn+1, leading to

„

1 + 2r

1 + r

«

yn+1 − (1 + r)yn +

 

r2

1 + r

!

yn−1 = ∆tnf(tn+1, yn+1),

where r = ∆tn/∆tn−1.

We will see that BDFs are actually used with a constant
step size ∆t for as many steps as possible; then BDF2
is

3

2
yn+1 − 2yn +

1

2
yn−1 = ∆tnf(tn+1,yn+1).

61



Adams and BDF methods belong to the class of linear
multi-step methods (LMMs), which for constant step
size are written

k
∑

i=0

αiyn−i+1 = ∆t
k

∑

i=0

βifn−i+1.

For one-step methods, we proved convergence by
bounding the propagation of the local error in terms of
the stability of the IVP.

Proving convergence of multi-step methods is harder
than for one-step methods because the error in the
current step depends much more strongly on the errors
made in previous steps.

This necessitates a shift in focus from approximating
local solutions to approximating the global solution,
and from considering the IVP stability to that of the
numerical method.

62



Local Truncation Error

We define the local truncation error 10 (lten) of a linear
multi-step method by

lten :=
k

∑

i=0

αiyn−i+1 − ∆t
k

∑

i=0

βifn−i+1

=
k

∑

i=0

αiyn−i+1 − ∆t
k

∑

i=0

βiẏ(tn−i+1).

Straightforward Taylor series about tn+1 reveals that

lten =
∞
∑

j=0

Cj(∆t)jy(j)(tn+1),

10also called the discretization error

63



where

C0 =
k

∑

i=0

αi, C1 =
k

∑

i=0

[iαi + βi],

Cj = (−1)j

k
∑

i=1

[

ijαi

j!
+

ij−1βi

(j − 1)!

]

, j = 2, 3, . . . .

So a convergent LMM will be of order p if and only
if Cj = 0 for j = 0, 1, . . . , p, and moreover, we know
that

lten = Cp+1(∆t)p+1y(p+1)(tn+1) + . . .

= Cp+1(∆t)p+1y(p+1)(tn) + . . . ;

i.e., we have a convenient expression for the leading
error coefficient.

64



Convergence of LMMs

Suppose we have an explicit LMM

yn+1 = yn + ∆t
k

∑

i=1

βif(tn−i+1,yn−i+1).

The exact solution satisfies

y(tn+1) = y(tn) + ∆t

k
X

i=1

βif(tn−i+1, y(tn−i+1)) + lten.

Subtracting these two equations, noting the local
truncation error is O((∆t)p+1), taking norms, and
using the Lipschitz condition

‖y(tn+1) − yn+1‖ ≤ ‖y(tn) − yn‖

+∆t

k
X

i=1

|βi|L ‖y(tn−i+1) − yn−i+1‖ + C(∆t)p+1
.

65



Notice that there are errors from steps before tn.

To deal with them, we define

En := max
j≤n

‖y(tj) − yj‖.

Then,

‖y(tn+1) − yn+1‖ ≤ (1 + ∆tL)En + C(∆t)p+1,

where

L := L
k

∑

i=1

|βi|.

Thus,

En+1 ≤ (1 + ∆tL)En + C(∆t)p+1.

Now a familiar argument can be used to prove that the
error on the entire interval is O((∆t)p).

Similar arguments prove convergence of AM methods
and AB-AM PECE predictor-corrector methods.

66



Zero stability

Convergence is often proven by showing that the effects
of small perturbations to a numerical solution are not
amplified by more than a factor of O((∆t)−1).

Because the number of steps taken is also O((∆t)−1),
we can think of this as saying that errors do no worse
than add up.

A numerical method that has this property is said to
be zero-stable.

The exact solution satisfies the numerical scheme plus
a small perturbation (lten).

Zero-stability then guarantees the error is O((∆t)p);
i.e., the method is convergent and of order p.

67



Zero-stability limits the achievable order of a multi-
step method as a function of the number of past
values used; e.g., BDFs of order higher than 7 are not
zero-stable. In fact BDF6 is so close to not being
zero-stable that it is not reliable in practice (hence the
code ode15s).

When ∆t varies, we should expect some restrictions
on its rate of change to guarantee stability and
convergence as max ∆t → 0.

If the ratio of successive steps is uniformly bounded
above, then stability and convergence can be proven
for Adams methods [Shampine 1994].

This assumption holds in practice.

For BDFs the situation is slightly more complicated.

In practice, BDFs keep a fixed ∆t until it appears
advantageous to change to a different (constant) ∆t.

Theory guarantees stability and convergence in such
implementations provided the changes in ∆t are limited
in size and frequency, but these limits are not respected
in practice (yet the codes work)!

68



Stability

The numerical methods used in practice are all stable
as max ∆t → 0, but what about for a finite ∆t?

One can write down how small perturbations propagate
in a numerical method, but the result is usually too
complicated to lend any insight.

We consider instead standard stability analysis of the
ODE itself.

Near a point (t∗,y∗), we approximate ẏ = f(y) by a
linear, constant-coefficient equation

u̇ = f(y∗) +
∂f

∂y
(y∗)(u− y∗).

(This process is known as linearizing the ODE about
the (fixed) point (t∗,y∗).)

69



The difference between any two solutions of this
(linear) equation satisfies the homogeneous variational
equation

v̇ =
∂f

∂y
(y∗)v.

Usually we assume that the local Jacobian ∂f
∂y

(y∗) is
diagonalizable; i.e., there is a matrix T of eigenvectors
such that

T−1 ∂f

∂y
(y∗)T = diag (λ1, λ2, . . . , λm).

If we now change variables to w := T−1v, we find
that the equations decouple; i.e., each component of
w satisfies ẇi = λiwi.

70



This leads us to analyze the stability of numerical
methods on the (scalar) test equation

ẏ = λy,

where λ retains its interpretation as an eigenvalue of
the local Jacobian.

Now if R(λi) > 0 for some i, then wj increases
exponentially, and hence so does v.

Because v represents the difference between two
solutions of the linearized ODE, this means the ODE
is (locally) unstable.

Conversely, if R(λi) ≤ 0 for all i, then wi is bounded,
and hence so is v; the ODE is then (locally) stable.

With the test equation, we are able to analyze the
stability of numerical methods by asking: if R(λi) ≤ 0
for all i so that the ODE is stable, how small must ∆t
be in order for the numerical method to also be stable?

This is known as absolute stability theory.

71



Despite the various approximations used, it has proven
quite helpful in understanding how numerical methods
behave in practice.

It can certainly be thought of as a necessary condition:
any numerical method that does not perform well on
the test equation will be of limited use for general
problems.

As an example, consider Euler’s method applied to the
test equation:

yn+1 = yn + ∆t λyn = (1 + ∆t λ)yn.

For a bounded solution, we require |1 + ∆t λ| ≤ 1.

The set
S = {|1 + z| ≤ 1, R(z) ≤ 0}

is called the region of absolute stability of Euler’s
method.

If ∆t λ ∈ S, the method is stable, just like the ODE.

If ∆t λ 6∈ S, the numerical solution will blow up!

72



More generally, we require all ∆t λj ∈ S for all
eigenvalues λj of the local Jacobian.

Forward Euler will be stable for all λ provided ∆t is
sufficiently small ; we knew this.11

Note 5. For the test equation, L = |λ|.

Classically, L(b − 0) is not large; hence ∆t does not
have to be too small to preserve stability.

But if R(λ) < 0 and |λ|(b − 0) ≫ 1, then the ODE is
(very) stable, yet ∆t ∼ 1/|λ| to maintain stability.

The choice of ∆t is determined by two criteria:
accuracy and stability.

We would like it to be determined by accuracy; for stiff
problems, it is determined by stability.

11This is what convergence means, and we know Forward Euler is convergent.

73



Consider the IVP

ẏ = −100y + 10, y(0) = 1, 0 ≤ t ≤ 10.

The exact solution is

y(t) =
1

10
+

9

10
e−100t.

We notice there is an initial period of very rapid
change12.

In this region ∆t must be small to approximate the
solution accurately; usually this is small enough to
maintain stability.

The problem is not stiff in the transient phase!

However, it does not take long for y(t) to become
approximately constant.

We should be able to take a large ∆t in this case and
still get a very accurate answer.

12This is called a boundary layer or transient phase.

74



However, for stability of FE we must have

|1 + ∆t (−100)| ≤ 1, or ∆t ≤ 0.02;

i.e., if we try ∆t > 0.02, the computation blows up!

Hence ∆t is being chosen on the basis of stability, not
accuracy.

Modern codes with step size control do not (usually)
blow up.

They do try to increase ∆t based on accuracy, so in
fact they will take a number of unstable steps!

However, at some point the error becomes too large
relative to the tolerance, resulting in step rejections
and a reduction in ∆t.

The typical result is an accurate solution, but not an
efficient one due to the small step sizes and the many
failed steps.

See mildlyStiffDemo.m

75



Stiff methods and A-stability

Consider the solution to the test equation with the
backward Euler method:

yn+1 = yn + ∆t f(tn+1, yn+1).

This is a linear equation that we can solve for yn+1:

yn+1 =
1

1 − ∆t λ
yn.

The stability region is thus

S =

{∣

∣

∣

∣

1

1 − z

∣

∣

∣

∣

≤ 1, R(z) ≤ 0

}

.

Notice that this is in fact the whole left half of the
complex plane.

Methods that have this property are called A-stable.

76



There is no step size restriction13 due to stability.

In practice, backward Euler (or BDF1) has excellent
stability properties.

BDF2 turns out to also be A-stable.

BDFs 3 through 6 have stability regions that extend to
infinity, but they are restricted to sectors of the form

{z = reiθ : r > 0, π − α < θ < π + α}

that contain the entire negative real axis.

This weaker version of A-stability is called A(α)-
stability.

As the order increases, α becomes smaller, so that
BDF6 is not robust in practice, and BDF7 is not stable
at all.

All ERKs have stability regions that are finite; there
exists a nice closed-form expression for them in terms
of the coefficients of the Butcher tableau.

13at least not for the test equation!

77



So in particular, Heun’s method (being an ERK) has a
finite stability region.

Note that Heun’s method can be interpreted as
a forward-Euler predictor with a trapezoidal rule
corrector.

However, trapezoidal rule turns out to be A-stable!

Thus, the stability properties of a predictor-corrector
pair can differ greatly from the stability properties of
the corrector formula!

For stability, we require that perturbations of the
numerical solution do not grow.

But if R(λ) < 0, then perturbations of the ODE
decay (exponentially); it would be nice if the numerical
method behaved similarly.

BDF1 (backward Euler) damps perturbations strongly
when ∆t R(λ) ≪ −1; specifically,

lim
∆t R(λ)→−∞

yn+1 = 0.

78



An A(α)-stable method with this property is called
L(α)-stable.

For trapezoidal rule, perturbations are barely damped
in this limit; it is A-stable, but not L(α)-stable.

It is interesting to note that BDFs are stable for all
|∆t λ| sufficiently large; i.e., even when R(λ) > 0, the
numerical solution will decay (even though the exact
solution does not)!

Because the method is convergent, everything is OK for
∆t λ sufficiently small; but if ∆t is too large, then the
heavy damping of these formulas may be undesirable.

79



Solving the nonlinear equations

We have seen that functional iteration is not a good
way to solve the nonlinear equations at each step from
an implicit method if the IVP is stiff: for the iteration
to converge, ∆t has to be small enough to make the
mapping contractive.

This defeats the purpose of using an implicit method
in the first place because we would like to take large
∆t for stiff problems.

To solve these equations when the IVP is stiff, we must
resort to a more powerful method: Newton’s method
(or variant thereof).

80



For BDFs, the nonlinear equations to be solved at each
step have the form

yn+1 = ∆t γf(tn+1,yn+1) +ψ,

where γ is a method-dependent constant, and ψ takes
care of all the terms involving the past solution values
yn, yn−1, etc.

For example, for BDF1, γ = 1 and ψ = yn.

BDF2 is given by

yn+1 −
4

3
yn +

1

3
yn−1 =

2

3
∆tf(tn+1,yn+1);

hence

γ =
2

3
, ψ =

4

3
yn −

1

3
yn−1.

As with simple iteration for non-stiff problems, it is

important to have a good initial guess y
[0]
n+1.

A good approach is to fit a polynomial P(t) through

yn, yn−1, . . . , yn−k+1 and set y
[0]
n+1 = P(tn+1).

81



To solve the nonlinear equations by Newton’s method,

we linearize about (tn+1,y
[ν]
n+1) to obtain

y
[ν+1]
n+1 = ψ+ ∆t γ[f(tn+1,y

[ν]
n+1) + J(y

[ν+1]
n+1 − y

[ν]
n+1)],

where (for a true Newton iteration)

J =
∂f

∂y
(tn+1,y

[ν]
n+1).

It turns out that there are more efficient possibilities.

Similar methods, known as variants of Newton’s
method, turn out to be more efficient.

The idea here is that although you lose the quadratic
convergence rate of Newton’s method (hence requiring
more iterations for a given accuracy), the iterations are
so much cheaper that you can afford to take a few
more and still end up with a favourable tradeoff.

Because the most expensive part of the true Newton
iteration is evaluating and factoring J, variants of
Newton’s method approximate J in different ways.

82



For example, the so-called chord method approximates
J by it value at the beginning of the current step:

J ≈
∂f

∂y
(tn,y

[0]
n+1).

This leads to only one LU decomposition per step.

The method is sometimes said to freeze the Jacobian.

In practice, codes freeze Jacobians over as many steps
as they can get away with.

83



It is important to organize the computation of
Newton’s method properly: the next iterate should
be formed by computing a correction δy[ν] to the
current iterate as follows.

The Newton iteration can be re-written as

(I− ∆t γJ)δy[ν] = ψ + ∆t γf(tn+1,y
[ν]
n+1) − y

[ν]
n+1.

This is a linear system that can be solved for δy[ν],
and then the new iterate formed as

y
[ν+1]
n+1 = y

[ν]
n+1 + δy[ν].

It is important to do this because when the IVP is stiff,
the iteration matrix (I− ∆t γJ) is ill-conditioned; i.e.,
is it close to singular.

When solving a linear system with an ill-conditioned
coefficient matrix, you often get no more than a couple
of digits of accuracy out of the solution.

This is all we would get out of y
[ν+1]
n+1 if we computed

it directly; this is probably insufficient.

84



However, if we can compute a few correct digits in
δy[ν], then more and more digits would be correct in

y
[ν+1]
n+1 as ν increases.

This is because δy[ν] should be getting smaller with
increasing ν: the right-hand side of the Newton
iteration is the residual, and it should be getting smaller
and smaller as our iterates get more and more accurate.

85



It is very convenient to have an option for codes to
approximate Jacobians internally by finite differences.

This process can be thought of as a method for
performing numerical differentiation.

Approximation of J by finite differences is the default
option for the Matlab solvers.

It is generally very difficult to find the right increment
over which to difference when finding derivatives in
this way; fortunately in this context all we need is
a sufficiently accurate approximation for the modified
Newton iteration to converge.

Matlab has a built-in function called numjac that
can generally be used to compute finite-difference
Jacobians: it is not recommended to write your own
code to do this!

In general, finite-difference Jacobians are convenient
and often satisfactory; however, solvers are more robust
(and often faster) if you can (correctly) compute and
code an analytical Jacobian.

86



Nowadays, the use of automatic differentiation software
allows you to have both the convenience of not having
to figure out and code analytical Jacobians by hand as
well as having the robustness as if you did.

This is an even more important issue in the numerical
solution of BVPs.

For large systems of ODEs, especially those arising
from a method-of-lines approximation of a system of
PDEs, it is typical that only a few components of y

appear in each equation.

If yj does not appear in fi, then ∂fi
∂yj

= 0.

When most of the entries of a matrix are 0, the matrix
is said to be sparse.

By storing only the non-zero entries of a matrix, not
only is storage greatly reduced, but so is the cost of
solving a linear system involving it.

It is easy to take advantage of sparsity in the important
case that a matrix is banded; i.e., all the non-zero
elements line within a band of diagonals.

87



For example, if Ji,j = for all (i, j) such that |i−j| ≤ 1,
then the matrix is tri-diagonal and has bandwidth of 3.

Such a system only requires O(m) storage instead
of O(m2) in general; it also requires only O(m)
operations to factor, instead of O(m3) in general.

These savings are critical in the solution of large
systems; they often make the difference between
obtaining a result or not.

More about this in Section 2.3.3.

As we have said, each step of a BDF method is much
more expensive (both in terms of computing time and
storage) than the corresponding step of a method for
a non-stiff problem.

So the use of BDF methods are only advantageous
when the increase in step size more than offsets the
additional cost per step; i.e., for stiff problems.

For non-stiff problems, Adams methods are more
accurate than BDFs and hence would be preferred.

88



It is hard to recognize whether a problem is stiff or
non-stiff a priori; that’s a shame because we know
good methods for solving each kind and performance
may suffer if you use the wrong one.

Unless you have previous insight as to the stiffness of
a problem, the rule of thumb is to attempt to solve a
problem using a non-stiff method and only revert to a
stiff method if the performance is unsatisfactory.

A practical definition of a stiff problem is one that can
be solved most efficiently by a method intended for
stiff problems.

Stiff problems are typified by solution components that
change on a scale that is small relative to the length
of the interval of integration.

But the solution of interest itself must be slowly varying
as well in some regions.

Many problems are mistakenly described as stiff
because they have regions of rapid solution variation;
e.g., boundary layers.

89



However, in these regions the problems are in fact
non-stiff because the step size must be small to resolve
these changes.

A problem is stiff in regions where its solution is easy
to approximate (slowly varying), but large step sizes
are precluded by stability considerations.

It is clear that the ability to change step sizes is crucial
for the practical solution of these problems; see the
proton transfer and Robertson problems of Section 1.4.

This also invites the possibility of software that detects
stiffness and switches methods automatically between
stiff and non-stiff solvers as appropriate; these codes
are known as type-insensitive software.

90



Error Estimation and Change of Order

Estimating the local truncation error of a LMM is
generally considered to be easier than estimating the
local error of a RK method.

Even then, proving that these estimates work is hard!

With Adams methods, it is easy to take a step with
formulas with orders that differ by 1; e.g., predict with
AB(k − 1) and correct once with AMk.

As usual, advancing with the higher-order method AMk
means we are doing local extrapolation.

This is the approach adopted in ode113.

91



Milne’s device

Another approach is based on the expression

lten = Cp+1(∆t)p+1y(p+1)(tn) + . . . .

The idea here is to take a step with ABk to obtain

y
[0]
n+1 and AMk to obtain yn+1 and estimate lten by

a suitable difference:

yn+1−y
[0]
n+1 = (Cp+1−Ĉp+1)(∆t)p+1y(p+1)(tn)+. . . .

Hence we can obtain the computable estimate

lten =
Cp+1

Cp+1 − Ĉp+1

(yn+1 − y
[0]
n+1).

This is known as Milne’s device.

AMk is used to advance the integration because it is
more accurate and stable than ABk.

92



The error of AMk is being controlled, so local
extrapolation is not done.

Strictly speaking here we assume that the AM corrector
is to be iterated to convergence, but because the order
of the predictor-corrector combination is the same as
the AM method, this approach applies to predictor-
corrector combinations as well.

93



A natural approach for BDF methods

Recall that for BDF1,

lten = −
(∆t)2

2
ÿ(tn) + . . . .

A natural approach for BDF methods is to estimate
this quantity directly.

BDFs are based on numerical differentiation, so it is
natural to interpolate yn+1, yn, and yn−1 with a
quadratic polynomial Q(t) and set ÿ(tn) ≈ Q̈(tn).

This is how ode15s estimates lten.

Similarly a cubic interpolant is used in ode23t to
approximate the third derivative term in lten of the
trapezoidal method.

Both of these examples are one-step methods but they
use past information to estimate lten.

94



Past information is also used to construct initial guesses
to implicit methods.

In the sense, the distinction between implicit one-step
methods and multi-step methods is blurred.

95



Changing Order

An interesting aspect of these estimates is that they
can be used to estimate the value of lten that would
have been obtained if a different order had been used.

We can see this by looking at AM1 and AM2.

When taking a step with AM2, we could just as easily
estimate lten for AM1.

It is also clear that (at least theoretically) we could use
more past values to estimate the error that would have
been made with AM3.

This opens the door to adapting the order as well in
order to use larger step sizes.

This is what modern Adams and BDF codes like
ode113 and ode15s actually do.

Variation of order plays another role in modern multi-
step codes.

96



Because the lowest-order formulas reduce to one-step
methods, we can use them to start the integration; this
is both convenient and efficient, and hence all modern
LMM codes do this.

The past values from successful steps can then be used
with formulas of higher order.

Again, we omit many of the practical details, but the
idea is that order is quickly increased to a level suitable
for the problem.

Codes that vary order and time-step are generally called
variable-step size, variable-order (VSVO) codes.

They are not limited to LMM formulas; i.e., VSVO-RK
codes exist as well.

As a final remark, we note that little is known
theoretically about the behaviour of methods that vary
order (i.e., formula).

There are results for constant order that provide
insight, but in general our theoretical understanding
is limited for modern variable-order LMM codes.

97



Continuous Extensions

Adams and BDF methods are based on polynomial
interpolation; hence it is natural to use these
polynomials as interpolants to provide continuous
extensions for these methods.

These continuous extensions can help us change the
step size in a linear multi-step method.

We have seen why there are practical reasons to work
with a fixed ∆t for some number of steps.

In order to use a LMM with a different “constant” step
size ∆T starting at time tn, we simply evaluate the
continuous extension at tn − ∆T , tn − 2∆T , etc.

This is a standard technique for changing step size
with BDF methods; some codes (e.g., DIFSUB) also
use it for Adams methods.

98



2.3 Solving IVPs in Matlab

The simplest instance of solving an IVP in Matlab is
to just define the IVP and choose a solver.

Defining the IVP involves defining a function to
evaluate the right-hand side f(t,y), an interval of
integration [t0, tf ], and an initial condition y0.

We have said that the rule of thumb is to start with
a non-stiff solver (like ode45) and move on to a stiff
solver (like ode15s) if you suspect the problem may
be stiff; e.g., if ode45 performs unsatisfactorily.

However, a stiff solver will only perform well if the
reason the non-stiff solver performed poorly was due
to stiffness.

There are other things that make IVPs hard; if so, a
stiff solver may not perform any better.

99



Note 6. Matlab programs can be written as scripts
or as functions. The codes in the text are written as
functions because then any auxiliary functions can be
included in the same file as the main program.

This becomes an issue when several such functions
must be supplied; e.g., when solving ODEs with event
functions.

It is always necessary to supply auxiliary functions when
solving BVPs.

100



Example 2.3.1

ẏ = y2 + t2, y(0) = 0, 0 ≤ t ≤ 1.

This problem can be solved analytically.

It is also straightforward to solve numerically.

See ch2ex0.m

101



Example 2.3.2

Recall the proton transfer problem from Section 1.4.

ẋ1 = −k1x1 + k2y,

ẋ2 = −k4x2 + k3y,

ẏ = k1x1 + k4x2 − (k2 + k3)y,

subject to the initial conditions

x1(0) = 0, x2(0) = 1, y(0) = 0,

for 0 ≤ t ≤ 8 × 105. The constants are

k1 = 8.4303270 × 10−10, k2 = 2.9002673 × 1011,

k3 = 2.4603642 × 1010, k4 = 8.7600580 × 10−6.

See ch2ex1.m

102



Note 7. Options are passed to the Matlab IVP
solvers via the auxiliary function odeset and the use
of keywords.

The command help odeset gives short descriptions
of the options; simply entering odeset gives you a
brief reminder.

Options can be assigned in any order.

Keywords are not case-sensitive.

Note 8. This problem is stiff!

103



Example 2.3.3

By default, the IVP solvers return the solution at all
steps taken during the integration.

To get finer control over the output, you may specify
an output function that the solver will call after each
step with the solution it has just computed.

There are a few built-in output functions, e.g.,
odeplot, odephas2, odephas3, and odeprint.

By default, when you do not specify any output
function, the solver assumes it is odeplot.

This function plots all the solution components as they
are computed.

Usually you will want finer control than this: to
select which components are displayed, you can use
the OutputSel option.

104



Recall the program dfs.m that provides a modest
capability for computing and plotting solutions of the
scalar ODE ẏ = f(t, y).

We will now see how dfs.m allows the user to specify
a minimum allowable step size for an integrator.

A minimum allowable step size is a feature of all (high-
quality) numerical IVP solvers; some allow the user to
control it, others (including Matlab) do not.

See dfs.m

105



2.3.1 Event Location

The solutions produced by dfs.m are plotted in a
window specified by the array [wL,wR, wB,wT ].

The solution y(t) starts at an initial point (t0, y0) and
is plotted as long as x ∈ [wL, wR] and y ∈ [wB,wT ].

A call is made to ode45 with interval [t0, wR], but it
entirely possible that the solution exit the window out
the top or bottom before ever reaching wR.

We would like a way to terminate the integration if
there is a t∗ such that y(t∗) = wT or y(t∗) = wB.

These are known as events; in general they are
functions of the form

g1(t,y(t)) = 0, g2(t,y(t)) = 0, . . . , gk(t,y(t)) = 0.

The process of determining the first time t∗ such that
one of these equations holds is called event location.

106



Sometimes we just want to know the time t∗ or the
solution y(t∗) at the event; other times we may need
to terminate the integration at t∗ and/or start solving
a new IVP (possibly with initial conditions that depend
on t∗ and/or y(t∗)).

Sometimes it matters whether the event function is
increasing or decreasing at the time of the event.

In the program dfs.m, there are 2 event functions
(wB − y and y − wT ) to detect solutions that leave
the visible window.

In this case, both events are terminal, and whether
the event function is increasing or not at the event is
irrelevant.

All the Matlab solvers have event location capability.

This is a non-trivial feature, and this fact is not always
appreciated!

Event location problems can be ill-posed!

Most codes that locate events look for a change in
sign in the components of g(t,y) at each step.

107



If gi(tn,yn) and gi(tn+1,yn+1) have opposite signs,
then the solver invokes a standard root finder to solve
the algebraic equation gi(t,y(t)) = 0 for t ∈ [tn, tn+1].

This is where a continuous extension is indispensable:
without it we would have to take a step with the IVP
solver for every t where we needed to evaluate gi(t).

It is much more efficient to just evaluate the continuous
extension S(t); recall S(t) ≈ y(t) for all t ∈ [tn, tn+1].

Event location then corresponds to finding the first
(earliest) root of g(t,S(t)) = 0.

Strictly speaking we must find the root closest to tn
because, e.g., the ODE may change then.

Now g(t,y) has more than one component, so they
must be processed simultaneously: it is entirely possible
that while trying to find the root of gi(t,y) we find
that gj(t,y) vanishes first!

The approach to event location just outlined has the
usual pitfalls of completely missing even-order zeros
(because there is no change of sign) and completely
missing multiple zeros within one step.

108



Step sizes are chosen to resolve changes in y(t), not
in g(t,y(t)): a code could easily step over multiple
events and not detect a sign change.

Another issue is that we want the earliest root of
g(t,y), and in general there is no way to guarantee we
have computed it.

Discontinuous event functions are not rare, and this
complicates the event location process further.

The root-finding problem can be ill-conditioned; i.e.,
t∗ is poorly determined by evaluating g.

Yet another complication here is that in the pure root-
finding problem, we assume that g can be evaluated
very accurately (to within a multiple of machine
precision); with event location y(t) is known to much
less accuracy.

This leads to the question of how accurately one should
determine t∗.

It is difficult to choose tolerance values for event
location in addition to those for solving the IVP.

109



In Matlab, solvers locate events as accurately as
possible (down to machine precision).

For this to be practical, the root-finding algorithm
needs to be fast in the usual case when g is smooth
and reasonably fast when it is not.

The Matlab solvers implement a hybrid strategy of
the (relatively) slow but sure method of bisection with
the so-called Illinois algorithm that is both fast for
smooth g and vectorizable.

Event location boils down to specifying the events and
the action of the solver when it finds one.

Event location problems usually get complicated by
what needs to happen after the event is located.

See dfs.m for some simple examples of event location.

110



Example 2.3.4

Poincaré maps are important tools for studying the
behaviour of dynamical systems.

They give snapshots of the state of the dynamical
system at pre-defined instants.

However, rather than taking snapshots at fixed intervals
of time, values are often sought for which a linear
combination of solution components vanishes; e.g.,
when a given component is 0.

We consider a pair of coupled harmonic oscillators

ẏ = (ay3, by4,−ay1,−by2)
T , y(0) = (5, 5, 5, 5)T ,

for 0 ≤ t ≤ 65, where a = 103/33, b = 19/9.

We look at a plot of the part of phase space defined
by (y1(t), y2(t), y3(t)).

111



We also look at Poincaré maps defined by

(y1(t
∗), y3(t

∗)) when y2(t
∗) = 0,

(y1(t
∗), y2(t

∗)) when y3(t
∗) = 0.

See ch2ex2.m.

The output from the code is

Event 1 occurred 43 times.

Event 2 occurred 65 times.

−10

−5

0

5

10

−10

−5

0

5

10
−8

−6

−4

−2

0

2

4

6

8

Figure 1: Part of phase space (y1(t), y2(t), y3(t)).

112



−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

y 3(t
)

y
1
(t)

Figure 2: Poincaré map of (y1(t
∗), y3(t

∗)) when
y2(t

∗) = 0.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

y 2(t
)

y
1
(t)

Figure 3: Poincaré map of (y1(t
∗), y2(t

∗)) when
y3(t

∗) = 0.

113



Note 9. Initial points are treated differently in event
location because sometimes an event that we wish to
regard as terminal occurs at the initial point; see, e.g.,
Example 2.3.5.

Accordingly, solvers never allow initial points to trigger
terminal events.

When using event location, the solver returns
additional information, i.e., the times that the events
occur (te), the solutions corresponding to these points
(ye), and an integer array specifying which event
function (component of g) triggered the event (ie).

So a convenient way to check if there are no events is
to test isempty(ie).

114



Example 2.3.5

Consider the problem of a ball bouncing down a ramp.

Let the ramp be the long side of the triangle with
vertices (0, 0), (0, 1), and (1, 0).

Let the position of the ball at time t be (x(t), y(t)).

Suppose that the ball is released from rest above the
top of the ramp; i.e., x(0) = 0, y(0) > 1, ẋ(0) = 0,
and ẏ(0) = 0.

The (free) motion of the ball is governed by the
equations

ẍ = 0, ÿ = −g,

where g = 9.81 is the acceleration due to gravity.

We convert this system to first order in the usual way
by defining

y1(t) = x(t), y2(t) = ẋ(t), y3(t) = y(t), y4(t) = ẏ(t).

115



We need to detect when the ball hits the ramp because
at that point we will need to modify the state of the
ball to model the impact.

In this case, the equations of motion do not change,
but they might in other problems.

Suppose the ball hits the ramp at t = t∗ > 0.

Then the ball’s horizontal position is x(t∗) and its
vertical position is y(t∗) = 1 − x(t∗).14

Thus the (scalar) event function is

g1 = y3 − (1 − y1).

This is terminal event because we want to change
things about the simulation at that point (we do not
want to just keep going).

We note that there is nothing in the ODEs themselves
that tells the ball that the ramp is there!

14The first event will have x(t∗) = 0.

116



After hitting the ramp, the ODEs remain the same,
but the initial conditions are reset as follows:

The position of the ball after collision is the same as it
was before collision.

The velocity of the ball normal to the ramp before
collision is reversed and reduced by a factor k ∈ (0, 1)
known as the coefficient of restitution; the velocity
parallel to the ramp remains unchanged15.

Without getting into the physics, after collision, we
start a new IVP with the same ODEs and ICs given by

(y1(t
∗),−ky4(t

∗), y3(t
∗),−ky2(t

∗)).

The same terminal event function can be used to detect
subsequent collisions.

However, the initial point of these new IVPs will all be
touching the ramp: this is why we treat initial points
differently for terminal events.

15The true physics are significantly more complicated!

117



We can avoid reporting the initial point of each sub-
integration as an event by setting direction to −1:
the beginning of each sub-integration is characterized
by the ball leaving the ramp; i.e., g1 is increasing.

The end of each sub-integration is characterized by the
ball hitting the ramp; i.e., g1 is decreasing.

Setting direction= −1 indicates that only g1

decreasing should trigger an event.

We also terminate the simulation when the ball leaves
the ramp.

This corresponds to x(t∗) = 1; hence we set another
event function g2 = y1 − 1.

See ch2ex3.m

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

118



For some choices of k and y(0), it is possible the ball
never reaches the end of the ramp.

Our model is not valid then (the ball is rolling), so we
also terminate if bounces are clustering (successive t∗’s
differ by < 1%) or if a bounce occurs within 1% of the
end of the ramp.

Note 10. We do not know how long it will take for
the ball to reach the end of the ramp (if ever!)!

But solvers require a final time!

So we take a guess at one for the first bounce, then
re-use this guess for subsequent bounces, but we also
choose a short enough interval to give us a nice plot.

Note 11. The path of the ball consists of several
pieces that are accumulated in a couple of arrays for
convenience.

Because the ODEs are so simple, the solver output
is so coarse that the plot of the solution would look
jagged. This is taken into account in the choice of the
intervals of integration.

119



2.3.2 ODEs having a Mass Matrix

The Matlab solvers accept IVPs in the more general
form

M(t,y)ẏ = f(t,y), (3)

where M(t,y) is called a mass matrix.

If M(t,y) is singular, then this is a system of
differential-algebraic equations (DAEs).

DAEs are not ODEs!

A treatment of the numerical solution of DAEs is well
beyond the scope of this course; we note only that
the Matlab codes for stiff ODEs can solve so-called
index-1 DAEs.

In its simplest use, solving ODEs of the form (3) is done
simply by telling the solver a mass matrix is involved
via the option Mass.

If M(t,y) is constant, then you should pass this
constant matrix itself as the value of the Mass.

120



The codes exploit the fact that M is constant, so it is
efficient and convenient for the user.

The solvers actually solve the standard form

ẏ = F(t,y) := M−1f(t,y),

where an LU factorization of M is computed before
the integration process begins.

Whenever F(t,y) is to be evaluated, a linear
system is solved using f(t,y) using the pre-computed
factorization.

When M(t,y) is not constant, you must provide a
(sub)function to evaluate it and pass the name to the
solver as the value of Mass.

This is the only thing that is strictly required to solve
a problem.

If you know that M(t0,y0) is not singular, then you can
help the solver by setting the option MassSingular

to no.

121



Conversely, if you know you have a DAE, you can set
MassSingular to yes.

If you do not know or you do not set MassSingular,
the solver sets MassSingular to maybe and
numerically checks for singularity itself.

Note that the codes only check for singularity of
M(t0,y0).

If M(t,y) becomes singular at a later time (or state),
most codes will behave badly, except perhaps ode15i,
which is designed to handle such a case more gracefully.

For large systems of ODEs, it is essential to take
advantage of sparsity to avoid, e.g., storing 0’s,
multiplying by 0, or adding 0.

These are wasteful operations, and if M(t,y) is say
more than 90% sparse, the overall computation will
bog down even for moderately sized systems!

Also there is an option to inform the solver how strongly
M(t,y) depends on y, but it may soon be removed.

More on this after Example 2.3.11.

122



Example 2.3.6

There is a demo in Matlab called batonode that
illustrates the use of a mass matrix.

A baton is modelled as 2 particles of mass m1 and m2

that are attached to opposite ends of a light straight
rod of length L.

The baton travels in a vertical plane under the action
of gravity.

If the co-ordinates of the first particle at time t are
(x(t), y(t)) and the rod makes angle θ(t) with the
horizontal, then Lagrange’s equations of motion are
naturally expressed in terms of a mass matrix that
depends on θ(t).

See batonode.m

It is certainly more convenient to solve the ODEs in this
form rather than to find the inverse of M analytically
to convert it to standard form.

123



With such a small system, the numerical test to see if
M is singular with the default setting of MassSingular
to maybe is not very expensive.

Not much efficiency is gained by taking advantage of
the sparsity of M in this case either because of the
small system size.

In general to take advantage of sparsity, only the line
M=zeros(6,6) need be changed to M=sparse(6,6).

124



Example 2.3.7

The incompressible Navier–Stokes equations for time-
dependent fluid flow in one space dimension on an
interval of length L can be formulated as the system
of PDEs

∂U

∂t
+ A

∂U

∂z
= C, 0 ≤ z ≤ L, t ≥ 0,

where U = (ρ,G, T )T consists of 3 unknowns, the
density ρ, the flow rate G, and the temperature T ,

C =











0

−KG
∣

∣

∣

G
ρ

∣

∣

∣
− ρga sin(θ)

a2ΦPHκ

CpAf











,

125



and

A =









0 1 0
1

ρκ
− G2

ρ2 2G
ρ

β
κ

−a2βT̄G

ρ2Cp

a2βT̄
ρCp

G
ρ









.

See

ch2ex4.m

for relevant fluid properties and parameter values.

We note that T̄ = T + 273.15 and the boundary
conditions are

ρ(0, t) = ρ0 = 795.5,

T (0, t) = T0 = 255.0,

G(L, t) = G0 = 270.9.

We wish to compute a steady-state solution to these
equations; i.e., for Ut = 0.

126



It turns out that if ρt = 0 then G(z) = G0 for all
z ∈ [0, L] so the PDEs reduce to the ODEs

0

B

@

1
ρκ

−
G2

0
ρ2

β
κ

−
a2βT̄G0

ρ2Cp

G0
ρ

1

C

A

 

dρ
dz

dT
dz

!

=

0

@

−KG0

˛

˛

˛

G0
ρ

˛

˛

˛− ρga sin(θ)

a2ΦPHκ

CpAf

1

A .

This way of converting PDEs to ODEs is known as
continuous space, discrete time (CSDT) solution.

It can also be called the transverse method of lines.

Such an approach may lead to an IVP or a BVP,
depending on the BCs for the PDE.

These equations are used to model the sub-cooled
liquid portion of a three-phase16 steam generator in
power systems.

In such a model, the (moving) boundaries between the
phases are determined using the equation of state.

16The other two phases are the saturated liquid-steam phase and the pure
steam phase.

127



For example, the ODEs can be integrated from z = 0
in the positive z direction until ρ = ρsat(T ), the “liquid-
side” saturation density.

We can locate this point by defining the event function

g(z, ρ, T ) = ρ(z) − ρsat(T (z)).

For convenience, we use the phony equation of state

ρsat(T ) = −3.3(T − 290) + 738.

See ch2ex4.m

128



2.3.3 Large Systems and the Method

of Lines

There are issues related to solving large systems of
ODEs that we now address directly.

Matlab is a PSE and hence not necessarily
appropriate for solving the very large systems that
are commonplace in scientific computing; nonetheless
it is feasible to solve rather large systems.

The method of lines (MOL) is a way of approximating
PDEs by ODEs.

Often these systems are large and stiff.

Matlab has a code called pdepe that solves small
systems of elliptic and parabolic PDEs in one space
dimension and time.

The idea behind the MOL is to discretize all the
(spatial) variables to obtain a set of ODEs.

This process is called semi-discretization.

129



Example 2.3.8

We solve the one-way wave equation17

ut + c(x)ux = 0, c(x) =
1

5
+ sin2(x − 1),

0 ≤ x ≤ 2π, 0 ≤ t ≤ 8, u(x, 0) = e−100(x−1)2,

and periodic boundary conditions u(0, t) = u(2π, t).

The initial profile is not periodic, but it decays so fast
near the ends that it can be considered so.

The solutions to this equation are waves that move
with speed c(x).

In this case, we have a peak at x = 1 that moves right
(because c(x) > 0) with a variable speed.

It turns out the peak does not reach the right end-point
during the time interval specified.

17This is also an example of a one-dimensional hyperbolic conservation law.

130



We note that because information propagates from left
to right in this problem, only a BC at x = 0 should be
specified.

In the MOL, a grid x1 < x2 < . . . < xm is chosen to
partition the spatial domain [0, 2π].

We define the unknowns to be the solution at the grid
points: ui(t) ≈ u(xi, t) for i = 1, 2, . . . , m.

These functions are determined by a system of ODEs

dui

dt
= −c(xi)(Du)i, ui(0) = u(xi, 0), i = 1, 2, . . . , m,

where (Du)i ≈ ux(xi, t).

We first describe how to approximate ux using
a spectral method: ux(xi, t) is approximated by
interpolating the values u1(t), u2(t), . . . , um(t) with
a trigonometric polynomial in x, differentiating the
interpolant with respect to x, and evaluating the
derivative at xi.

131



It is typical of spectral methods to use data from the
entire interval in this way.

For equally spaced mesh points, this approximation is
made very convenient using the fast Fourier transform
(FFT); we omit details.

See ch2ex5.m

Note 12. With large problems, you should not store
the output from every step!

Nor should you return the numerical solution as a
structure (way too much information).

Note 13. It is commonly thought that any moderate
to large system of ODEs that arise from the MOL is
stiff, but this is not necessarily true!

If we run ch2ex5.m with ode15s, we find it takes
about 5 times longer than with ode23!

132



Example 2.3.9

Spectral approximations are very accurate for smooth
functions, but they are global in nature and not trivial
to understand.

On the other hand, finite difference approximations are
easier to understand and implement.

They are of (much) lower accuracy, but they are local
in nature and hence require (much) less smoothness of
the solution.

It is worth mentioning that hyperbolic conservation
laws (like the one-way wave equation) support
discontinuous solutions, and this is a matter that
receives considerable attention in the numerical
solution of such PDEs.

A simple, yet reasonable finite difference scheme for
hyperbolic conservation laws is the so-called first-order
upwind scheme.

133



Because c(x) > 0, the wave always moves to the right,
and the upwind spatial discretization leads to

u̇i = −c(xi)
ui − ui−1

∆x
, i = 1, 2, . . . ,m,

where we have assumed a uniform mesh in x with equal
spacing ∆x.

The periodic boundary condition is imposed for i = 1,

u̇1 = −c(x1)
u1 − um

∆x
.

Rather than use this, the initial data allow us to specify
ux(0, t) = 0, which implies u̇1 = 0.

See ch2ex6.m

This IVP is not stiff, but it is illustrative to see what
are some of the issues involved in treating it as a stiff
problem.

Stiff solvers must form and factor Jacobian matrices;
for a system of size m, the Jacobian is m × m.

134



Values of m in the thousands or millions are common,
making it critical to account for sparsity, not just for
storage but also for efficiency in solving the linear
systems.

Sparse matrix technology is fully integrated within
Matlab.

The only typical provision for sparsity in general
software for scientific computing is for banded
Jacobians.

Somehow we must inform the solver of the zeros in J.

The simplest way is to provide J analytically as a sparse
matrix.

This is done by means of the option Jacobian; if J is
constant, the option is set equal to the constant value.

This could have been done in ch2ex6.m with

B = [ [ -c_h(2:N); 0] [0; c_h(2:N)] ];

J = spdiags(B,-1:0,N,N);

options = odeset(’Jacobian’,J);

135



When J is not constant, you provide a function to
evaluate it and return it as a sparse matrix.

The solvers are generally somewhat more efficient and
robust when using analytical Jacobians, so it is better
than letting the solver work out Jacobians numerically.

For large problems it is important to inform the solvers
of the Jacobian’s sparsity structure.

This is provided by creating a matrix that has zeros in
the places where J has zero entries and ones elsewhere;
it is passed to the solver in the option JPattern.

Here is an example for ch2ex6.m

S = spdiags(ones(N,2),-1:0,N,N);

S(1,1) = 0;

For this problem it would be more efficient to provide an
analytical expression for J (because it is not difficult
to compute) and passed as the value of Jacobian

(because it is constant).

136



Example 2.3.10

We have just seen that one way to speed up the
numerical approximation of Jacobians is to use sparsity.

Another way is to make function evaluations more
efficient.

One way to do this in Matlab is via vectorization.

It is a form of parallel processing: independent
processes are performed simultaneously rather than
sequentially.

It is perhaps more precisely called single instruction
multiple data (SIMD).

For example, when the solvers approximate a Jacobian,
they evaluate f(t,y) for several y and the same t.

This can be exploited by coding the function to accept
arguments (t,[y1 y2 ...]) and return [f(t,y1)

f(t,y2) ...].

137



You tell the solver this is the case by setting the option
Vectorized to on.

It is often not much work to vectorize a function in
Matlab.

For example, we can vectorize the right-hand side in
brussode

dydt(i) = 1 + y(i+1)*y(i)^2 - 4*y(i) + ...

c*(y(i-2) - 2*y(i) + y(i+2));

by re-writing this line as

dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...

c*(y(i-2,:) - 2*y(i,:) + y(i+2,:));

Whether vectorization is helpful or not depends on
the sparsity pattern of J and how expensive it is to
evaluate f .

To illustrate a vectorization that is not as
straightforward, suppose we wish to vectorize the right-
hand side from ch2ex5.m

dvdt = mc.*real(ifft(ixindices.*fft(v)));

138



Matlab’s fft function is already vectorized,
so the key will be to vectorize the operation
ixindices.*fft(v).

We could do it in a loop, but a more efficient way is to
make ixindices a matrix with N identical columns.

ixindices = repmat(ixindices,1,N);

We can now use the size command to find out
how many columns there are in v and use the
corresponding number of columns in ixindices to
do the multiplication ixindices.*fft(v).

The same change must be made with mc.

Finally, the evaluation of dvdt is

nc = size(v,2);

dvdt = mc(:,1:nc).*real(ifft(ixindices(:,i:nc).*fft(v)));

139



Example 2.3.11

Mass matrices arise when a Galerkin method is used for
the spatial discretization by the finite element method.

Consider solving the heat equation

ut = uxx, 0 ≤ x ≤ 1, t ≥ 0,

subject to the boundary conditions

u(0, t) = 0, u(1, t) = 1,

and initial conditions

u(x, 0) = x + sin(πx).

An approximate solution is sought in the form

v(x, t) =
m

∑

j=1

Sj(x)vj(t).

140



For a given t, v(x, t) satisfies the PDE with residual

R(x, t) = vt(x, t) − vxx(x, t).

Note that if R(x, t) ≡ 0, v(x, t) would be the exact
solution to the PDE.

The Galerkin method requires that R(x, t) be
orthogonal to the space spanned by the basis
functions18 Sj(x):

(R, Sj) = (vt, Sj) − (vxx, Sj) = 0, for each j, (4)

where the inner product (f, g) of two functions f, g ∈
C[0, 1] is defined by

(f, g) :=

∫ 1

0

f(x)g(x) dx.

18The Sj(x) are also known as shape functions.

141



Suppose each Sj(x) is a piecewise-linear function
satisfying Sj(xi) = 1 if i = j and 0 otherwise19;
then

v(xj, t) = vj(t) ≈ u(xj, t).

Substituting the form of v(x, t) into (4) and doing an
integration by parts yields

m
∑

j=1

(Sj, Si)v̇j +
m

∑

j=1

(

dSj

dx
,
dSi

dx

)

vj = 0.

These inner products can be worked out on an arbitrary
mesh, but if we assume it is uniform with spacing ∆x,
we obtain

1

6
v̇j−1 +

4

6
v̇j +

1

6
v̇j+1 =

vj−1 − 2vj + vj+1

(∆x)2
.

19Such shape functions are known as “hat” functions.

142



We use the boundary conditions

v0(t) = 0, vm+1(t) = 1,

in the first and last ODEs respectively.

See ch2ex7.m

Alternatively, one could augment the system of ODEs
with

v̇0 = 0, v̇m+1 = 0,

which says that v0 and vm+1 are constants, and the
constant values are taken from the ICs.

143



Fully implicit ODEs

There are a few codes that solve fully implicit ODEs
of the form

F(t,y, ẏ) = 0. (5)

One of the most popular is DASSL; Matlab has one
called ode15i.

This general form includes DAEs.

Solving DAEs can be much more difficult than ODEs
in theory and practice.

An obvious theoretical difficulty is that an initial value
y0 may not be enough to specify a solution: we must
also find a value ẏ(t0) that is consistent with (5).

It is also clear that the solvers will need ways to
compute ∂F

∂ẏ
as well as ∂F

∂y
.

This complicates the user interface and storage
management.

144



As mentioned, for large systems it is important to
account for sparsity in the Newton iteration matrix.

For BDF methods, the iteration matrix takes the form
M − ∆tγJ, so we have to account for the structures
of both M and J.

Because of these complications, many codes do not
handle the presence of mass matrices directly.

Matlab can do it in a straightforward way because it
simply treats everything as a general sparse matrix.

However, the strategies for constructing and updating
the iteration matrix depend on how strongly M(t,y)
depends on y.

Generally, the weaker the dependence, the better.

We have already seen how to deal with constant M by
passing it directly to the solver.

The information on the dependence of M on y

is communicated to the solver through the option
MStateDependence.

145



This option may soon be deprecated, so we are careful
not to say too much.

MStateDependence can take on 3 possible values:
none, weak, and strong.

If M = M(t) only, MStateDependence = none.

The default setting is MStateDependence = weak.

This allows the full suite of approximations (in
particular, freezing various matrices) to be used.

This may lead to poor performance; if so it may be more
appropriate to use MStateDependence = strong.

However, now the computations are much more
expensive, and the strategies employed resemble more
those employed by ode15i used to solve (5).

So it may make more sense to use ode15i for such
problems.

146



2.3.4 Singularities

The theory supporting what is done in software assumes
some smoothness of the solution and its derivatives;
when this is not satisfied at an isolated point, we must
supplement the codes with some analytical results.

One common technique is to approximate the
solution of interest near the singular point with a
series or asymptotic expansion; elsewhere it can be
approximated by standard software.

Note 14. “Solution of interest” implies the solution
at a singular point may not be unique!

This is much more common with BVPs, so we defer
more discussion until later.

147



Example 2.3.12

A classical analysis of the collapse of a spherical cavity
in a liquid leads to the IVP

(ẏ)2 =
2

3
(y−3 − 1), y(0) = 1.

The (non-dimensional) variables are time t and cavity
radius y.

The integration is to terminate when y = 0.

In standard form, the ODE is

ẏ = −

√

2

3
(y−3 − 1),

where we have chosen the negative square root because
we wish to model cavity collapse.

148



There are two difficulties:

1. The equation does not satisfy a Lipschitz condition
in a neighbourhood including t = 0, so the solution
may not be unique.

In fact, y(t) ≡ 1 is another solution!

2. At total collapse, ẏ = −∞.

We approximate y(t) for t ∈ [0, d] by a Taylor series.

We then take y(d) as the initial condition to solve an
IVP on t ≥ d.

This can be done with the symbolic capabilities of
Matlab.

We assume an approximation of the form

y(t) = 1 + at + bt2 + . . . .

149



Then the code

syms y t a b res

y = 1 + a*t + b*t^2

res = taylor(diff(y)^2 - (3/2)*(1/y^3-1),3)

substitutes the expression for y into the ODE and
computes the first 3 terms in the Taylor series for the
residual.

The result is

res = a^2+(4*a*b+2*a)*t+(4*b^2+2*b-4*a^2)*t^2

To satisfy the ODE as well as possible, we choose a
and b to make terms as many terms as we can vanish,
starting at the lowest order.

This leads to

a = 0, b = 0,−1/2.

It seems that the singular IVP has two solutions that
can be expanded as a Taylor series.

150



The choice b = 0 leads to y(t) ≡ 1, a solution in which
we are not interested.

The other solution is

y(t) = 1 −
1

2
t2 + . . . ,

which is decreasing for small t; this is the solution with
the physical behaviour that we want.

It is possible to continue this analysis to find that

y(t) = 1 −
1

2
t2 −

1

6
t4 −

19

180
t6 . . . .

To estimate how many terms we need to keep, we
can estimate the error by the size of the first term
neglected; for d = 0.1, we find that the first 3 terms
leads to a relative error of about 10−7.

See ch2ex8.m

We also interchange the independent and dependent
variables to deal with the infinite slope when y = 0.

151



This is a useful technique, but we must be careful that
the process is valid.

We can use y as the independent variable away from
t = 0 because the ODE tells us that y(t) is strictly
monotone20.

So we can solve the IVP

dt

dy
= −

√

3y3

2(1 − y3)
, t(yd) = d, y ∈ [yd, 0].

The time of total collapse is the value of t when y = 0.

20In this case, y(t) is monotone decreasing.

152


