
Translating Parameter Estimation Problems

From EASY-FIT to SOCS

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Matthew W. Donaldson

c©Matthew W. Donaldson, May 2008. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of

the College in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Mathematical models often involve unknown parameters that must be fit to experimental data.

These so-called parameter estimation problems have many applications that may involve differen-

tial equations, optimization, and control theory. EASY-FIT and SOCS are two software packages

that solve parameter estimation problems [15], [7]. In this thesis, we discuss the design and im-

plementation of a source-to-source translator called EF2SOCS used to translate EASY-FIT input

into SOCS input. This makes it possible to test SOCS on a large number of parameter estimation

problems available in the EASY-FIT problem database that vary both in size and difficulty.

Parameter estimation problems typically have many locally optimal solutions, and the solution

obtained often depends critically on the initial guess for the solution. A 3-stage approach is followed

to enhance the convergence of solutions in SOCS. The stages are designed to use an initial guess

that is progressively closer to the optimal solution found by EASY-FIT. Using this approach we

run EF2SOCS on all translatable problems (691) from the EASY-FIT database. We find that all

but 7 problems produce converged solutions in SOCS. We describe the reasons that SOCS was

not able solve these problems, compare the solutions found by SOCS and EASY-FIT, and suggest

possible improvements to both EF2SOCS and SOCS.

ii

Acknowledgements

Acknowledgements go here.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Parameter Estimation and Optimal Control
Problems 4
2.1 Optimal Control Problems . 4

2.1.1 Historical Development of Optimal Control 5
2.1.2 The Optimal Control Problem . 5
2.1.3 Direct versus Indirect Solution Methods . 8
2.1.4 Numerical Software for Optimal Control . 9

2.2 Parameter Estimation Problems . 13
2.2.1 Explicit Model Functions . 15
2.2.2 ODEs . 17
2.2.3 DAEs . 18
2.2.4 Breakpoints . 20

2.3 A Translator for Optimal Control Problems . 21

3 Translator Design 22
3.1 Input Format for EASY-FIT . 23

3.1.1 Input of Explicit Model Functions . 32
3.1.2 Input of ODEs . 33
3.1.3 Input of DAEs . 34

3.2 Input Format for SOCS . 37
3.3 Sample Problem . 40
3.4 Software Architecture and Design . 43

3.4.1 The EF2SOCS GUI . 45

4 Results and Discussion 52
4.1 Sample Explicit Model Problem . 52
4.2 Sample ODE Problem . 55
4.3 Sample DAE Problem . 57
4.4 Discussion . 61

5 Conclusions and Future Work 72

References 77

A Problem Data for Model TP333 78

iv

B SOCS Code for Problem TP333 80

v

List of Tables

3.1 Interpolation data . 31
3.2 Measurement data for model TP333. 42
3.3 Default settings for EF2SOCS GUI . 50

4.1 Experimental Data for problem INTEG X. 54
4.2 Results obtained from EASY-FIT and SOCS for explicit model INTEG X. 55
4.3 Results obtained from EASY-FIT and SOCS for ODE model COMPET. 57
4.4 Translator results obtained from EASY-FIT and SOCS for DAE model BOND. . . . 59
4.5 Summary of number of problems that cannot be translated by EF2SOCS. 62
4.6 Testing results obtained from EF2SOCS and SOCS. 63
4.7 Percentage of converged solutions for various initial guess strategies. 69
4.8 Comparison of SOCS objective function values to EASY-FIT objective function values. 71

vi

List of Figures

3.1 Organization of SOCS for Sparse Optimal Parameter Estimation 40
3.2 System overview of EF2SOCS. 44
3.3 The overall structure of the EF2SOCS GUI components. 45
3.4 An instance of the EF2SOCS Problem Editor. 46
3.5 An instance of the EF2SOCS Solver Editor. 47
3.5 An instance of the EF2SOCS Solver Editor (cont.). 48
3.6 The EF2SOCS Controllers Window. 50
3.7 The EF2SOCS Results Window. 51

4.1 Plot of experimental data versus theoretically predicted model values obtained from
SOCS for explicit model function INTEG X. 56

4.2 Plot of experimental data versus theoretically predicted model values obtained from
SOCS for ODE parameter estimation problem COMPET. 58

4.3 Plot of experimental data versus theoretically predicted model values obtained from
SOCS for DAE parameter estimation problem BOND. 60

vii

List of Abbreviations

BDF Backward Differentiation Formula
DAE Differential-Algebraic Equation
GUI Graphical User Interface
IVP Initial Value Problem
NLP Nonlinear Programming
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PSE Problem-Solving Environment
RHS Right-Hand Side
SOCS Sparse Optimal Control Software
SQP Sequential Quadratic Programming

viii

Chapter 1

Introduction

Optimal control problems involve the optimization of some performance index over time subject

to a given dynamical system. Optimal control is applied in many fields ranging from industrial

engineering and military applications to economics, medicine, and biology. For example, aerospace

engineers have been solving optimal control problems for trajectory specification, spacecraft altitude

planning, jet thruster operation, missile guidance, and many other applications for decades [5]. In

economics, optimal control is applied to the management of resources [27]. Also, the design of

effective medical treatments can be formulated as an optimal control problem [30].

The dynamical systems encountered in optimal control problems are often defined mathemati-

cally by sets of ordinary differential equations (ODEs). In general, analytical solutions of optimal

control problems are only possible for very simple problems. For this reason, we must approximate

the solution of optimal control problems numerically. Based on this general description, there are

traditionally two major parts of a successful optimal control solution technique. The first is the

“discretization” part, and the second is the “optimization” part. Although naive approaches that

involve “pasting” together packages for numerical integration and optimization may be moderately

successful, there exist better ways [5]. Several numerical software packages exist for the numerical

solution of optimal control problems. In this thesis, we describe two such packages in detail, namely,

EASY-FIT [15] and SOCS [7]. We also discuss the design and implementation of a source-to-source

translator called EF2SOCS used to translate EASY-FIT input into SOCS input.

EASY-FIT is an interactive software system used to identify model parameters in explicit model

functions and dynamical systems of equations [15]. These parameter estimation problems form a

subset of the more general optimal control problem; see Chapter 2. More precisely, parameter esti-

1

mation problems involve fitting a mathematical model with unknown parameters to experimental

data such that some measure of the error in the fit is minimized. A formal description of these

problems and their relationship to optimal control problems can be found in Section 2.2. The

mathematical background of the numerical algorithms implemented in EASY-FIT is described in

[45] in the form of a comprehensive textbook. EASY-FIT is implemented in the form of a rela-

tional database under Microsoft Access running under Microsoft Windows (2000 or higher). The

underlying numerical algorithms are coded in FORTRAN77. The currently used version is 4.0.

The industrial software package SOCS (Sparse Optimal Control Software) is a collection of

FORTRAN90 subroutines developed by The Boeing Company that are designed to solve optimal

control problems [7]. The package implements the direct transcription method to convert the con-

tinuous control problem into a discrete one. The discretization gives a finite-dimensional nonlinear

programming (NLP) problem, which is solved by SOCS using, for example, a sequential program-

ming (SQP) method [18]. SOCS is supported on most UNIX and Windows systems. The currently

used version is 7.0.0.

As valuable information to the developers of SOCS, we would like to use SOCS to solve a large

test set of problems and compare the results to solutions obtained from other software packages.

In the process, we hope to uncover potential deficiencies in the software. There are several issues

that make this comparison a challenging task. Briefly, three immediate problems we encounter are:

1. locating sources for a significant number of parameter estimation problems;

2. spending a substantial amount of time and effort to manually code these problems in SOCS;

3. using a second software package in order to obtain solutions for the purposes of comparison.

Fortunately, with the help of EASY-FIT and the design of the source-to-source translator EF2SOCS,

we are able to address all of these problems and simplify the process of evaluating SOCS for solving

parameter estimation problems.

First, we take advantage of the large database of parameter estimation problems in EASY-FIT.

There are over 1000 parameter estimation problems that are included in the EASY-FIT database.

2

They are based on academic and real life examples. These problems are coded in a FORTRAN77-

like modelling language called PCOMP [45]. PCOMP focuses on creating short and efficient code

to define the model functions. With the use of a batch file we are easily able to solve any set of

these problems using EASY-FIT. Having found a suitable test set of problems and corresponding

solutions, we focus on the idea of a translator.

The main motivation behind designing EF2SOCS is to allow for the translation of EASY-

FIT input into SOCS input. Specifically, the job of EF2SOCS is to take a parameter estimation

problem specified as a PCOMP script from the EASY-FIT database and output executable SOCS

code. There are three advantages resulting from the design of EF2SOCS. First, we have access to

all the problem descriptions and solutions of the parameter estimation problems in the database

of EASY-FIT without the need to consult multiple sources, such as journals, textbooks, and other

references. Second, we are now able to specify new problems in the high-level modelling language

PCOMP. Finally, we can avoid most if not all manual coding of FORTRAN programs to run with

SOCS.

With the main goal of designing EF2SOCS for source-to-source translation and testing SOCS

on a large number of parameter estimation problems, the thesis is presented as follows. In Chapter

2, we formally present the optimal control problem and numerical software available to solve such

problems. We also give details on the problem formulations of parameter estimation problems

involving explicit model functions, ODEs, and differential-algebraic equations (DAEs). In Chapter

3, we describe the design of EF2SOCS. We also give a simple example of how EF2SOCS works

on a parameter estimation problem involving an explicit model function. In Chapter 4, we present

the results of running EF2SOCS on 691 problems from the EASY-FIT database and provide some

suggestions from improving SOCS. Finally, in Chapter 5 we discuss the conclusions and future

work.

3

Chapter 2

Parameter Estimation and Optimal Control

Problems

In optimal control problems, we seek a control function that yields a trajectory of a dynamical

system that simultaneously satisfies equations of motion, boundary conditions, and equality or

inequality constraints, while minimizing or maximizing a performance index (or cost function). We

begin this chapter with a brief description of the historical development of optimal control problems.

We then present a detailed description of the optimal control problem. We summarize the solution

techniques used by SOCS and EASY-FIT as well as 4 other numerical software packages for optimal

control. Parameter estimation problems form a subset of optimal control problems; see Section 2.2.

We describe the 3 categories of parameter estimation problems with which we are concerned in

this thesis. Finally, we present the basic idea of a translator and its role in solving optimal control

problems.

2.1 Optimal Control Problems

Optimal control problems, also referred to as dynamic optimization problems, involve the opti-

mization of some performance index over time, subject to a given dynamical system and other

constraints. The decision variables of the optimization aspect of the problem are known as the con-

trols, and the solution of the dynamical system for a prescribed control is called the state. Different

types of constraints may be imposed on both the control and the state [9].

Optimal control problems arise in a wide variety of disciplines including different fields of en-

gineering, economics, and biology. Many fundamental results in optimal control theory have been

4

obtained through the joint efforts of engineers, mathematicians, scientists, and economists. The

range of real world problems that can be solved by optimal control theory is constantly growing [10].

Historically, some interesting optimal control problems have been solved analytically. However, as

the problems considered become more and more complex, it is no longer possible to solve them

analytically. Mathematicians, engineers, and others are therefore interested in the development

of new and more powerful computational methods for solving these problems numerically. In this

section, after defining an optimal control problem, we present some of these computational methods

and their implementation in the form of software packages.

2.1.1 Historical Development of Optimal Control

According to Bryson [10], optimal control had its origins in the calculus of variations in the 17th

century based on the work of Pierre de Fermat (1601–1665), Isaac Newton (1642–1727), Gottfried

Wilhelm Liebnitz (1646–1716), and John Bernoulli (1667–1748). The calculus of variations was fur-

ther developed over the following two centuries by Leonard Euler (1707–1783), Jean Louis Lagrange

(1736–1813), and William Rowan Hamilton (1805–1865). In 1962, Lev Semenovich Pontryagin

(1908-1988) extended the calculus of variations to handle control variable inequality constraints,

leading to the Pontryagin maximum principle, which gives a necessary condition that must hold on

an optimal trajectory [40]. The truly enabling element for the use of optimal control theory was the

digital computer, which became commercially available in the 1950s. In the 1980s, research began

and continues today on making optimal control more robust to variations in dynamical system and

disturbance models [10].

2.1.2 The Optimal Control Problem

As described by [5], an optimal control problem can be formulated as a collection of N phases where

the independent variable t for phase K is defined in t
(K)
I ≤ t ≤ t

(K)
F . A phase is a portion of a

trajectory in which the dynamics of the system remain unchanged. Within phase K, the dynamics

of the system are described by n(K)
d dynamic variables made up of n(K)

y state variables y(K)(t) and

5

n
(K)
u control variables u(K)(t):

d(K) =

 y(K)(t)

u(K)(t)

 , (2.1)

where y(K) ∈ Rn(K)
y , u(K) ∈ Rn(K)

u , and n
(K)
d = n

(K)
y + n

(K)
u .

Typically, the dynamics of the system are defined by a set of ODEs,

ẏ(K) = f (K)[y(K)(t),u(K)(t), t], (2.2)

where f (K) : Rn(K)
y × Rn(K)

u × R → Rn(K)
y . The solution must satisfy algebraic constraints of the

form

g(K)
L ≤ g(K)[y(K)(t),u(K)(t), t] ≤ g(K)

U , (2.3)

where g : Rn(K)
y ×Rn(K)

u ×R→ Rn(K)
g is composed of n(K)

E equality constraints and n(K)
I inequality

constraints, including simple bounds on the state variables

y(K)
L ≤ y(K)(t) ≤ y(K)

U (2.4)

and control variables

u(K)
L ≤ u(K)(t) ≤ u(K)

U . (2.5)

The phases are linked by boundary conditions of the form

ψL ≤ ψ
[
y(1)(t(1)I),u(1)(t(1)I), t(1)I ,

y(1)(t(1)F),u(1)(t(1)F), t(1)F ,

. . .

y(N)(t(N)
I),u(N)(t(N)

I), t(N)
I ,

y(N)(t(N)
F),u(N)(t(N)

F), t(N)
F

]
≤ ψU ,

(2.6)

where ψL and ψUare are a vectors of appropriate size. These boundary conditions allow the value

of the dynamic variables at the beginning and end of any phase to be related to those of any other

phase.

The optimal control problem is to determine the nu-dimensional control vector u(t), consisting

of the concatenation in time of the controls u(K)(t), K = 1, 2, . . . , N on each phase, that minimizes

6

the performance index

J = φ
[
y(1)(t(1)I),u(1)(t(1)I), t(1)I ,

y(1)(t(1)F),u(1)(t(1)F), t(1)F ,

. . .

y(N)(t(N)
I),u(N)(t(N)

I), t(N)
I ,

y(N)(t(N)
F),u(N)(t(N)

F), t(N)
F

]
+

N∑
K=1

{∫ t
(K)
F

t
(K)
I

q(K)
[
y(K)(t),u(K)(t), t

]
dt

}
,

(2.7)

that may involve quadrature functions q(K).

In order to solve the optimal control problem, it is often convenient to make use of the necessary

conditions of optimality. For clarity, we omit the phase-dependent notation from the remaining

discussion. We begin by defining an augmented performance index

Ĵ = [φ+ νTψ]tF
−
∫ tF

tI

λT{ẏ − f [y(t),u(t), t]} dt, (2.8)

where ν ∈ Rny represents the Lagrange multipliers for the pointwise constraints (2.6), and λ(t) ∈

Rny represents multipliers that we call adjoint or co-state variables for the continuous constraint

(2.2). The necessary conditions for a constrained optimum are obtained by setting the first variation

δĴ = 0 [9]. It is convenient to define the Hamiltonian

H = λTf [y(t),u(t), t], (2.9)

and the auxiliary function

Φ = φ+ νTψ. (2.10)

The necessary conditions, called the Euler–Lagrange equations, which result from setting δĴ = 0,

in addition to (2.2) and (2.6), are

λ̇ = −H T
y , (2.11)

called the adjoint equations,

0 = H T
u , (2.12)

7

called the control equations, and

λ(tF) = Φ T
y

∣∣∣
t=tF

, (2.13)

0 = (Φt +H)
∣∣
t=tF

, (2.14)

0 = λ(tI), (2.15)

called the transversality conditions. In the above equations, 0 ∈ Rny and the partial derivatives Hy,

Hu, and Φy are row vectors; e.g., Hy ≡ (∂H/∂y1, . . . , ∂H/∂yny
). The control equations (2.12) are a

simplified statement of the Pontryagin maximum principle [40]. The Pontryagin maximum principle

states that the control variable must be chosen to optimize the Hamiltonian at every point in time

subject to limitations on the control imposed by state and control constraints. The complete set of

necessary conditions consists of a DAE system (2.2), (2.11), and (2.12) with boundary conditions

at tI and tF (2.6), (2.13), (2.14), and (2.15). This is often referred to as a two-point boundary value

problem. A more in-depth treatment of this material can be found in [9].

2.1.3 Direct versus Indirect Solution Methods

In practice, the methods for solving optimal control problems are classified as either direct or

indirect. Indirect methods proceed by formulating the optimality conditions (2.2), (2.6), (2.11),

(2.12), (2.13), (2.14), and (2.15), according to the Pontryagin maximum principle. The resulting

two-point boundary value problem is then solved numerically. Therefore, indirect methods use an

“optimize then discretize” technique [6]. On the other hand, direct methods do not require explicit

derivation and construction of the necessary conditions [5]; i.e., a direct method does not construct

the adjoint equations (2.11), the control equations (2.12), nor any of the transversality (boundary)

conditions (2.13)–(2.15). Direct methods discretize the optimal control problem in time and solve

the resulting parameter optimization problem. Therefore, direct methods generate an approximate

solution to the original problem as opposed to the necessary conditions. These methods use a

“discretize then optimize” technique [6]. The differences between direct and indirect methods are

considered in [43].

Indirect methods yield highly accurate results; however, there are also some drawbacks. First,

8

the user must compute the quantities Hy, Hu, etc., that appear in the defining equations (2.11)–

(2.15). Unfortunately, evaluating these equations may be computationally expensive. Second, the

user must find a sufficiently good guess for the values of the adjoint variables λ(t) in order to

achieve convergence to the solution. Because the adjoints are nonphysical quantities, finding an

effective initial guess is often nonintuitive. Even with a reasonable guess for the adjoint variables,

the numerical solution of the adjoint equations can be very ill-conditioned. Therefore, indirect

methods may be very sensitive to small changes in the unspecified boundary conditions. It is not

unusual for the numerical integration, with poorly guessed initial conditions, to produce “wild”

trajectories in the state space [9].

Direct methods are mainly applied in industrial optimization problems where faster and more

robust methods are required with modest accuracy requirements. A key advantage of direct methods

over indirect methods is that they do not require a user-supplied estimate of the adjoint variables.

Therefore, less preparatory work is required from the user in order to use these methods. Moreover,

they generally have a larger domain of convergence. However, the trade off in comparison to indirect

methods is that it is computationally more expensive to get a high-accuracy solution using direct

methods compared to indirect methods.

Because direct and indirect methods both have their advantages and disadvantages, it is possible

to combine them in a hybrid approach. This possibility was examined in a two-stage approach

proposed by Bulirsch, Nerz, Pesch, and von Stryk [11].

2.1.4 Numerical Software for Optimal Control

In general, a closed-form solution of an optimal control problem exists only for very simple problems.

Accordingly, we must approximate the solutions to optimal control problems numerically. We begin

by giving a brief description of the two software packages SOCS [7] and EASY-FIT [15] considered

in this thesis. We follow this with descriptions of 4 other existing software packages for numerically

solving optimal control problems, namely COOPT [53], RIOTS 95 [51], DIRCOL [57], and MISER3

[29].

9

The Sparse Optimal Control Software SOCS is a collection of FORTRAN90 subroutines devel-

oped by The Boeing Company that are capable of solving nonlinear optimization, optimal control,

and parameter estimation problems with equality and inequality constraints, as well as providing

numerical estimates for the required function derivatives. The package implements the direct tran-

scription or collocation method to discretize the continuous control problem. The discretization

yields a finite-dimensional sparse NLP problem that can be solved using a sparse optimization algo-

rithm such as SQP or interior point algorithm [18]. Numerical procedures to improve the accuracy

of the discretization by mesh refinement are implemented in the package. Details of the various

subroutines used by SOCS are found in Chapter 3.1. Some of the current listings of applications

solved by SOCS that are given on the company website include low thrust orbit transfer, golf

putting, and interplanetary orbit transfer [38].

The EASY-FIT software package is an interactive software system used to identify model pa-

rameters and implemented in the form of a relational database under Microsoft Access running

under Microsoft Windows (2000 or higher). The underlying numerical algorithms are coded in

FORTRAN77 and are executable independently from the interface. Model functions are either in-

terpreted and evaluated symbolically by user-provided FORTRAN77 subroutines or by a program-

ming language called PCOMP that permits automatic differentiation of nonlinear model functions.

Least-squares subroutines are executed to solve the parameter estimation problems. The subrou-

tine DFNLP transforms the original problem into a general NLP problem such that typical features

of a Gauss–Newton and quasi-Newton least-squares method are retained. DFNLP is able to take

linear or nonlinear constraints into account. The resulting optimization problem is solved by a

standard SQP code called NLPQL [44]. In [45], EASY-FIT solves several case studies representing

typical application problems in biochemistry, chemistry, pharmaceutics, and electrical, mechanical,

and chemical engineering.

The COOPT software package implements a direct method with modified multiple shooting [32]

techniques for solving optimal control problems of large-scale DAE systems. The basic approach in

COOPT is to divide the original time interval into multiple shooting intervals, with the DAEs solved

10

numerically on the subintervals at each optimization iteration. State and control continuity con-

straints are imposed across the subintervals. The resulting optimization problem is solved by sparse

SQP methods. Partial derivative matrices needed for the optimization are generated by the DAE

sensitivity software DASPK3.0 [35]. When integrating on each subinterval, DASPK3.0 requires the

computation of the residual of the state and sensitivity equations as well as a computation of the

Jacobian of the model equations with respect to the states and their derivatives. The residual mea-

sures the difference between the measured and predicted values. The sensitivity equations are used

to obtain the values and Jacobians of the nonlinear state continuity constraints enforced between

subintervals. The sensitivity equations to be solved are generated via automatic differentiation

using ADIFOR [8]. Although these derivatives may use large amounts of computer memory when

compared to alternative methods such as finite difference derivatives, ADIFOR derivatives are exact

(to within round-off errors) and step-size independent [56]. COOPT has been successfully used to

solve optimal control problems arising in a wide variety applications, such as chemical vapour de-

position of superconducting thin films [41], spacecraft trajectory design and contingency/recovery

problems [52], and computation of cell traction forces in tissue engineering [60].

The RIOTS 95 software package is a group of programs and utilities written mostly in C and

designed as a toolbox for the Matlab problem-solving environment, thus providing an interactive

environment for solving a broad class of optimal control problems. All of the functionality of

Matlab, including command line execution, data entry, and data plotting, are thus available to

the RIOTS 95 user. The numerical methods used by RIOTS 95 are supported by the theory in

[48]–[50]; this theory uses the approach of consistent approximations as defined by [49]. In this

approach, a solution is obtained as an accumulation point of the solutions to a sequence of discrete-

time optimal control problems that are consistent approximations to the original continuous-time

optimal control problem. The discrete-time optimal control problems are constructed by discretiz-

ing the system dynamics with one of 4 fixed step-size Runge–Kutta integration methods and by

representing the controls as finite-dimensional B-splines. This allows for a high degree of function

approximation accuracy without requiring a large number of control parameters. The integration

11

proceeds on a (possibly non-uniform) mesh that specifies the spline breakpoints. The solution

obtained for one discretized problem can be used to select a new integration mesh, on which the

optimal control problem can be re-discretized to produce a new discrete-time problem that more

accurately approximates the original problem. In practice, only a few such re-discretizations need

to be performed to achieve an acceptable solution. RIOTS 95 may be used to solve various optimal

control problems such as the classic Goddard rocket problem [54] as well as many others [51].

The DIRCOL software package is a set of FORTRAN77 subroutines designed to solve opti-

mal control problems. Discontinuities in the right-hand side of the differential equations can be

treated. DIRCOL implements a direct collocation method [58]. By a discretization of state and

control variables the infinite-dimensional optimal control problem is transcribed into a sequence

of (finite-dimensional) nonlinearly constrained optimization problems. Optimal control theory and

adjoint differential equations are not required in order to apply the algorithm. The NLP problems

are solved either by the dense SQP method NPSOL [23] or by the sparse SQP method SNOPT

[22]. DIRCOL also computes reliable estimates of the adjoint variables and the multiplier func-

tions of state constraints by direct discretization of (2.11) and (2.12). Therefore the method can

conveniently be combined with an indirect method such as multiple shooting [59]. Supplementary

programs are provided for supporting a visualization of the numerical results. For a list of applica-

tions that use DIRCOL, including robotics, flight mechanics, biomechanics, automotive engineering,

and economics, see [57].

The MISER3 software package is a suite of FORTRAN77 programs for solving continuous and

discrete-time optimal control problems subject to general constraints. Discrete-time optimal control

problems involve discretizing the state equations (2.2), forming a vector of NLP variables composed

of the states and controls evaluated at a finite number of points in time. Included in the software

package is a program called DMISER3 for solving discrete-time optimal control problems. This

program is almost identical to MISER3 except that it applies to problems in which the dynamics are

described by difference equations. The companion program MISER3 is used for solving continuous-

time problems. The method used is based on the idea of control parametrization, where the controls

12

are approximated by piecewise constant or piecewise linear functions defined on suitable partitions

of the time interval. The code then converts the problem into an NLP problem that is solved using

an SQP algorithm. For this purpose, MISER3 contains a state-of-the-art SQP algorithm provided

by [44]. For a discussion of the concept of control parametrization as implemented in MISER3, see

[28]. According to [17], DMISER3 has been tested on a wide range of problems. A discretization

of the problem of a buckled beam with internal loading is described in detail because it includes a

wide variety of types of constraints [17], [24].

Solving optimal control problems numerically can be challenging. Often very large parameter

bounds can result in solutions that are only locally optimal. Therefore it may be desirable to use

global optimization methods. However, if rigorous proofs of global optimality are also desired,

the added computational expense associated with these methods generally makes them infeasible

except on small problems [16].

Global optimization strategies can be sorted into two general groups: deterministic and stochas-

tic [36]. Although deterministic methods provide some guarantee of convergence, the associated

computational cost typically increases rapidly with problem size. On the other hand, stochastic

methods rely on some degree of randomness to approach the global optimum. Because of this

randomness there is no guarantee of ever reaching the global optimum. The major challenge in

solving large-scale global optimization problems is that there is no mathematical basis for efficiently

reaching a global minimizer, such as there is for Newton’s method for reaching a local minimizer.

Many methods have been developed for global optimization problems, but these tend to be heuristic

in nature and often require large amounts of computation time [39].

2.2 Parameter Estimation Problems

Parameter estimation is very important in areas such as natural science, engineering, and many

other disciplines. The key idea is to estimate unknown parameters p = (p1, . . . , pnu
)T of a math-

ematical model that often describes a real life situation by minimizing the distance of known ex-

perimental data from theoretically predicted values of a model function at certain time values. In

13

other words, model parameters that cannot be measured directly are estimated by a least-squares

fit [45]. The difference between this problem and the optimal control problem involves a different

performance index; i.e., the least-squares performance index is a special case of the more general

performance index given by (2.8). Also, in the optimal control problem 2.2–2.7, the control variables

are generally time-dependent; in the parameter estimation problem they are constant.

Formally, we want to solve a least-squares problem of the form

min
p

mexp∑
k=1

mt∑
i=1

wk
ij((hk(p; y(p; ti), ti)− yi))2,

plb ≤ p ≤ pub , p ∈ Rnu ,

(2.16)

where h(p; y, t) is a fitting function depending on the unknown parameter vector p, the time t,

and the solution y(p; t) of a dynamical system. There are mexp experimental data sets with mt

time values. The experimental values at time ti are denoted by yi. We assume that there are

weight factors wk
ij ≥ 0 given by the user that reflect the individual influence of a measurement

value on the fit. Weights may be set to zero if there are measurements not available for a particular

time value. The inequalities on the parameter vector p are understood to hold componentwise. A

typical dynamical system is given by differential equations that describe a time-dependent process

and that depend on the parameter vector p. In this section, we summarize in detail how the model

functions depend on the solution of a dynamical system. Moreover, we describe several extensions

of the data-fitting problem and the dynamical system that allow us to treat more complex practical

models.

In general, parameter estimation problems can often be classified into one the following cate-

gories [45],

• explicit model functions,

• Laplace transformations,

• systems of ODEs,

• systems of DAEs,

• systems of time-dependent partial differential equations (PDEs),

14

• systems of partial differential-algebraic equations (PDAEs).

These are the categories of problems that can be found in the EASY-FIT database. Of these 6

categories, EF2SOCS is designed to deal only with explicit model functions, systems of ODEs, and

systems of DAEs. However, by using a technique called the method of lines, the spatial derivatives

of a system of PDEs can be discretized, resulting in a system of ODEs [2]. This technique may

also be used to transform a system of PDAEs into DAEs. Therefore, the user may derive these

equations and use EF2SOCS to solve the resulting system of ODEs or DAEs. We now take a more

in-depth look at the three categories listed above that can be handled by EF2SOCS.

2.2.1 Explicit Model Functions

Problems where the vector-valued model function h(p; t) in (2.16) is available in explicit form

belong to the class of parameter estimation problems known as explicit model functions. Associated

with explicit models is an additional variable called time, t, and optionally another variable called

concentration, c. These names reflect a common usage in practical situations. The terms may have

other meanings depending on the underlying application.

As described by [45], we begin with mexp experimental data sets

(ti, cj , yk
ij), i = 1, . . . ,mt, j = 1, . . . ,mc, k = 1, . . . ,mexp, (2.17)

where mt time values, mc concentration values, and M = mtmcmexp corresponding measurement

values are given. We may also have nonlinear restrictions in the form of equality or inequality con-

straints, depending on the parameter vector p to be estimated, and certain time and concentration

values t and c, respectively,

gE(p; t, c) = 0,

gI(p; t, c) ≥ 0,

(2.18)

where gE : Rnu × R × R → RnE and gI : Rnu × R × R → RnI . We assume that all constraint

functions are continuously differentiable with respect to p. Otherwise, this may lead to an ill-posed

problem, a consequence of which is that arbitrarily small changes in the data may lead to arbitrarily

large changes in the solution.

15

Together with a vector-valued model function

h(p; t, c) = (h1(p; t, c), . . . , hmexp
(p; t, c))T , (2.19)

we get the resulting least-squares problem of the form

min
p

mexp∑
k=1

mt∑
i=1

mc∑
j=1

(wk
ij(hk(p; ti, cj)− yk

ij))2,

gE(p; ti, cj) = 0,

gI(p; ti, cj) ≥ 0,

plb ≤ p ≤ pub , p ∈ Rnu .

(2.20)

We wish to minimize the norm of the difference between measured experimental data and

theoretically predicted values of a model function at certain time and concentration values. This

difference is called the residual, which is a vector with components denoted by rk
ij , i = 1, . . . ,mt, j =

1, . . . ,mc, k = 1, . . . ,mexp. Note that for each of the three types of parameter estimation problems

described in this Section it is possible in EASY-FIT to have a global scaling strategy in addition

to the individual weight factors for each measurement value. The global scaling strategy is defined

on line 35 of the EASY-FIT constants file; see Section 3.1.3. The four options are:

• 0: no additional scaling

• 1: division of residuals by square root of sum of squares of measurement values for each data

set; i.e.,

rk
ij√∑mt

i=1

∑mc

j=1(yk
ij)2

(2.21)

• −1: division of each single residual by corresponding absolute measurement value; i.e.,

rk
ij

|yk
ij |

(2.22)

• −2: division of each single residual by corresponding squared measurement value; i.e.,

rk
ij

[yk
ij]2

(2.23)

16

2.2.2 ODEs

As with the explicit data-fitting model and as described by [45], we begin with mexp data sets,

(ti, cj , yk
ij), i = 1, . . . ,mt, j = 1, . . . ,mc, k = 1, . . . ,mexp, (2.24)

where mt time values, mc concentration values, and M = mtmcmexp corresponding measurement

values are given. We may also have nonlinear restrictions in the form of inequality constraints,

gI(p; y(p; t, c)) ≥ 0, (2.25)

where y(p; t, c) represents the solution of the system of ODEs 2.2, depending on the parameter

vector p to be estimated and certain time and concentration values t and c, respectively.

We assume that all constraint functions are continuously differentiable with respect to p. Note

that dynamical constraints should be defined only in the form of inequalities; equality constraints

are to be treated as algebraic equations that are part of the DAE model; see Section 2.2.3.

The vector-valued model function

h(p; y(p; t, c), t, c) = (h1(p; y(p; t, c), t, c), . . . , hmexp
(p; y(p; t, c), t, c))T , (2.26)

depends on the concentration parameter c and in addition on the solution y(p; t, c) of a system of

ny ODEs with initial values,

ẏ1 = f1(p; y, t, c) , y1(0) = y0
1(p; c),

...

ẏny
= fny

(p; y, t, c) , yny
(0) = y0

ny
(p; c).

(2.27)

Without loss of generality, we have assumed that the initial time is zero. The initial values of the

system of differential equations y0
1(p; c), . . . , y0

ny
(p; c) may depend on one or more of the system

parameters to be estimated and on the concentration parameter c.

17

We then get the resulting least-squares problem of the form

min
p

mexp∑
k=1

mt∑
i=1

mc∑
j=1

(wk
ij(hk(p; y(p; ti, cj), ti, cj)− yk

ij))2,

gI(p; y(p; ti, cj)) ≥ 0,

plb ≤ p ≤ pub , p ∈ Rnu ,

(2.28)

where y(p; t, c) is a solution vector of the system of ny ODEs (2.27).

2.2.3 DAEs

We begin with mexp data sets,

(ti, cj , yk
ij), i = 1, . . . ,mt, j = 1, . . . ,mc, k = 1, . . . ,mexp, (2.29)

where mt time values, mc concentration values, and M = mtmcmexp corresponding measurement

values are given. We now add algebraic equations to the system of differential equations (2.27). The

resulting fitting criterion h(p; y(p; t, c), z(p; t, c), t, c) depends on ny differential variables y(p; t, c)

and nz algebraic variables z(p; t, c). The system of equations is now

ẏ1 = f1(p; y, z, t, c) , y1(0) = y0
1(p; c),

...

ẏny
= fny

(p; y, z, t, c) , yny
(0) = y0

ny
(p; c),

0 = g1(p; y, z, t, c) , z1(0) = z0
1(p; c),

...

0 = gnz (p; y, z, t, c) , ynz (0) = y0
nz

(p; c).

(2.30)

Again without loss of generality, we have assumed that the initial time is zero. The initial values of

the differential equations y0
1(p; c), . . . , y0

ny
(p; c) and algebraic equations z0

1(p; c), . . . , z0
nz

(p; c) may

depend on the system parameters to be estimated and on the concentration parameter c.

The inequality constraints take the form

gI(p; y(p; t, c), z(p; t, c)) ≥ 0, (2.31)

18

where y(p; t, c) and z(p; t, c) represent the solution of the system of DAEs (2.30), depending on the

parameter vector p to be estimated and certain time and concentration values t and c, respectively.

The least-squares problem for DAEs has the form

min
p

mexp∑
k=1

mt∑
i=1

mc∑
j=1

(wk
ij(hk(p; y(p; ti, cj), z(p; ti, cj), ti, cj)− yk

ij))2,

gI(p; y(ti, cj), z(p; ti, cj)) ≥ 0,

plb ≤ p ≤ pub , p ∈ Rnu ,

(2.32)

where y(p; t, c) and z(p; t, c) are solution vectors of the system of ny +nz DAEs (2.30). The system

is called an index-1 problem or an index-1 DAE if the algebraic equations can be solved (at least

in principle) for z for all t. This is possible if and only if the Jacobian matrix

gz(p; y(p; t, c), z(p; t, c), t, c) (2.33)

has full rank. In general, one definition of the index of a system of DAEs is the minimum number

of differentiations with respect to t required to reduce the system to one consisting only of ODEs

[2].

In EASY-FIT, there are implicit solvers that are able to solve index-2 DAEs and index-3 DAEs

by transforming these higher-index problems to index-1 by successive differentiation of the algebraic

equations [26]. However, when using simple constraint differentiation to reduce the index of a DAE,

the drift in the constraint (the amount by which it fails to be satisfied) increases linearly when

reducing the index by 1 and quadratically when reducing the index by 2. If not done carefully, i.e.,

in a stable fashion, a numerical solution based on an index reduction from 3 to 0 may completely

destroy the algebraic constraint. The transformation is performed because of the generic numerical

instability of high-index DAEs. Although a straightforward application of index reduction is not

stable, there exist stable numerical methods to solve higher-index DAEs; see e.g., [21].

One method used to stabilize index reduction is called the projected descriptor method [1]. This

method is complex, but see [47]. It is also possible to solve higher-order DAEs by applying a special

discretization technique [25] involving an implicit method based on collocation; e.g., RadauIIA, a

fully implicit, stiffly accurate Runge–Kutta method with three stages and order 5 [26].

19

Collocation methods are methods for which the solution of the system 2.27 is approximated by a

polynomial that satisfies the differential equation at s distinct points. Radau methods are colloca-

tion methods with order 2s− 1 and correspond to quadrature rules where one end of the interval is

included. In the RadauIIA method, the right end of the interval is included as a collocation point.

2.2.4 Breakpoints

In practice it is common for the dynamics of a system to change during the trajectory. Accordingly,

conditions on the solution at these breakpoints must be enforced, e.g., continuity of the solution.

A typical example is a pharmacokinetic application with an initial infusion followed by subsequent

infusions of drug doses by injection. Each infusion of a drug dose represents a breakpoint in the

model because the dynamics depend on the amount of drug dose injected at each infusion. As is

the case in this example, it is possible that the solution is discontinuous at a breakpoint. variable

breakpoints are breakpoints that are treated as parameters to be optimized.

For simplicity we assume an ODE model with initial values as given in (2.27). Breakpoints are

defined similarly for the DAE model (2.30). Formally we describe the model by

ẏ
(1)
1 = f

(1)
1 (p; y(1), t, c) , y

(1)
1 (0) = ȳ

(1)
1 (p; c),

...

ẏ(1)
ny

= f (1)
ny

(p; y(1), t, c) , y(1)
ny

(0) = ȳ(1)
ny

(p; c),

(2.34)

for 0 ≤ t ≤ τ1, and

ẏ
(K)
1 = f

(K)
1 (p; y(K), t, c) , y

(K)
1 (τK) = ȳ

(K)
1 (p; c, y(K−1)

1 (p; τK , c)),

...

ẏ(K)
ny

= f (K)
ny

(p; y(K), t, c) , y(K)
ny

(τK) = ȳ(K)
ny

(p; c, y(K−1)
ny

(p; τK , c)),

(2.35)

for τK−1 ≤ t ≤ τK , K = 2, . . . , N = mb +1, where mb is the number of breakpoints τK−1, and τ0 =

0 < τ1 < · · · < τmb
< tf . The initial values of each subsystem are given by ȳ(K)(p; c, y(K−1)(p; τK , c))

and depend on the parameter vector p to be estimated, the concentration value c, and the solution

of the previous phase with breakpoint τK−1. In the numerical algorithm for the solution to such

problems, the integration of the differential equations must be restarted at each breakpoint.

20

2.3 A Translator for Optimal Control Problems

In computer science and linguistics, syntax analysis is the process of analyzing a sequence of tokens

to determine its grammatical structure with respect to a given formal grammar. In computer

science, a source-to-source translator is a type of compiler that takes code in a high–level language

as its input and outputs code in a high–level language.

In this thesis, we are concerned with a simple version of a translator that does not form a

component of a compiler. Recall, EF2SOCS provides access to all the problem descriptions and

solutions of the parameter estimation problems in the database of EASY-FIT, allows us to specify

new problems in the modelling language PCOMP, and avoids most if not all manual coding of

FORTRAN programs to run with SOCS. In the present case, the syntax analysis involves analyzing

PCOMP code and translating it into suitable SOCS code. However, because the PCOMP code is

essentially FORTRAN77 syntax, in most cases no translation is required to yield the desired input

for SOCS. Because FORTRAN is backward compatible, producing FORTRAN77 code is compatible

with the FORTRAN90 language used for SOCS. Only the PCOMP declarations discussed in Section

3.1 require special attention. Each PCOMP declaration is treated by a specialized function in the

translator. These functions are designed to recognize only the exact declaration format as described

in Section 3.1. They contain the set of rules that correctly translate the PCOMP declaration into the

appropriate format for SOCS. All other PCOMP code remains unchanged during the translation

process.

21

Chapter 3

Translator Design

The SOCS software package remains relatively untested in terms of solving a large test set of

parameter estimation problems and evaluating the results. Although these parameter estimation

problems are common in industry and may easily be found in the literature, there is also a single

source that supplies a large test set of problems of the explicit model, ODE, and DAE varieties.

This source is the database of problems included in the popular parameter estimation software

EASY-FIT. As part of the testing process of SOCS, we ultimately wish to compare the results of

SOCS to EASY-FIT. This will provide us with a benchmark with which to judge how well SOCS

performs in comparison to EASY-FIT.

EASY-FIT presently has 826 parameter estimation problems of the sorts described in Chapter

2. These problems are coded in a language called PCOMP. Because PCOMP allows for much

shorter code in specifying parameter estimation problems and is similar in syntax to FORTRAN77,

we would like to make use of this language to solve parameter estimation problems in SOCS. To

make use of this language, we design a translator, called EF2SOCS, to translate these problems

into the input required for SOCS. The user may wish to investigate using different strategies to

solve parameter estimation problems, such as using different initial guess methods for the state

variables. This may be quickly and easily accomplished through the GUI in EF2SOCS. This makes

EF2SOCS have elements of a problem-solving environment (PSE).

According to Rice and Boisvert, a PSE is a computer system that provides all the computa-

tional facilities necessary to solve a target class of problems efficiently [42]. The facilities include

advanced solution methods, automatic selection of solution methods, and ways to easily incorporate

novel solution methods. PSEs solve simple or complex problems, support both rapid prototyping

22

and detailed analysis, and they can be used both in introductory education or at the frontiers of

science. PSEs play an important role in today’s scientific research. Some examples of PSEs include

MATLAB, Maple, and Mathematica.

The design of EF2SOCS is essential when considering the amount of time required to code

even the simplest of parameter estimation problems in SOCS. A typical SOCS code used to solve

a simple parameter estimation problem can easily reach 500 lines of FORTRAN77 code. It is

therefore unrealistic to code each problem manually in SOCS. This automated process of reading

input from EASY-FIT and writing an output file that is directly executable by SOCS saves time

as well as a significant number of potential coding errors on the part of the user when it comes to

solving such a large number of problems with SOCS.

In this chapter, we consider the input requirements for EASY-FIT and SOCS. We give a

complete list of the function, variable, and other declarations used in the EASY-FIT input that are

supported EF2SOCS. We talk about the EF2SOCS design, including its GUI. Finally, we present

a sample EASY-FIT input file for an explicit model function along with the output file generated

by EF2SOCS.

3.1 Input Format for EASY-FIT

This section gives a list of all declarations supported by the modelling language used by EASY-FIT

called PCOMP [45]. For a more general and complete description of PCOMP, see [45], [14]. All

model functions are defined in the PCOMP modelling language, and they are read in, translated by

EASY-FIT, and compiled by EASY-FIT into FORTRAN77 code behind the scenes. The PCOMP-

language is a subset of FORTRAN77 with a few extensions. In particular, the declaration and

executable statements must satisfy the usual FORTRAN77 input format; e.g., they must start at

column 7 or later. A statement line is read in until column 72. Comments, denoted with a C in the

first column, may be included in a program text wherever needed. Continuation marks, denoted

with a / in column 6, must be used to continue statements on subsequent lines. Either capital

or small letters are interchangeable in identifiers of the user and key words of the language; i.e.,

23

PCOMP is not case sensitive. Note that EF2SOCS automatically converts all user input to capital

letters. The length of an identifier must be smaller than 20 tokens.

In PCOMP, most variables are declared implicitly by their assignment statements. PCOMP

possesses special constructs to identify program blocks, denoted with a * in the first column. The

only constructs permitted in PCOMP are listed and described below.

* PARAMETER

This declaration specifies constant integer parameters to be used throughout the program,

particularly for dimensioning index sets.

** SET OF INDICES

This declaration defines index sets that can be used to declare data, variables, and functions

or to define SUM or PROD statements,

e.g., ind = 1..10

* INDEX

This declaration defines an index variable that can be used in a FUNCTION program block.

* REAL CONSTANT

This declaration defines real data, either without index or with a one- or two-dimensional

index. An index may be a variable or a constant number within an index set. Also arithmetic

expressions may be included,

e.g., b(i)=0.1*i, i in ind

a(i,j)=1/(i+j-1), i in ind, j in ind

* INTEGER CONSTANT

This declaration defines integer data, either without an index or with a one- or two-dimensional

index. An index may be a variable or a constant number within an index set. Arithmetic

integer expressions may also be included,

e.g., b(i)=2*i, i in ind

a(i,j)=2*(i+j), i in ind, j in ind

24

* TABLE <identifier>

This declaration defines a one- or two-dimensional array of constant real numbers. In subse-

quent lines, one has to specify one or two indices followed by one real value per line in a free

format (starting at column 7 or later).

* VARIABLE

This declaration defines a real variable with up to one index.

* CONINT <identifier>

This declaration defines a piecewise constant interpolation function.

* LININT <identifier>

This declaration defines a piecewise linear interpolation function.

* SPLINE <identifier>

This declaration defines a spline interpolation function.

* MACRO <identifier>

This declaration defines a macro function, i.e., an arbitrary set of PCOMP statements that

define an auxiliary function to be expanded inline in function declaration blocks. Macros

are identified by a name that can be used in any right-hand side (RHS) of an assignment

statement.

* FUNCTION <identifier>

This declaration defines a function. Functions must have at most one argument that is an

index variable for which function and derivative values are to be evaluated. The subsequent

statements must assign a numerical value to the function identifier.

* END

This declaration signals the end of the program.

If EF2SOCS finds a declaration that it does not recognize, i.e., one that is not found in the

above list or one that does not have the appropriate format, a warning is given, and this program

block is ignored, likely resulting in an output file that is missing crucial information.

25

It is recommended to follow the order of the above program blocks to avoid using a variable

that has yet to be defined. It is not necessary to follow the above order, only suggested. All lines

after the final END statement are ignored by EF2SOCS. The statements within the program blocks

are very similar to usual FORTRAN77 notation. For more details see [45]. We now give a more

precise description for some of the above PCOMP declarations:

Index sets: Index sets are required for the SUM and PROD expressions, as described below, and for

defining indexed data, variables, and functions. They can only be defined in the following 4

ways:

1. Range of indices,

e.g., ind1 = 1..27

2. Set of indices,

e.g., ind2 = 3,1,17,27,20

3. Computed index sets,

e.g., ind3 = 5*i + 100, i=1..n

4. Parameterized index sets defining a set of integers ranging from the previously declared

endpoints n to m,

e.g., ind4 = n..m

Interpolation functions: In PCOMP, interpolation of user-defined data is used to create piece-

wise constant interpolants, piecewise linear interpolants, or cubic spline interpolants. We are

given M pairs of real values (t1, y1), . . . , (tM , yM). In the case of a spline, we define a cubic

interpolant.

Following [45], in the first case, we define a piecewise constant interpolant by:

cint(t) =



0, t < t1 ,

yi, ti ≤ t < ti+1 , i = 1, . . . ,M ,

yN , tM ≤ t .

26

A continuous piecewise linear interpolation function is defined by:

l(t) =



y0, t < t1 ,

yi + t−ti

ti+1−ti
(yi+1 − yi), ti ≤ t < ti+1 , i = 1, . . . ,M − 1 ,

yM , tM ≤ t .

The choice of cubic spline used by PCOMP is somewhat unusual [46]. Accordingly, it is

necessary that we first give some background on cubic splines.

In cubic spline interpolation, cubic polynomial pieces are combined in different ways to pro-

duce an overall interpolant. Mathematically, let f(t) be a function on the interval [tI , tF] and

let

Π = {tI = t1 < t2 < t3 < · · · < tM−1 < tM = tF }

be M equally spaced points at which f(t) is to be interpolated; i.e., the ti divide [tI , tF] into

M − 1 uniform subintervals, called a partition Π of [tI , tF].

A cubic spline interpolant of f(t) relative to the partition Π is a function s(t) such that

1. on each subinterval [tj , tj+1], j = 1, 2, 3, . . . ,M − 1, s(t) coincides with the cubic poly-

nomial

sj(t) = Aj +Bj(t− tj) + Cj(t− tj)2 +Dj(t− tj)3;

2. s(tj) = f(tj), j = 1, 2, . . . ,M ;

3. s′(t) is continuous on [tI , tF];

4. s′′(t) is continuous on [tI , tF].

The interpolant s(t) is continuous on [tI , tF]. The above four conditions are not enough

to completely determine the interpolating function s(t). The function s(t) is composed of

M −1 different cubic polynomials, each with four coefficients, so there are a total of 4(M −1)

unknowns. Interpolation provides M equations. Continuity of the spline and its first two

derivatives contribute an additional 3(M − 2) = 3M − 6 equations (continuity applies at

the interior points t2, t3, t4, . . . , tM−1 only). The definition of the spline therefore provides

27

(M) + 3(M − 2) = 4M − 6 equations. Accordingly, in order to completely determine the

interpolating function, two more conditions must be specified.

The three most common additional conditions are:

1. not-a-knot, where it is required that s′′′(t) be continuous at t = t2 and t = tM−1; an

equivalent interpretation is that one cubic polynomial is fit on the first two subintervals

and one more is fit on the last two subintervals;

2. clamped, where f ′(tI) and f ′(tF) are known so that s′(tI) = f ′(tI) and s′(tF) = f ′(tF);

3. natural (or free), where s′′(tI) = s′′(tF) = 0.

Once the final two conditions have been specified, a system of 4(M−1) equations in 4(M−1)

unknowns is formed. Equations for Aj , Bj , Cj , and Dj follow from the definition of s(t) by

using the interpolation condition, continuity of s(t), continuity of s′(t), and continuity of s′′(t)

respectively. With some algebraic manipulation of these equations, one obtains an equation

that forms the basis for a tridiagonal system of equations for determining the Cj . This system

is solved for the coefficients C2, ..., CM−1. We use the boundary conditions to get equations

for C1 and CM . Using the Cj we can determine the values of the remaining coefficients using

the equations for Aj , Bj , and Dj [12].

In order to create a cubic spline, there must be at least 4 data points. A not-a-knot spline is

used on the first 4 data points. All subsequent data points are interpolated using a clamped

spline, assigning a slope of zero at the right end point and a slope equal to that of the not-

a-knot spline on the first 4 points at the fourth point. So, the 4 additional conditions being

enforced are:

s′′′1 (t2) = s′′′2 (t2) and s′′′2 (t3) = s′′′3 (t3)

s′4(t4) = s′3(t4) and s′M−1(tM) = 0 .

In order to preserve the 4(M − 1) equations when evaluating s(t) for t > t4, note that the

condition s′4(t4) = s′3(t4) is contained in the continuity of s′(t) and does not contribute a

new condition. Also, the condition s′′4(t4) 6= s′′3(t4) is not enforced, eliminating one of the

28

equations enforcing s′′(t) to be continuous. Therefore, the resulting number of equations is

4(M − 1).

According to [45], a zero derivative is enforced at the right end point because interpolated

data are often based on experiments that reach a steady state, i.e., a constant value.

As an example, to interpolate the nonlinear function f(t) by a piecewise constant interpolation

of the discrete values f(ti) = yi from Table 3.1, we define a program block starting with the

keyword CONINT followed by the name of the function. The numerical time and function

values are given on subsequent lines, using any standard FORTRAN77 format starting at

column 7:

* CONINT F

0.0 0.00

1.0 4.91

2.0 4.43

3.0 3.57

4.0 2.80

5.0 2.19

6.0 1.73

7.0 1.39

8.0 1.16

9.0 1.04

10.0 1.00

The interpolation functions are treated as intrinsic FORTRAN77 functions; i.e., they have to

contain a variable or constant as a parameter. So, if we assume that T has previously been

declared as an index variable, for example, a valid statement would be

* FUNCTION OBJ

OBJ = F(T)

29

Macros: In contrast to FORTRAN77, PCOMP does not allow for the declaration of subroutines.

Alternatively, one may define a macro, i.e., an arbitrary sequence of PCOMP statements that

define a variable to be expanded inline in subsequent function declaration blocks. Macros are

identified by a name that can be used in any right-hand side of an assignment statement

* MACRO <identifier>

followed by a group of PCOMP statements that assign a numerical value to the identifier.

Macros do not permit recursion and have no arguments, but they may access all previously

declared variables, constants, or functions. New variables may be declared within a macro, and

any values assigned to these variables are also available outside of the corresponding function

block. If we assume that x is a variable and we want to define a macro that computes the

square of x, we would write

* MACRO sqr

sqr = x*x

We may now replace each occurrence of the term x*x with the macro sqr, for example

f = sqr-5.2

SUM and PROD expressions: Sums and products over predetermined index sets are coded

using SUM and PROD expressions, where the corresponding index and the index set must be

specified. For example,

inda = 1..5

f = 100*SUM(p(i)**a(i), i IN inda)

where p(i) could be a vector containing the parameters to be estimated and defined by an

index set, and a(i) an array of constant data. In mathematical notation we are evaluating

f = 100
5∑

i=1

p(i)a(i) .

30

Note that EF2SOCS does not accept nested SUM’s or PROD’s. Consequently, the user may

need to expand one of the these expressions manually.

Functions: Functions must be treated in a particular way when using index sets. Because the

design goal of PCOMP is to generate short, efficient FORTRAN77 code, indexed function

names can only be used specifically as described. In other words, if a set of functions is

declared by

* FUNCTION f(i), i IN index

then only an access to f(i) is permitted and not to f(1) or f(j), for example. Therefore, a

reference to only a single function in the array of functions f(i) is not possible. The array

may only be accessed as a whole; i.e., PCOMP does not extend the indexed functions to a

sequence of single expressions as is done with SUM and PROD statements.

i ti yi

1 0.0 0.00

2 1.0 4.91

3 2.0 4.43

4 3.0 3.57

5 4.0 2.80

6 5.0 2.19

7 6.0 1.73

8 7.0 1.39

9 8.0 1.16

10 9.0 1.04

11 10.0 1.00

Table 3.1: Interpolation data

31

The purpose of EF2SOCS is not only to translate input from EASY-FIT to SOCS but also to

use PCOMP to specify problems for SOCS. Therefore, it is worth noting that in using PCOMP

code for specifying a problem for SOCS, other than the required syntax for PCOMP declarations

described above, any other code that compiles in FORTRAN77 can be handled by EF2SOCS. For

example, if one wanted to use a different spline function than the one included in PCOMP, it is

possible to call such a function from PCOMP. The code for this function would not be written in

PCOMP, but rather in a separate FORTRAN77 file not translated by EF2SOCS.

The user does not need to be concerned with using variable names that are also used in the

SOCS software code. EF2SOCS has a list of these key words and automatically converts any

PCOMP variable names that conflict with the key words. A global conversion, i.e., all occurrences

in the PCOMP file, is performed by appending an “X” to the end of the PCOMP variable name.

A pre-processor in the form of a perl script is used to accomplish this task.

The following 3 subsections deal with the input format of the model functions that must be

defined in EASY-FIT using the PCOMP language. EF2SOCS has been designed to follow the same

rules as PCOMP, and so based on the importance of understanding these rules, we provide them as

a reference. Again, for a more complete description of the rules for each of the following 3 models,

see [45].

Many problem-specific constants such as the number unknown parameters, the number of con-

centration variables, and the number of fitting functions, etc., are contained in a file separate from

the PCOMP code. It is these constants that define the number of the various inputs to be read

from the PCOMP code. We describe this file after giving the rules for the input format of the

model functions.

3.1.1 Input of Explicit Model Functions

To define explicit fitting functions in PCOMP, certain guidelines for the declaration of parameters

and functions must be followed. The order in which these items are defined is essential for the

interface between the input file and the data-fitting code. For defining variables, we have the

32

following rules:

• The first variable names are identifiers for the nu independent parameters to be estimated,

i.e., for p1, . . . , pnu
.

• If a concentration variable c exists, then a corresponding variable name must be added next.

• The last variable name identifies the independent (time) variable t for which measurements

are available.

• No other variables may be declared.

Similarly, there are rules for the order in which model functions are defined:

• First, mexp fitting criteria h1(p; t, c), . . . , hmexp
(p; t, c) must be defined depending on p, t,

and optionally on c.

• The subsequent ng functions are the constraints gng
(p; t, c), if they exist. They may depend

only on the parameter vector p to be estimated, and certain time and concentration values t

and c, respectively..

• No other functions may be declared.

The constants nu, mexp, and ng are defined in the database of EASY-FIT. These constants

along with many other problem-specific constants are contained in a file separate from the PCOMP

code. Each problem has associated with it a PCOMP file as well as a file defining these constants.

3.1.2 Input of ODEs

For defining variables, we have the following rules:

• The first variables are identifiers for the nu independent parameters to be estimated,

p1, . . . , pnu .

• The subsequent ny names identify the state variables of the system of ODES, y1, . . . , yny
.

• If a concentration variable exists, then an identifier name must be added next to represent c.

33

• The last variable name identifies the independent (time) variable t, for which measurements

are available.

• No other functions may be declared.

Similarly, we have rules for the order in which model functions are defined:

• The first ny functions are the RHSs of the system of differential equations,

f1(p; y, t, c), . . . , fny
(p; y, t, c), respectively.

• The subsequent ny functions define the initial values, which may depend on the parameters

to be estimated and the concentration variable, y0
1(p; c), . . . , y0

ny
(p; c).

• Next, mexp fitting functions h1(p; y, t, c), . . . , hmexp
(p; y, t, c) are defined depending on p, y, t,

and c, where y denotes the state variable of the system of differential equations.

• The final nI functions are the inequality constraints gI(p; y(p; t, c)), if they exist, where

y(p; t, c) represents the solution of the system of ODEs, depending on the parameter vector

p to be estimated, and certain time and concentration values t and c, respectively.

• No other functions may be declared.

The constants nu, ny, mexp, and nI are defined in the database of EASY-FIT. The last mb of the

nu parameters to be estimated are understood to be breakpoints points, if they have been declared,

to describe certain model changes. Also mb, the number of constant or variable break points, must

be defined beforehand.

3.1.3 Input of DAEs

The following order of PCOMP variables is required:

• The first variable names are identifiers for nu parameters to be estimated, p1, . . . , pnu
.

• The subsequent ny names identify the differential variables y1, . . . , yny
.

• The subsequent nz names identify the algebraic variables z1, . . . , znz
.

34

• If a concentration variable exists, another identifier must be added next to represent c.

• The last variable name defines the independent (time) variable t for which measurements are

available.

• No other functions may be declared.

Similarly, we have rules for the order in which the model functions are defined:

• The first ny functions are the RHSs of the system of differential equations,

f1(p; y, z, t, c), . . . , fny
(p; y, z, t, c), respectively.

• The subsequent nz functions are the RHSs of the algebraic equations, i.e., functions

gnz (p,y, z, t, c).

• Subsequently, ny functions define initial values for the differential equations, which may de-

pend on the parameters to be estimated and the concentration variable, y0
1(p; c), . . . , y0

ny
(p; c).

• Then nz functions define initial values for the algebraic equations, which may depend on the

parameters to be estimated and the concentration variable, z0
1(p; c), . . . , z0

nz
(p; c).

• Next mexp fitting functions h1(p; y, z, t, c), . . . , hmexp(p; y, z, t, c) must be defined depending

on p,y, z, t, and c, where y and z are the differential and algebraic state variables of the DAE.

• The final nI functions are the constraints gI(p; y(p; t, c), z(p; t, c)), if they exist, where

y(p; t, c) and z(p; t, c) represent the solution of the system of DAEs (2.30), depending on

the parameter vector p to be estimated, and certain time and concentration values t and c,

respectively.

• Any other functions are not allowed to be declared.

The constants nu, ny, nz, mexp, and nI are defined in the database of EASY-FIT and must

coincide with the corresponding numbers of variables and functions, respectively. The last mb

fitting variables are considered as switching points, if they have been declared beforehand to describe

certain model changes.

35

Note: Presently, EF2SOCS is not designed to accommodate high-index DAEs; i.e., DAEs with

index greater than 1. EASY-FIT can handle higher-index problems; see Section 2.2. However,

SOCS cannot handle higher-index DAEs. Because EF2SOCS cannot transform higher-index DAEs

to index-1 problems, these problems cannot be translated directly.

Many problem-specific constants are contained in a file separate from the PCOMP code (see

Appendix A). For the specific details of the content of the constants file, see [15]. We provide only

a brief summary of the important parts of the file used by EF2SOCS. If one exists, the capitalized

identifier is given at the start of the line.

• model name and model type (1 for explicit model, 4 for ODEs, 5 for DAEs)

• NPAR: Number of unknown parameters (nu), number of variable breakpoints

• NRES: Number of constraints (equality and inequality: ng)

• NEQU: Number of equality constraints (nE)

• two integers (if present) defining concentration values to which the constraints are applied

(equality then inequality constraints are listed)

• NODE: Number of differential equations (ny)

• NCONC: Number of concentration values (mc)

• NTIME: Number of time measurements (mt)

• NMEAS: Number of measurement sets (dimension of fitting function: mexp)

• METHOD: Order of ODE method, number of algebraic equations (nz), number of index-1

DAEs, number of index-2 DAEs, number of index-3 DAEs

• parameter data (parameter names, lower bounds for parameters (plb), initial values for pa-

rameters (p0), upper bounds for parameters (pub))

• SCALE: Scale type for weight factors

36

• data (time values, concentration values (if any), observation values, weights:

(ti, cj , yk
ij , w

k
ij), i = 1, . . . ,mt, j = 1, . . . ,mc, k = 1, . . . ,mexp)

• NDISCO: Number of constant breakpoints (mb)

• list of breakpoint values, one per line (τi, i = 1, . . . ,mb)

Note that an option defining the type of norm used in the objective is omitted. All problems in

the EASY-FIT database are solved using the L2-norm, i.e., the square root of the sum of the squares

of the residuals rk
ij . Although it is possible to use alternative norms in EASY-FIT, because they

are not used and because they cannot be specified in SOCS, they are not included in EF2SOCS.

3.2 Input Format for SOCS

In this section we give a brief description of the subroutines used by SOCS to solve a parameter

estimation problem. For complete details of these and other subroutines in SOCS, see [7]. The

software for solving optimal control and parameter estimation problems can be divided into four

parts:

1. the general optimal control routine HDSOPE, which is called by the user to solve parameter

estimation problems, and the input routine HHSOCS;

2. the user supplied subroutines needed to define the parameter estimation problem;

3. the optimization software needed to solve a sparse NLP subproblem;

4. the optimal control utility software available for special analysis and applications.

The following subroutines have generic names that may be changed by the user. In this description

we use names that are consistent with those in the SOCS manual [7].

The user must define the problem using a routine called as ODEINP. This subroutine defines the

phase-dependent problem input. It is called once for each phase. Recall, a phase is a portion of a

trajectory in which the dynamics of the system remain unchanged. The dynamics of the system are

37

described by a set of dynamic variables made up of the state variables and the control variables.

For a multi-phase example, see Section 4.1. In this example, each value of the concentration

variable defines a separate phase. Also defined in ODEINP is the discretization method used in

the direct transcription algorithm. Given a discretization step size ∆t > 0, many discretization

methods are possible for this algorithm, with the second-order, i.e., O(∆t2), trapezoidal method

and fourth-order, i.e., O(∆t4), Hermite-Simpson method being popular choices. The trapezoidal

method is used as the default discretization method. For a description of these and other possible

discretization methods, see [5]. Several options are also available for constructing an initial guess

for the dynamic variables (2.1). The initial guess is defined in SOCS using the array INIT. Again,

popular choices include:

INIT(1) = 1: Construct a linear initial guess between d(tI) and d(tF); i.e., linear interpolate the

boundary conditions. If NGRID is the number of grid points used in the discretization, then

for grid point j the independent variable is

tj = (j − 1)
[

tF − tI
NGRID − 1

]
+ tI , (3.1)

and the dynamic variables are

d(tj) = (j − 1)
[

d(tF)− d(tI)
NGRID − 1

]
+ d(tI), (3.2)

where 1 ≤ j ≤ NGRID.

INIT(1) = 6: Construct an initial guess by solving an IVP with a linear control approximation.

The control variables u(t) are approximated by

u(t) =
tF − t
tF − tI

u(tI) +
t− tI
tF − tI

u(tF). (3.3)

The state variables y(t) are approximated by the solution of the ODE system

ẏ = f [y(t),u(t), t] , (3.4)

solved as an IVP using the variable step size Runge–Kutta–Taylor integrator.

38

INIT(2) = 3: The IVP solved using initial conditions y(tI) = ytI (u; c). This option uses a

variable order, variable step size backward differentiation formula (BDF). It is referred

to as the stiff BDF integrator. [20].

INIT(1) = 8: Construct an initial guess with NGRID equally spaced grid points using linear

interpolation/extrapolation of the M measurement data points (2.17).

Subroutine ODERHS permits the user to define the RHSs of the DAEs, and nonlinear boundary

conditions can be constructed in subroutine ODEPTF. Optional output can be constructed in

subroutine ODEPRT. Parameter estimation problems require input of measurement data using

the subroutine DDLOAD. ODEIGS is an optional user-supplied subroutine that defines the initial

guess for the dynamic variables.

The following subroutines describe a collection of useful utility procedures available in the SOCS

library that are commonly needed for many applications. In particular the subroutine AUXOUT

is an auxiliary output utility that can be used to display the optimal control solution produced

by SOCS at either a fixed step size during the phase or at a specified number of points. The

subroutine OCSEVL is used to evaluate the optimal control solution at a few points. Subroutine

AUXOUT may be more appropriate when the user wishes to display a complete time history

of the solution. The primary function of OCSRNG is to construct estimates for the upper and

lower bounds for the dynamic variables produced by SOCS. This information is often useful when

constructing scale information as well as for display purposes. The subroutine LINKST is useful

for linking dynamic variables across a phase boundary. Subroutines PHSLNG, PNTCON, and

PTHCON are utility routines to simplify the specification of phase duration constraints, point

functions, and path constraints, respectively. The organization of the subroutines used by SOCS

to solve parameter estimation problems is illustrated in Figure 3.1. User-supplied subroutines are

shown with double boxes. The optional subroutines are indicated by an asterisk. The user must

call the SOCS algorithm HDSOPE and define the problem using the subroutine ODEINP. All other

information is optional and may be supplied by the user or by using the dummy routines included

in the SOCS library.

39

M

A

I

N

P

R

O

G

R

A

M

HHSOCS*

HDSOPE

HDSLSQ
or

HDBLSQ

HDSFDJ

OCSEVL*,

OCSRNG*,

AUXOUT*

LINKST*, PHSLNG*,

PNTCON*, PTHCON*

DDLOAD

ODERHS*

ODEPTF*

ODEPRT*

ODEIGS*

ODEINP

Figure 3.1: Organization of SOCS for Sparse Optimal Parameter Estimation

3.3 Sample Problem

We now have sufficient background to fully understand the translation of an EASY-FIT input file

into a corresponding SOCS input file. As an example, we consider the simplest type of parameter

estimation problem, an explicit model function with no constraint functions. For more examples,

including parameter estimation problems involving differential equations, see Chapter 4.

The explicit model function we describe is called TP333 in the EASY-FIT software package.

The experimental data can be found in Table 3.2. The two integers on the first line give the size

of the measurement set. The first column of data represents the time values, the second represents

the observation values, and the third represents the weights associated with each measurement

value. Other problem-specific constants are found in the data file in Appendix A. Note that the

line numbers in this data file have been added for easy line identification. Following the problem

formulation given in Section 2.1, we have mt = 8 time values, mc = 1 concentration value, mexp = 1

40

measurement set, and M = mtmcmexp = 8 corresponding measurement values.

We wish to fit parameters p = (p1, p2, p3)T so that the data in Table 3.2 are approximated by

the function

h(p; t) = p1 exp(−p2t) + p3 . (3.5)

From Appendix A we see that the initial guess for the unknown parameters is p0 = (30, 0.04, 3)T

and the parameter bounds are 0 ≤ p1 ≤ 1000, 0 ≤ p2 ≤ 1000, and 0 ≤ p3 ≤ 1000. The least-squares

data-fitting problem is

min
p

M∑
i=1

(h(p; ti)− yi)2,

0 ≤ p ≤ 1000 , p ∈ R3.

(3.6)

The corresponding EASY-FIT PCOMP file is the following:

C

C--

C

C Problem: TP333

C

C Date: 02.03.1994

C

C--

C

C - Independent variables in the following order:

C 1. parameters to be estimated (p)

C 2. concentration variable, if exists (c)

C 3. time variable (t)

C

* VARIABLE

p1, p2, p3, t

C

41

C--

C

C - Fitting criteria:

C

* FUNCTION y

y = p1*exp(-p2*t) + p3

C

C--

C

* END

C

C--

C

8 3

4 72.1 1

5.75 65.6 1

7.5 55.9 1

24 17.1 1

32 9.8 1

48 4.5 1

72 1.3 1

96 0.6 1

Table 3.2: Measurement data for model TP333.

42

The EF2SOCS–generated input file for SOCS is given in Appendix B. EF2SOCS also creates a

data file containing the measurement data. This data file is used by SOCS to solve the parameter

estimation problem TP333; see Table 3.2. Along with the call to HDSOPE, the parameter esti-

mation solver in SOCS, the program also makes use of the subroutines EXPRHS, EXPINP, and

EXPDDL.

In the subroutine EXPRHS, we define the model function. Because SOCS can only evaluate

residuals on the state and/or algebraic variables and not functions of them, we need to introduce

an algebraic variable into the equation defining the RHS of the fitting function. This equation then

becomes a constraint that we define in the input subroutine. The algebraic variable is stored in

the array YVEC, which is a real array containing the dynamic variables y(t) and u(t). EXPINP is

used to define initial and final times, initial parameter values, parameter bounds, and the objective

function. The user-defined subroutine INIEXP is called from EXPINP so that the data in Table

3.2 are loaded into the program. The data are then appropriately assigned to the correct variables

in the subroutine EXPDDL. Here, the time values, measurement values, and weights are assigned.

Because scaling of the residuals is needed, the subroutine EXPDDL also calculates the values for

the weight array based upon the scaling option, (2.22) in this case.

3.4 Software Architecture and Design

Software architecture deals with the design and implementation of the high-level structure of soft-

ware. It is the result of assembling a certain number of architectural elements in some well-chosen

forms to satisfy the major functionality and performance requirements of the system [33]. The

major elements of a software architecture are components and connectors. The components are

the building blocks of a software architecture, and the connectors describe how the components

interact.

We make use use of two programming languages for EF2SOCS. First, we choose the C program-

ming language for the source-to-source translation because it is a very portable language that also

is one of the most commonly used languages for systems and applications programming. We also

43

avoid unneeded complexity and performance overhead of object-oriented programming languages

such as Java. Second, we choose the Python programming language for the GUI because it is

an interpreted language with a concise syntax, making the resulting programs easy to read and

understand.

The primary organization of many systems mirrors the programming language in which the sys-

tem is written. Because EF2SOCS is written in the C programming language, it quite easily adopts

the hierarchical system using the main program with subroutines model of software architecture

[19], as shown in Figure 3.2. The components are comprised of the procedures that have their own

local data. The connectors are the function calls or procedures with shared access to data that are

declared in main. These data are only accessible to all procedures through procedure calls.

mainmain

parseinit print

Figure 3.2: System overview of EF2SOCS.

The main program is used to send the appropriate information, e.g., variables, to each of the

procedures where the variables are to be defined. The first procedure called is init. Here, the

problem-specific constants and measurement data are read in and assigned to the appropriate

variables from main. Next, the PCOMP code for a given problem is translated. Each declaration

in the PCOMP code is read, and the appropriate rules, as given in Section 3.1, are applied. If

EF2SOCS encounters any code that does not meet the requirements for PCOMP, then a warning

is printed. Finally, the print procedure is used to emit the translated source. It is called with all

the problem information required to produce the SOCS code. This procedure contains dozens of

print statements and checks many different conditions depending on the problem; e.g., the number

44

of constraint functions, the number of differential equations, the number of concentration variables,

etc.

Note that the GUI is not included in Figure 3.2. The GUI does not interact directly with

EF2SOCS code; i.e., it does not make any direct calls to EF2SOCS C code. The GUI is a standalone

application that runs the EF2SOCS executable file to translate PCOMP code into executable SOCS

code. We now discuss the EF2SOCS GUI in greater detail.

3.4.1 The EF2SOCS GUI

The EF2SOCS GUI is written in the Python programming language and uses the toolkit wxPython.

This toolkit enables Python programmers to create programs with a robust, highly functional GUI,

simply and easily. It is implemented as a Python extension module (native code) that wraps

the popular wxWidgets cross platform GUI library. Because wxPython is a cross-platform toolkit,

EF2SOCS will run on multiple platforms with very few modifications, e.g., the sizes of some widgets

are modified to create a consistent “look” for the GUI across platforms. Therefore, currently

supported platforms for EF2SOCS are 32-bit Microsoft Windows, most Unix or Linux systems,

and Macintosh OS X.

EF2SOCSEF2SOCS

Problem Editor Solver Editor Controllers
Window

Results
Window

Figure 3.3: The overall structure of the EF2SOCS GUI components.

The structure of the EF2SOCS GUI in Figure 3.3 includes four major components:

1. The Problem Editor is a text window that defines the model equations using the PCOMP

45

modelling language. Figure 3.4 shows the EF2SOCS Problem Editor. This editor provides

some text editing facilities, such as copy, paste, and line numbering to help the user to define

their model quickly and conveniently. The user may create multiple instances of the Problem

Editor for defining different problems simultaneously.

Figure 3.4: An instance of the EF2SOCS Problem Editor.

46

2. The Solver Editor defines various options used by SOCS in solving the parameter estimation

problem. Figure 3.5 shows the EF2SOCS Solver Editor. This editor allows the user to specify

an EF2SOCS controller that is composed of the residual scaling method using one of the

options from Section 2.2.1. The available integration methods and initial guess types for the

state variables are as described in the ODEINP SOCS subroutine in Section 3.2. The user

may also specify the output directory for the translated PCOMP code and the SOCS output.

(a) Main Solver Editor.

Figure 3.5: An instance of the EF2SOCS Solver Editor.

47

(b) Sub-Solver Editor. (c) Sub-Solver Editor.

Figure 3.5: An instance of the EF2SOCS Solver Editor (cont.).

48

3. The Controllers Window shows a list of EF2SOCS controllers specified by the user. Figure

3.6 shows the Controllers Window. The user may select an EF2SOCS controller from the

list to view its Problem Editor and Solver Editor settings; e.g., residual scaling method, the

integration method, and the initial guess type for the state variables. The user may add or

remove any number of EF2SOCS controllers from the list. After defining and selecting a

set of EF2SOCS controllers, the user may either run the controllers to translate and solve

the selected problems or run the controllers to only translate the selected problems. In both

cases, the GUI creates a sub-process that runs the EF2SOCS executable file to translate

PCOMP code into executable SOCS code. If the user chooses to translate and solve the

selected problems, the GUI will also create a sub-process to run the executable SOCS code

with the SOCS library, producing SOCS output. The user may only want to produce the

executable SOCS code by choosing “Translate” if, for example, they do not have access to a

SOCS library on the current machine. A controller may also be stopped during the solving

process. The Controllers Window shows the current status of each EF2SOCS controller, such

as the elapsed time of the running EF2SOCS controller and whether the EF2SOCS controller

has terminated successfully.

4. The Results Window shows CPU time (in seconds) required of each EF2SOCS controller on

a given problem. Figure 3.7 shows an instance of the Results Window. Again, the user may

select an EF2SOCS controller from the list to view its settings. The user may save these

results for further analysis by choosing “Save” from the File menu.

Therefore, the user may define the problem, load, save, and change solver settings easily through

the GUI. Also, EF2SOCS provides default settings so the user does not need to specifically define

each solver setting. Table 3.3 shows the predefined settings in EF2SOCS.

49

Figure 3.6: The EF2SOCS Controllers Window.

Settings Options Default Setting

Residual Scaling
no scaling, sum of squares, no scaling

absolute value, squared value

Integration Method trapezoidal, Hermite Simpson trapezoidal

Initial Guess Type
linear, discrete data interpolation, linear

IVP approximation,

stiff BDF integrator

EF2SOCS Output directory any directory current working directory

Table 3.3: Default settings for EF2SOCS GUI

50

Figure 3.7: The EF2SOCS Results Window.

51

Chapter 4

Results and Discussion

To test EF2SOCS as well as the SOCS software package on a large number of problems, we run

EF2SOCS on explicit model functions, ODEs, and DAEs. The EASY-FIT database contains 825

problems of these three types. However, not all of these problems can be translated by EF2SOCS.

We describe the subsets of the problems that cannot be translated and give the corresponding

reasons. Excluding the problems that cannot be translated, we are left with a test set of size

691. A summary of the test results is given in the form of tables that we discuss in detail. First

we describe in detail a single problem from each of the three categories of problems and present

solution plots. We consider a SOCS solution to be the set of unknown parameter values, predicted

model values, and objective function value.

We begin with an example of an explicit model function called INTEG X and the results ob-

tained after using EF2SOCS to translate the EASY-FIT input file into SOCS input.

4.1 Sample Explicit Model Problem

In the EASY-FIT explicit model problem INTEG X, there are mt = 5 time values, mc = 5

concentration values, mExp = 1 measurement set, and M = mtmcmExp = 25 corresponding

measurement values. We wish to fit parameters p = (p1, p2, p3)T and concentration variable c so

that the data in Table 4.1 are approximated by the function

h(p; c, t) =
p1 exp(−c)

1− p2 exp(−a) + p3 exp(−t)
. (4.1)

These experimental data are generated by adding a uniformly distributed error of 5% to the true

model (4.1) with parameter values p = (1, 2, 3)T . The constant a is given the value 5.0. The

52

initial guess for the unknown parameter vector is p0 = (10, 10, 10)T , and the parameter bounds are

0 ≤ p1 ≤ 10, 0 ≤ p2 ≤ 20, and 0 ≤ p3 ≤ 20. The least-squares data-fitting problem is

min
p

mt∑
i=1

mc∑
j=1

(wij(h(p; cj , ti)− yij))2,

0 ≤ p1 ≤ 10,

0 ≤ p2 ≤ 20,

0 ≤ p3 ≤ 20,p ∈ R3.

(4.2)

This problem is solved using the default trapezoidal discretization method, and the linear initial

guess method for the dynamic variable given by (3.2). The solution is summarized in Table 4.2.

The objective function values given by EASY-FIT and SOCS agree to 4 decimal places. Because

of possible locally optimal solutions, the objective function values given by EASY-FIT and SOCS

may agree to multiple decimal places despite a difference in parameter values. In an older version of

EASY-FIT, different optimal solutions than those found by the current version may be given. For

this problem, an alternative solution stored in the database of the previous version of EASY-FIT

lists optimal parameter values for this problem to be p∗ = (0.967, 8.372, 2.818)T . It is worth noting

that these optimal parameter values also give an objective function value that agrees to 4 decimal

places with the one given by EASY-FIT and SOCS.

A plot of the experimental data and SOCS solution to this explicit model problem is given

in Figure 4.1. Due to the magnitude of the objective function value, the difference between the

experimental data and theoretically predicted model function values is not noticeable. The colour

depicts the magnitude of the numerical values of the fitting function h(p; c, t).

53

ti cj yij wij

1 1 0.183400496840477 1

2 1 0.26373416185379 1

3 1 0.338522046804428 1

4 1 0.353820204734802 1

5 1 0.368568271398544 1

1 2 0.061604518443346 1

2 2 9.24699977040291E-02 1

3 2 0.120332285761833 1

4 2 0.133212581276894 1

5 2 0.134147644042969 1

1 3 2.48860493302345E-02 1

2 3 0.034145575016737 1

3 3 4.56701554358006E-02 1

4 3 4.88160811364651E-02 1

5 3 4.85896691679955E-02 1

1 4 9.15580242872238E-03 1

2 4 1.29939131438732E-02 1

3 4 0.01550810970366 1

4 4 1.84268802404404E-02 1

5 4 1.84248797595501E-02 1

1 5 3.28793190419674E-03 1

2 5 4.76185046136379E-03 1

3 5 5.66617911681533E-03 1

4 5 6.43186643719673E-03 1

5 5 6.62047695368528E-03 1

Table 4.1: Experimental Data for problem INTEG X.

54

Problem p and obj. values EASY-FIT SOCS

INTEG X p1 0.970 0.972

p2 7.906 7.681

p3 2.828 2.833

obj. 4.423×10−4 4.242×10−4

Table 4.2: Results obtained from EASY-FIT and SOCS for explicit model
INTEG X.

4.2 Sample ODE Problem

In the EASY-FIT ODE parameter estimation problem COMPET, we wish to fit simulated data

that model a competition between two species, as described in [4]. The model functions (4.3)–(4.4)

are evaluated at M = mtmExp = 50 points, and a uniformly distributed error of 5% is added to

the function values using parameter values p = (1, 1, 1, 0.99)T . The unknown parameter vector is

p = (p1, p2, p3, p4)T . The model functions

h1(p; y(p; t), t)) = y1, (4.3)

h2(p; y(p; t), t)) = y2, (4.4)

depend on the solution y(p; t) of a system of 2 ODEs

ẏ1 = p3
y1(1− y1)

2
− p1y1y2, y1(0) = 0.02,

ẏ2 = p4
y2(1− y2)

2
− p2y1y2, y2(0) = 0.02.

(4.5)

The initial guess for the parameters is p0 = (0.5, 0.5, 0.5, 0.5)T with lower and upper bounds given

by 0 ≤ p ≤ 100. The least-squares data fitting problem is

min
p

mExp∑
k=1

mt∑
i=1

(hk(p; y(p; ti), ti)− yk
i)2,

0 ≤ p ≤ 100 , p ∈ R4.

(4.6)

This problem is solved using the default trapezoidal discretization method, and the linear initial

guess method for the dynamic variables given by (3.2). The solution is summarized in Table 4.3.

55

1

2

3

4

5

1

2

3

4

5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

conc.

time

h
(p

;c
,t

)

predicted values

experimental data

Figure 4.1: Plot of experimental data versus theoretically predicted model values
obtained from SOCS for explicit model function INTEG X.

56

All parameter values except p1 agree to at least 3 decimal places. The objective function values

found by EASY-FIT and SOCS also agree to 3 decimal places. All parameter values found by

both software packages differ less than 5% from those used to simulate the data. A plot of the

experimental data and SOCS solution to this ODE parameter estimation problem is given in Figure

4.2.

Problem p and obj. values EASY-FIT SOCS

COMPET p1 0.985 0.983

p2 0.999 0.999

p3 0.996 0.996

p4 0.991 0.991

obj. 0.0219 0.0218

Table 4.3: Results obtained from EASY-FIT and SOCS for ODE model COMPET.

4.3 Sample DAE Problem

The sample EASY-FIT parameter estimation problem involving a DAE is called BOND. The model

represents the transition (4.7)–(4.9) of a photon in a hydrogen-hydrogen bond [34]. The model

functions are evaluated at M = mtmExp = 24 points and a uniformly distributed error of 5%

is added to the function values using parameter values p = (8.43, 0.29, 2.46, 8.76 × 104)T . The

unknown parameter vector is p = (p1, p2, p3, p4)T . The model functions

h1(p; x(p; t),y(p, t)) = x1, (4.7)

h2(p; x(p; t),y(p, t)) = x2, (4.8)

h3(p; x(p; t),y(p, t)) = y, (4.9)

57

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

time

y
1
(p

,t
)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

y
2
(p

,t
)

experimental data
predicted values

experimental data
predicted values

Figure 4.2: Plot of experimental data versus theoretically predicted model values
obtained from SOCS for ODE parameter estimation problem COMPET.

58

depend on the solution x(p; t) and y(p; t) of a system of 2 ODEs and 1 algebraic equation

ẋ1(p; x,y, t) = −k1x1 + p2y , x1(0) = 0,

ẋ2(p; x,y, t) = −k4x1 + p3y , x2(0) = 1,

0 = k1x1 + k4x2 − (p2 + p3)y , y(0) = 0,

where k1 = p1 · 1 × 10−10 and k4 = p4 · 1 × 10−10. The initial guess for the parameters is p0 =

(10, 0.5, 5, 1 × 105)T with lower and upper bounds given by 0 ≤ p ≤ 1 × 106. The least-squares

data-fitting problem is

min
p

mExp∑
k=1

mt∑
i=1

(hk(p; x(p; ti),y(p; ti), ti)− yk
i)2,

0 ≤ p ≤ 1× 106 , p ∈ R4.

(4.10)

This problem is solved using the default trapezoidal discretization method, and the linear initial

guess method for the dynamic variables given by (3.2). The solution is summarized in Table 4.4. In

the SOCS solution, parameter p1 reached its lower bound of 0. EASY-FIT and SOCS have clearly

converged to different solutions based on the value of p1. However, the objective function values

still agree to 3 decimal places. This is an example where each software package has converged

to a different locally optimal solution. In this case, SOCS finds a slightly better solution than

EASY-FIT. A plot of the experimental data and SOCS solution to this DAE parameter estimation

problem is given in Figure 4.3.

Problem p and obj. values EASY-FIT SOCS

BOND p1 2.364×105 0

p2 0.307 0.297

p3 2.494 2.489

p4 8.780×104 8.765×104

obj. 7.617×10−4 7.233×10−4

Table 4.4: Translator results obtained from EASY-FIT and SOCS for DAE model
BOND.

59

0 1 2 3 4 5 6 7 8

x 10
5

0

10

20

30

40

x
1

time

0 1 2 3 4 5 6 7 8

x 10
5

0

100

200

300

x
2

time

0 1 2 3 4 5 6 7 8

x 10
5

0

2

4

6

8
x 10

−4

y

time

experimental data
predicted values

experimental data
predicted values

experimental data
predicted values

Figure 4.3: Plot of experimental data versus theoretically predicted model values
obtained from SOCS for DAE parameter estimation problem BOND.

60

4.4 Discussion

We selected the 3 problems described above because they belong to the set of problems in which

SOCS and EASY-FIT converge to a solution with approximately the same objective function value.

The explicit and DAE models also illustrate the potential for locally optimal solutions in parameter

estimation problems. EF2SOCS correctly translates these 3 problems; however there are some

problems in the EASY-FIT database that EF2SOCS cannot translate. We now summarize the 5

subsets of problems that we have identified that EF2SOCS cannot translate.

Type I: Models with a discontinuity in the RHS of a function may cause slow convergence, very

small step size selection, or even divergence in the numerical methods used by SOCS. Al-

though it is possible for SOCS to solve problems with discontinuities, it is best to avoid

discontinuous behaviour. Several suggestions as to how to do so are given in [5].

Type II: Models with constraints applied at interior points of a phase, i.e., non-boundary points,

are supported by SOCS; however, because the treatment of these constraints in SOCS typ-

ically requires analysis on a problem-by-problem basis it is not possible to automate the

translation process. For example, the required SOCS code could depend on quantities such

as concentration variables, breakpoints, and initial values involving unknown parameters.

Type III: Models with discontinuities across a breakpoint and where the initial value at the break-

point depends on an unknown parameter or state variable are supported by SOCS. However,

as with Type II, the treatment of the required constraints in SOCS typically requires analy-

sis on a problem-by-problem basis because the SOCS code could depend on quantities such

as concentration variables, breakpoints, and initial values involving unknown parameters.

Therefore, it is not possible to automate the translation process.

Type IV: Models with variable breakpoints, i.e., breakpoints that are treated as parameters to

be optimized, are not supported by SOCS and therefore cannot be translated by EF2SOCS.

Type V: High-index DAEs are not directly supported by SOCS and therefore cannot be translated

61

by EF2SOCS; see Section 2.2.3.

For all problems except those of Type I, EF2SOCS outputs a warning. Warnings from Type

III problems require examination of PCOMP code to recognize the potential difficulties that

EF2SOCS may have encountered during translation. A thorough check by EF2SOCS is not per-

formed; however the straightforward cases where the exact state variable name and unknown param-

eter name are used for a discontinuity across a breakpoint would generate a warning. EF2SOCS does

not check the dependence of one variable on another to resolve the underlying value. So, for ex-

ample, if a local variable v is set to be the value of the state variable y and v is used in the initial

value of a breakpoint that is classified as Type III, EF2SOCS would not generate a warning. If the

name y is used, then EF2SOCS recognizes the name, and if the initial value is classified as Type

III, EF2SOCS then generates a warning. Warnings generated from Type II, Type IV, and Type V

problems do not require examination of PCOMP code. The file containing the problem-specific con-

stants, e.g., see Appendix A, provides sufficient information about the model to recognize problems

due to these 3 types.

The number of problems of each type for all three categories of models is given in Table 4.5. Ex-

cluding these problems that cannot be translated, we summarize the results of running EF2SOCS on

the remaining 691 problems from the EASY-FIT database in Table 4.6.

Model Type I Type II Type III Type IV Type V

Exp. 0 0 N/A N/A N/A

ODEs 28 22 34 28 N/A

DAEs 13 3 4 1 1

Table 4.5: Summary of number of problems that cannot be translated by
EF2SOCS.

Considering the 231 explicit models, none of the problems produced an EF2SOCS warning or

a FORTRAN90 compiling error, and SOCS converged to a solution for every problem. Similarly,

for the 24 DAE models, none of the problems produced an EF2SOCS warning or a FORTRAN90

62

Model # Probs EF2SOCS warnings FORTRAN90 errors converged solutions

Exp. 231 0.0 % 0.0 % (231) 100.0 %

ODEs 436 0.0 % 0.0 % (429) 98.4 %

DAEs 24 0.0 % 0.0 % (24) 100.0 %

Table 4.6: Testing results obtained from EF2SOCS and SOCS.

compiling error, and SOCS converged to a solution for every problem. For the 436 ODE models,

none of the problems produced an EF2SOCS warning or a FORTRAN90 compiling error; however,

there were 7 models that were correctly translated but could not be solved by SOCS.

The process of using EF2SOCS to solve a parameter estimation problem using SOCS involves

running EF2SOCS with two files: The first contains the model functions defined in PCOMP and

the second contains the problem-specific constants. EF2SOCS generates a warning if the PCOMP

code does not follow the requirements given in Section 3.1 or if the problem is one of the 5 types of

problems that cannot be translated. A warning prevents EF2SOCS output from compiling using

the FORTRAN90 compiler because it is printed at the beginning of the file containing the generated

SOCS code. It is possible that EF2SOCS output would compile by simply removing any translator

warnings from this file. If EF2SOCS output is able to be compiled using FORTRAN90 and the

SOCS library, the executable is then run. If a final solution is given by SOCS, we then check if

SOCS converged to this solution.

To obtain converged solutions in SOCS, various initial guess strategies were required for the

dynamic variables and the unknown parameters. We have separated the initial guess strategies

into 3 stages. The stages are designed to progressively help SOCS converge to the same solution as

EASY-FIT. This is accomplished by providing incrementally more information about the EASY-

FIT solution. Stage 1 consists of 2 related initial guesses, namely the EASY-FIT initial guess for

the unknown parameters but 2 different choices for the parameter bounds. The parameter bounds

63

are either set to those used by EASY-FIT, or they are restricted according to the following formulas

plb,i =


plb,i, if |plb,i| ≤ 10, i = 1, . . . , nu,

not defined, if |plb,i| > 10, i = 1, . . . , nu,

pub,i =


pub,i, if |pub,i| ≤ 10, i = 1, . . . , nu,

not defined, if |pub,i| > 10, i = 1, . . . , nu,

(4.11)

where plb,i represents the ith component of plb and similarly for pub,i. In general, in the EASY-FIT

database it is reasonable to assume that an upper bound of at most 10 (or a lower bound of at most

−10) on an unknown parameter is sensible; i.e., the value is an actual bound and not a fictitious

value. We make this choice to restrict the bounds because it became quickly apparent that an

upper bound of 106, which is commonly used in EASY-FIT, causes poor scaling within the SOCS

numerical algorithms when the magnitude of the optimal parameter value is not this large. In

equations (4.11), if the parameter bounds are not defined, then we let SOCS compute bounds for

the unknown parameters internally.

In SOCS, the optimal control problem variables and constraints are scaled in an attempt to im-

prove the conditioning and efficiency of the underlying NLP problem. Variable scaling is performed

by estimating the smallest and largest variable values from the user-supplied variable bounds. If

bounds are not supplied, they are computed internally by trying to produce a well-scaled Jaco-

bian, i.e., by normalizing the rows and columns of the Jacobian to have the same magnitude, along

with several other heuristics; see [7]. Effectively, if there are no definite bounds on the unknown

parameters, it is better to leave them unspecified when using SOCS.

Similarly, Stage 2 uses the EASY-FIT optimal solution for the unknown parameters and the

same 2 choices as Stage 1 for the parameter bounds. Stage 3 uses the EASY-FIT optimal solution

for the unknown parameters but sets the bounds on the unknown parameters to be very close to the

EASY-FIT optimal solution. Each stage also uses 4 different methods for constructing an initial

guess for the dynamic variables d, given by (2.1). The method is defined using the array INIT, as

described in Section 3.2. Next, we describe in detail each stage and its corresponding strategies.

64

We do not have access to the EASY-FIT initial guess for the dynamic variables, but we do have

access to the initial guess and bounds used for the unknown parameters. Therefore our best attempt

at using the same initial guess as EASY-FIT uses the same initial guess for the unknown parameters

and the same unknown parameter bounds as used by EASY-FIT. We also use the default initial

guess method for the dynamic variables in SOCS, i.e., we linear interpolate the boundary conditions

using INIT(1)=1. If this does not produce a converged solution in SOCS, the first modification is to

restrict the parameter bounds by removing non-sensible bounds used by EASY-FIT and continue

using the default initial guess method for the dynamic variables in SOCS.

We follow this strategy by using different initial guess methods for the dynamic variables in

SOCS. We try the linear interpolation of measurement data method INIT(1)=8, followed by the

linear control approximation INIT(1)=6 using the Runge–Kutta–Taylor integrator, and finally the

linear control approximation INIT(1)=6 and the stiff BDF integrator INIT(2)=3. For each of these

3 methods, we first use the same unknown parameter bounds as EASY-FIT and then the bounds

are restricted. This combination of 4 guess methods for the dynamic variables, and either restricting

or not restricting the parameter bounds, forms Stage 1.

Stage 2 consists of obtaining a converged solution in SOCS by using the optimal EASY-FIT

parameter values p∗ as the initial guess for the unknown parameters in SOCS. These values are a

solution to the parameter estimation problem in EASY-FIT, and because we are trying to solve the

same problems with SOCS, they should also be close to an approximate solution to the problem in

SOCS. Again, we begin by using the same parameter bounds as EASY-FIT, followed by restricting

the parameter bounds. The 4 different initial guess methods for the dynamic variables used in

Stage 1 are used in the same order for Stage 2.

At this point, if SOCS has failed to converge to a solution we proceed to Stage 3. This stage

consists of using the optimal EASY-FIT parameter values as the initial guess for the unknown

parameters, but we also set the bounds on these to be very close (±0.1%) to the EASY-FIT

optimal values. We note that we cannot set the bounds to be exactly the EASY-FIT optimal

values because this removes the degrees of freedom associated with the unknown parameter and

65

may lead to an ill-posed problem. For example, if there are 2 unknown parameters declared in

SOCS and both are fixed to specific values, i.e., the lower bound is equal to the upper bound, then

there are no parameter values to be optimized. We find that ±0.1% is a safe value to use because

a smaller value often causes the difference between the upper and lower parameter bounds to be

smaller than the allowable SOCS constraint tolerance CONTOL = 1.49× 10−8, essentially fixing the

value of the parameter. In equations (4.12), we summarize all possible cases for determining the

unknown parameter bounds when using Stage 3 strategies. These cases prevent bounds that in

effect fix the parameter value because the optimal parameter value is less (in absolute value) than

CONTOL.

plb,i =



p∗i + p∗i · 0.001, if p∗i < 0 and p∗i ≤ −CONTOL, i = 1, . . . , nu,

p∗i − p∗i · 0.001, if p∗i > 0 and pi ≥ CONTOL, i = 1, . . . , nu,

0, if p∗i ≥ 0 and pi < CONTOL, i = 1, . . . , nu,

p∗i − p∗i · 0.001, if p∗i ≤ 0 and p∗i > −CONTOL, i = 1, . . . , nu

pub,i =



p∗i − p∗i · 0.001, if p∗i < 0 and p∗i ≤ −CONTOL, i = 1, . . . , nu,

p∗i + p∗i · 0.001, if p∗i > 0 and pi ≥ CONTOL, i = 1, . . . , nu,

p∗i + p∗i · 0.001, if p∗i ≥ 0 and pi < CONTOL, i = 1, . . . , nu ,

0, if p∗i ≤ 0 and p∗i > −CONTOL, i = 1, . . . , nu.

(4.12)

Using the above methods in the order described, we get the results given in Table 4.7. Note that

only the strategy with a default initial guess for the dynamic variables and the EASY-FIT initial

unknown parameter guess and bounds is run on all 691 problems. All subsequent strategies are

run on the remaining unconverged problems. Also, the percentages reported are all relative to the

total number of problems (691).

It is clear that removing the non-sensible parameter bounds allows SOCS to solve many more

problems than it does otherwise. In fact, across all models in Stage 1, anywhere from 80% to 400%

more problems were solved. For the explicit models, ODEs and DAEs, respectively, 46.3%, 25.9%,

and 20.8%, of the total number of problems were solved using the default initial guess method for

66

the dynamic variables. If we extend this to restricted bounds in SOCS, then 85.7%, 63.5%, and

37.5% of the explicit models, ODEs and DAEs, respectively, were solved. In Stage 1, 96.1% of the

explicit models were solved, 88.3% of the ODEs were solved, and 75.2% of the DAEs were solved.

Across all model types, Stage 1 strategies solved over 90% (625/691 ≈ 90.4%) of the total number

of models. Finally, combining Stage 1 and Stage 2, 99.1% of the explicit models were solved, 95.0%

of the ODEs were solved, and 91.8% of the DAEs were solved. Note that 7 ODEs could not be

solved using any of the methods listed in this table. We now explain why SOCS could not solve

these ODE models.

The ODE models that could be translated EF2SOCS but were unable to produce converged

solutions in SOCS may be grouped into three categories. The ODEs are either too stiff, the ODEs

are ill-conditioned, or the ODEs require a better initial guess technique. Each of these categories

is described next.

There were 5 problems with ODEs that were too stiff for SOCS to solve, namely, COPPER,

COPPER D, KEPLER, REACHMECH, and STIFF DE. One mathematical interpretation of stiff-

ness is that the solution being sought varies slowly, but there are nearby solutions that vary rapidly,

so the numerical method must take small steps to meet stability requirements [37]; i.e., the step

size is chosen to maintain numerical stability rather than to meet accuracy requirements [26], [55].

A common result observed in these 5 problems is that SOCS is unable to solve the system of ODEs

even when the optimization step is removed. So, by fixing the unknown parameters to specific

values and removing the discrete data, all optimization steps are eliminated. Despite this, SOCS

could not solve the system of ODEs, thus leaving no hope to solve the optimization problem. It

is unclear at this point why these problems are too stiff for the BDF integrator to solve. It may

be useful to try another solver that uses the collocation method, e.g., as implemented in COLDAE

[3], to see if it can solve the ODEs.

There was 1 problem, called BCBPLUS, that was ill-conditioned. To compute the sparsity

pattern of the RHS of the system of ODEs, SOCS perturbs the NLP variables and then tries to

evaluate the RHS functions. During this perturbation evaluation a “function error” is detected.

67

This message is generated by SOCS when the magnitude of the RHS functions exceeds 1016. This

leads to two negative effects. First, SOCS cannot detect RHS sparsity and therefore assumes the

RHS is dense, making the computation of the finite difference derivatives much more expensive.

Second, the numerical values of the Jacobian of the RHS are very large, resulting in the failure of

the NLP algorithms.

The final problem, called FEDBATCH, could be solved by SOCS; however it requires a special

initial guess technique not currently supported by EF2SOCS. This 4-phase problem is eventually

solved using the method of analytical continuation [2]. In other words, it is too difficult to obtain a

sufficiently accurate initial guess to the problem in a heuristic manner. Instead we solve an easier

problem consisting of only phase 1 using the optimal parameter values of EASY-FIT and fixing

tight bounds on these values. The solution at the end of phase 1 is then used as the guess for the

dynamic variables at the start of phase 2. This procedure is then repeated until the time interval

is expanded to include all 4 phases. This stepwise procedure exploits the restart mechanism in

SOCS to solve a sequence of increasingly difficult problems. This approach also utilizes the SOCS

subroutine OCSTAU to communicate the necessary initial conditions for the phases; see Section

3.2. The concept of analytical continuation is powerful in many problems where standard initial

guess methods fail to provide a sufficiently accurate initial guess to the problem [13]. The ability

to use analytical continuation would be a powerful addition to the functionality of EF2SOCS.

As a final comparison, we categorize the objective function values of the converged solutions

produced by SOCS as compared to those of EASY-FIT. The objective function value is either

greater than, equal to, or less than the objective function value of EASY-FIT. We say the objective

function values are equal if they differ by less than 10%. This is an acceptable amount in absolute

terms considering the magnitude of most EASY-FIT objective function values is in the range 10−2

to 10−4, thus leading to at least 2 matching decimal places between the two objective function

values. The results are based on using all Stage 1 and Stage 2 strategies in Table 4.7. Stage 3

strategies are not included because they force the solution in SOCS to be approximately equal to

that of EASY-FIT and therefore the inclusion of Stage 3 would skew the results. The results are

68

Guess for d Parameter guess and bounds Exp. ODEs DAEs
St

ag
e

1

INIT(1)=1 p0 and plb,pub (107) 46.3 % (113) 25.9 % (5) 20.8 %

p0 and restricted bounds (91) 39.4 % (160) 37.6 % (4) 16.7 %

INIT(1)=8 p0 and plb,pub (7) 3.0 % (14) 3.3 % (1) 4.2 %

p0 and restricted bounds (17) 7.4 % (37) 7.3 % (4) 16.7 %

INIT(1)=6 p0 and plb,pub N/A (12) 2.8 % (1) 4.2 %

p0 and restricted bounds N/A (30) 6.9 % (1) 4.2 %

INIT(1)=6, p0 and plb,pub N/A (6) 1.4 % (1) 4.2 %

INIT(2)=3 p0 and restricted bounds N/A (13) 3.1 % (1) 4.2 %

St
ag

e
2

INIT(1)=1 p∗ and plb,pub (3) 1.3 % (6) 1.4 % 0

p∗ and restricted bounds (3) 1.3 % (3) 0.7 % (1) 4.2 %

INIT(1)=8 p∗ and plb,pub 0 0 0

p∗ and restricted bounds (1) 0.4 % (7) 1.6 % 0

INIT(1)=6 p∗ and plb,pub N/A (2) 0.5 % 0

p∗ and restricted bounds N/A (7) 1.6 % 0

INIT(1)=6, p∗ and plb,pub N/A 0 0

INIT(2)=3 p∗ and restricted bounds N/A (4) 0.9 % (3) 12.4 %

St
ag

e
3

INIT(1)=1 p∗ and plb, pub as in (4.12) (2) 0.9 % (3) 0.7 % (2) 8.2 %

INIT(1)=8 p∗ and plb, pub as in (4.12) 0 (1) 0.2 % 0

INIT(1)=6 p∗ and plb, pub as in (4.12) N/A (4) 0.9 % 0

INIT(1)=6, p∗ and plb, pub as in (4.12) N/A (6) 2.1 % 0

INIT(2)=3

Table 4.7: Percentage of converged solutions for various initial guess strategies.

69

also recorded in the order presented in Table 4.7. Therefore, the solutions may not be the best that

SOCS can achieve. For example, if SOCS converges to a solution using the default method for the

dynamic variables, the initial unknown parameter values of EASY-FIT, and the parameter bounds

of EASY-FIT, it is possible that using a more sophisticated initial guess method for the dynamic

variables could produce a solution with a lower objective function value. The same may be said of

EASY-FIT; however it is suspected and in some cases confirmed, that EASY-FIT is tuned to solve

certain problems using non-default values. For example, many problems use different tolerance

values. Also, integration methods used to solve the system of differential equations varies from

problem to problem.

For all three model types, over half of the problems converged to a solution with an objective

function value at least as small as the one given by EASY-FIT. The percentages are 69.2%, 56.6%,

and 58.4% for the explicit models, ODEs, and DAEs, respectively. It is easier to solve the explicit

models because they do not involve the additional complication of solving differential equations.

This may account for the greater percentage of problems with an objective function value at least

as small as that of EASY-FIT. On the other hand, 63.5% of the ODEs converged using the default

initial guess method for the state variables; see Table 4.7. There is a significantly larger percentage

of ODE problems than explicit models with an objective function value greater than that of EASY-

FIT, perhaps suggesting that SOCS is converging to a sub-optimal solution when using the default

initial guess method. It may be informative to restrict the initial guess method to one that is more

advanced, e.g., linear interpolation of the experimental data or solution of an IVP with a linear

control approximation using the Runge–Kutta–Taylor integrator, and compare the differences in

objective function values. It is clear for all three model types that many locally optimal solutions

exist. Therefore, it would also be informative to use global optimization software to verify the

current solutions as being global or locate the global solutions to these problems. Note that almost

a dozen explicit models were coded using the global optimization software package GlobSol [31].

Most of these problems were run for several days and failed to converge over that time. Others

were run for 2 weeks and also failed to converge over that time, reinforcing the claim made in

70

Chapter 2 that current computational methods for solving global optimization problems generally

require large amounts of computation time.

Model smaller objective value equal objective value larger objective value

Exp. (50) 21.6 % (110) 47.6 % (69) 29.9 %

ODEs (38) 8.7 % (209) 47.9 % (167) 38.3 %

DAEs (4) 16.7 % (10) 41.7 % (8) 27.4 %

Table 4.8: Comparison of SOCS objective function values to EASY-FIT objective
function values.

Overall we find that imposing restricted bounds on the unknown parameters greatly increases

the ability of SOCS to converge to a solution. Also, with a sufficiently good initial guess for the

dynamic variables, over 90% of the total number of problems could be solved. Just under 70% of the

total number of problems could be solved by using the default initial guess method for the dynamic

variables, showing that the default method is indeed effective. When considering the problems that

could be translated but not solved, the main difficulty is that the ODEs were too stiff to solve. It

is unclear whether SOCS would benefit from another integrator for very stiff problems. Finally, it

is apparent that numerous parameter estimation problems in the EASY-FIT database have many

locally optimal solutions, suggesting the need for global optimization functionality.

71

Chapter 5

Conclusions and Future Work

EASY-FIT and SOCS are two software packages used to solve parameter estimation problems.

We described these packages and gave a survey of some of the other available optimal control

software packages. To facilitate the use of solving parameter estimation problems in SOCS and at

the same time test SOCS on a large test set of problems, we designed and implemented a source-

to-source translator called EF2SOCS to translate the input for EASY-FIT into the corresponding

input for SOCS. We described the design of EF2SOCS, including its GUI. We also describe the

effectiveness of the translation in terms of comparing the solutions produced by both software

packages. Finally, we suggested some possible improvements for both EF2SOCS and SOCS.

We proposed a 3-stage approach to produce converged solutions in SOCS. Each stage is com-

posed of various initial guess strategies for the dynamic variables and unknown parameters. The

stages are designed to use an initial guess that is progressively closer to the optimal solution found

by EASY-FIT.

Using this 3-stage approach we were able to solve all 231 explicit models in the EASY-FIT

database using SOCS. There were 112 ODEs and 22 DAEs that could not be translated by

EF2SOCS either because the functionality is not supported in SOCS or because the treatment

of the constraints in SOCS typically required analysis on a problem-by-problem basis. The case-

by-case nature of the difficulty prevented automation of the translation process. From the remaining

436 ODEs, all but 7 were solved in SOCS. An investigation into the reasons for the failure of SOCS

on these 7 problems revealed that 5 problems were too stiff to solve, 1 problem was ill-conditioned

and led to large numerical values in the Jacobian of the RHS and ultimately the failure of the NLP

algorithms, and 1 problem required the use of analytical continuation. All 24 remaining DAEs were

72

solved using SOCS.

For the problems that could be translated, we found that without making use of the EASY-FIT

solution, 96.1% of the explicit models could be solved, 88.3% of the ODEs could be solved, and

75.2% of the DAEs could be solved. These percentages account for over 90% of the 691 problems

from the EASY-FIT database.

In the process of solving these 691 problems from the EASY-FIT database, we found that if there

are no definite bounds on the unknown parameters it is better to leave them unspecified when using

SOCS than to choose fictitious values. It is also clear that a large number of these problems have

many locally optimal solutions, suggesting the need for global optimization functionality. Although

the ability to use norms alternative to the L2-norm was not required, this functionality that is

currently not available in SOCS could be useful for solving parameter estimation problems.

Future work consists of solving the ODEs that were too stiff to solve in SOCS with another solver

that uses the collocation method, such as COLDAE [3]. In terms of additions to EF2SOCS, the

ability to correctly translate high-index DAEs could be added as well as the ability to use analytical

continuation as an initial guess method to solve parameter estimation problems in SOCS. It may

also be helpful to have other users try EF2SOCS to gain useful feedback on the usability of the

software.

73

References

[1] U.M. Ascher and L.R. Petzold. Projected implicit runge-kutta methods for differential- alge-
braic equations. SIAM Journal on Mathematical Analysis, 28(4):1097–1120, 1991.

[2] U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1998.

[3] Uri M. Ascher and Raymond J. Spiteri. Collocation software for boundary value differential-
algebraic equations. SIAM Journal on Scientific Computing, 15(4):938–952, 1994.

[4] E. Beltrami. Mathematics for Dynamic Modeling. Academic Press, Inc., Boston, MA, USA,
1987.

[5] J.T. Betts. Practical methods for optimal control using nonlinear programming. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[6] J.T. Betts and S.L Campbell. Discretize then optimize. In D. R. Ferguson and T. J. Peters, edi-
tors, Mathematics for Industry: Challenges and Frontiers, pages 140–157, SIAM, Philadelphia,
2005.

[7] J.T. Betts and W.P. Huffman. Sparse Optimal Control Software SOCS. Technical Report
Mathematics and Engineering Analysis MEA-LR-085, Boeing Information and Support Ser-
vices, The Boeing Company, P.O. Box 3707, Seattle, WA 98124-2207, July, 1997.

[8] C.H. Bischof, A. Carle, G.F. Corliss, and A. Griewank. ADIFOR: Automatic differentiation
in a source translation environment. In Paul S. Wang, editor, Proceedings of the International
Symposium on Symbolic and Algebraic Computation, pages 294–302, New York, 1992. ACM
Press.

[9] A.E. Bryson and Y.-C. Ho. Applied Optimal Control. Blaisdell, New York, 1969.

[10] Arthur E. Bryson Jr. Optimal control – 1950 to 1985. IEEE Control Systems Magazine,
16(3):26–33, 1996.

[11] R. Bulirsch, E. Nerz, H.J. Pesch, and O. von Stryk. Combining direct and indirect methods
in optimal control: range maximization of a hang glider. In R. Bulirsch, A. Miele, J. Stoer,
and K.-H. Well, editors, Optimal Control - Calculus of Variations, Optimal Control Theory
and Numerical Methods, International Series of Numerical Mathematics, volume 111, pages
273–288. Basel: Birkhäuser, 1993.

[12] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks–Cole, Boston, MA, USA, eighth
edition, 2004.

[13] H.T. Davis. Introduction to Nonlinear Differential and Integral Equations. Dover, New York,
1962.

[14] M. Dobmann, M. Liepelt, K. Schittkowski, and C. Traßl. PCOMP: A Fortran code for auto-
matic differentiation, language description and users guide. Technical report, Dept. of Math-
ematics, University of Bayreuth, Germany, 1995.

74

[15] EASY-FIT. Software for parameter estimation, 2007. http://www.old.uni-bayreuth.de/
departments/math/~kschittkowski/easy_fit.htm.

[16] W.R. Esposito and C.A. Floudas. Deterministic global optimization in nonlinear optimal
control problems. Journal of Global Optimization, 17(1-4):97–126, 2000.

[17] M.E. Fisher and L.S. Jennings. Discrete-time optimal control problems with general con-
straints. ACM Transactions on Mathematical Software, 18(4):401–413, 1992.

[18] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, second edition,
1987.

[19] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering, pages 1–
39, Singapore, 1993. World Scientific Publishing Company.

[20] C. W. Gear. The automatic integration of stiff ordinary differential equations. IFIP Congress
(1), pages 187–193, 1969.

[21] C. W. Gear. Differential algebraic equations, indices, and integral algebraic equations. SIAM
Journal on Numerical Analysis, 27(6):1527–1534, 1990.

[22] P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale con-
strained optimization. Technical Report NA–97–2, San Diego, CA, 1997.

[23] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. User’s guide for SOL/NPSOL: a
Fortran package for nonlinear programming. Technical Report SOL 83-12, Department of
Operations Research, Standford University, California, 1983.

[24] C.J. Goh, C.M. Wang, and K.L. Teo. Unified approach for structural optimization revisited:
variable segment boundaries and variable interior point constraints. Structural Optimization,
3:133–140, 1991.

[25] E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic Systems
by Runge-Kutta Methods, volume 1409 of Lecture Notes in Mathematics. Springer-Verlag, New
York, 1989.

[26] E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and differential-
algebraic problems, volume 14 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, Germany, 1991.

[27] F.B. Hanson and D. Ryan. Optimal harvesting with both population and price dynamics.
Mathematical Biosciences, 148(2):129–146, 1998.

[28] L.S. Jennings, M.E. Fisher, K.L. Teo, and C.J. Goh. MISER3: solving optimal control
problems–an update. Advances in Engineering Software, 13(4):190–196, 1991.

[29] L.S. Jennings, M.E. Fisher, K.L. Teo, and C.J. Goh. MISER3: software for solving optimal
control problems, 2005. http://www.cado.uwa.edu.au/miser/.

[30] H.R. Joshi. Optimal control of an HIV immunology model. Optimal Control Applications and
Methods, 23(4):199–213, 2002.

[31] R.B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers,
Dordrecht, Netherlands, 1996.

[32] H.B. Keller. Numerical Methods for Two-Point Boundary Value Problems. Blaisdell, Waltham,
MA, London, 1968.

[33] P. Kruchten. Architectural blueprints—The “4+1” view model of software architecture. IEEE
Software, 12(6):42–50, November 1995.

75

http://www.old.uni-bayreuth.de/departments/math/~kschittkowski/easy_fit.htm
http://www.old.uni-bayreuth.de/departments/math/~kschittkowski/easy_fit.htm
http://www.cado.uwa.edu.au/miser/

[34] L. Lapidus, R.C. Aiken, and Y.A. Liu. The occurrence and numerical solution of physical
and chemical systems having widely varying time constants. in: Willoughby E.A. (ed.): Stiff
Differential Systems. Plenum Press, New York, USA, 1974.

[35] S. Li and L.R. Petzold. Design of new daspk for sensitivity analysis. Technical report, Univer-
sity of California at Santa Barbara, Santa Barbara, CA, USA, 1999.

[36] L. Liberty and S. Kucherenko. Comparison of deterministic and stochastic approaches to global
optimization. International Transactions in Operations Research, 12(3), 2005.

[37] C.B. Moler. Numerical Computing with Matlab. Society for Industrial and Applied Mathe-
matics, 2004.

[38] Sparse Optimal Control Software SOCS. Mathematics and computing technology, 2008. http:
//www.boeing.com/phantom/socs/applications.html.

[39] P.M. Pardalos, D. Shalloway, and G.L. Xue. Optimization methods for computing global
minima of non-convex potential energy functions. Journal of Global Optimization, 4:117–133,
1994.

[40] L.S. Pontryagin. The Mathematical Theory of Optimal Processes. Wiley-Interscience, New
York, NY, USA, 1962.

[41] L.L. Raja, R.J. Kee, R. Serban, and L.R. Petzold. Dynamic optimization of chemically reacting
stagnation flows. In M.D. Allendorf, M.R. Zachariah, L. Mountziaris, and A.H. McDaniel,
editors, Fundamental Gas-phase and Surface Chemistry of Vapor-Phase Materials Synthesis,
pages 340–351. Soc. Proc. Series 98-23, 1999.

[42] J.R. Rice and R.F. Boisvert. From scientific software libraries to problem–solving environments.
IEEE Computational Science & Engineering, 3(3):44–53, 1996.

[43] I.M. Ross and F. Fahroo. A perspective on methods for trajectory optimization. In Proceedings
of the AIAA/AAS Astrodynamics Specialist Conference, Monterey, CA, August 2002. AIAA
Paper No. 2002-4727.

[44] K. Schittkowski. NLPQL: a FORTRAN subroutine solving constrained nonlinear programming
problems. Annals of Operations Research, 5:485–500, 1985.

[45] K. Schittkowski. Numerical Data Fitting in Dynamical Systems: A Practical Introduction with
Applications and Software. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[46] K. Schittkowski. private communication, May 2007.

[47] J. Schropp. Projected Runge-Kutta methods for differential algebraic equations of index 3.
Konstanzer Schriften in Mathematik und Informatik, 2003.

[48] A. Schwartz. Theory and implementation of numerical methods based on runge-kutta integra-
tion for solving optimal control problems. Ph.D. Dissertation, Dept. of Electrical Engineering,
University of California, Berkeley, 1996. http://robotics.eecs.berkeley.edu/~adams.

[49] A. Schwartz and E. Polak. On the use of consistent approximations in the solution of semi-
infinite optimization and optimal control problems. Mathematical Programming, 62:385–415,
1993.

[50] A. Schwartz and E. Polak. Consistent approximations for optimal control problems based on
Runge–Kutta integration. SIAM Journal on Control and Optimization, 34(4), 1996.

[51] A. Schwartz, E. Polak, and Y.Q. Chen. RIOTS: a MATLAB toolbox for solving optimal control
problems, 1997. http://www.schwartz-home.com/~adam/RIOTS/.

76

http://www.boeing.com/phantom/socs/applications.html
http://www.boeing.com/phantom/socs/applications.html
http://robotics.eecs.berkeley.edu/~adams
http://www.schwartz-home.com/~adam/RIOTS/

[52] R. Serban, W.S. Koon, M. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross, and R. Wilson. Halo
orbit mission correction maneuvers using optimal control. Automatica, 38(4):571–583, 2002.

[53] R. Serban and L.R. Petzold. COOPT – a software package for optimal control of large-scale
differential-algebraic equation systems. Mathematics and Computers in Simulation, 56(2):187–
203, 2001.

[54] H. Seywald and E.M. Cliff. Goddard problem in presence of a dynamic pressure limit. J.
Guidance, Control and Dynamics, 16(4):776–781, 1993.

[55] L. F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman and Hall,
London, 1994.

[56] T. Slawig. Algorithmic sensitivity analysis in the climate model climber 2. Technical Report 29,
Technische Universität Berlin, Institut für Mathematik, 2006.

[57] O.V. Stryk. DIRCOL: a direct collocation method for the numerical solution of optimal control
problems, 1999. http://www.sim.tu-darmstadt.de/sw/dircol/dircol_app.html.

[58] O. von Stryk. Numerical solution of optimal control problems by direct collocation. In Optimal
Control Calculus of Variations, Optimal Control Theory and Numerical Methods, Interna-
tional Series of Numerical Mathematics, volume 111, pages 129–143, 1993.

[59] O. von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization. Annals
of Operations Research, 37:357–373, 1992.

[60] J. Xu, J.J. Heys, V.H. Barocas, and T.W. Randolph. Permeability and diffusion in vitreous
humor: implications for drug delivery. Phamaceutical Research, 18:664–669, 2000.

77

http://www.sim.tu-darmstadt.de/sw/dircol/dircol_app.html

Appendix A

Problem Data for Model TP333

1. problems\TP333
2. TP333 1
3. Exponential data fitting
4. Demo
5. Schittkowski
6. Experimental
7. Null
8. Null
9. t
10. NPAR = 003 0 000
11. NRES = 000
12. NEQU = 000
13.
14. NODE = 0
15. NCONC = 000
16. NTIME = 0008 0
17. NMEAS = 001
18. NPLOT = 0050
19. NOUT = 0
20. METHOD= 01 000 2 -1
21. OPTP1 = 00110
22. OPTP2 = 00030
23. OPTP3 = 02
24. OPTE1 = 1.0000E-12
25. OPTE2 = 1.0000E-12
26. OPTE3 = 1.0000E+00
27. ODEP1 = 0
28. ODEP2 = 1 0 0 0 0
29. ODEP3 = 00
30. ODEP4 = 0
31. ODEE1 = 0.0
32. ODEE2 = 0.0
33. ODEE3 = 0.0
34.
x1 0.000000E+00 3.000000E+01 1.000000E+03
x2 0.000000E+00 4.000000E-02 1.000000E+03
x3 0.000000E+00 3.000000E+00 1.000000E+03
35. SCALE = -1
36.
4.00000E+00 7.210000000000E+01 1.00E+00
5.75000E+00 6.560000000000E+01 1.00E+00
7.50000E+00 5.590000000000E+01 1.00E+00
2.40000E+01 1.710000000000E+01 1.00E+00
3.20000E+01 9.800000000000E+00 1.00E+00
4.80000E+01 4.500000000000E+00 1.00E+00
7.20000E+01 1.300000000000E+00 1.00E+00
9.60000E+01 6.000000000000E-01 1.00E+00
37. NLPIP 0

78

38. NLPMI 0
39. NLPAC 0.0
40. NDISCO= 0
y(t)
"Schittkowski K. (1987): More Test Examples for Nonlinear Programming,
Lecture Notes in Economics and Mathematical Systems, Vol. 282, Springer
Initial values:
3.00E+01 4.00E-02 3.00E+00"

79

Appendix B

SOCS Code for Problem TP333

PROGRAM EXPLICIT_MODEL
C
C ----THIS IS A PROGRAM FOR A PARAMETER ESTIMATION PROBLEM CHOSEN FROM
C THE EASY-FIT SOFTWARE PACKAGE (TP333)
C
C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MXIW=100000000,MXRW=100000000,MXC=10000000)
PARAMETER (MXDP=3, MXPHS=1)

C
COMMON /ODEWRK/ WORK(MXRW)
COMMON /ODEIWK/ IWORK(MXIW)
COMMON /ODESPL/ CSTAT(MXC)
DIMENSION IPCPH(MXPHS+1),DPARM(MXDP),IPDPH(MXPHS+1)
PARAMETER (MAXRWD=8, MAXCLD=3)

C
EXTERNAL DUMYPF, DUMYPR, EXPINP, EXPRHS, EXPDDL, DUMYIG

C
C **
C
C ----WORKING ARRAYS USED BY HDSOPE ROUTINE
C

NIWORK = MXIW
NWORK = MXRW
MAXCS = MXC
MAXDP = MXDP
MAXPHS = MXPHS

C
C **
C
C ----SETS EVERY OPTIONAL PARAMETER FOR THE SUBROUTINES HDSOCS AND
C HDSOPE TO ITS DEFAULT VALUE
C

CALL HHSOCS(’DEFAULT’)
C
C ----MAXIMUM NUMBER OF DISCRETE DATA VALUES PER PHASE
C

CALL HHSOCS(’MXDATA=8’)
C
C ----MAXIMUM NUMBER OF PARAMETERS PER PHASE
C

CALL HHSOCS(’MXPARM=3’)
C
C ----MAXIMUM NUMBER OF STATES TO BE LOADED
C

CALL HHSOCS(’MXSTAT=4’)
C
C ----OPTIMAL CONTROL OUTPUT LEVEL (TERSE)

80

C
CALL HHSOCS(’IPGRD=5’)

C
C ----MAXIMUM NUMBER OF FUNCTION EVALUATIONS
C

CALL HHSNLP(’MAXNFE=50000’)
C
C ----MAXIMUM NUMBER OF ITERATIONS
C

CALL HHSNLP(’NITMAX=200’)
C
C ----OUTPUT UNIT NUMBER
C

IPU = 3
C
C ----CALL HDSOPE WITH THE APPROPRIATE ARGUMENTS FOR THE PROBLEM
C

CALL HDSOPE(EXPINP,DUMYIG,EXPRHS,DUMYPF,DUMYPR,EXPDDL,
& IWORK,NIWORK,WORK,NWORK,MAXPHS,
& CSTAT,MAXCS,IPCPH,DPARM,MAXDP,IPDPH,NEEDED,IER)

C
STOP
END

C
C

SUBROUTINE EXPRHS(IPHASE,T,YVEC,NYVEC,PARM,NPARM,FRHS,NRHS,
& IFERR)

C
C ----EVALUATE RIGHT HAND SIDE OF DATA FITTING FUNCTION(S)
C
C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C

DIMENSION YVEC(NYVEC),FRHS(NRHS),PARM(NPARM)
C

PARAMETER (NCONC=1)
COMMON /CONPAR/ CONC(NCONC)

C
DOUBLE PRECISION Y

C
DOUBLE PRECISION X1, X2, X3, T

C
C **
C
C ----INITIALIZE USER-DEFINED ERROR FLAG
C

IFERR = 0
C
C ----LOAD PARAMETER VECTOR
C

X1 = PARM(1)
X2 = PARM(2)
X3 = PARM(3)

C

81

C ----COMPUTE VALUES FOR FITTING FUNCTION(S)
C

Y = X1*EXP(-X2*T) + X3
C

FRHS(1) = YVEC(1) - Y
C

RETURN
END

C
C

SUBROUTINE EXPINP(IPHASE,NPHS,METHOD,NSTG,NCF,NPF,NPV,NAV,NGRID,
& INIT,MAXMIN,MXPARM,P0,PLB,PUB,PLBL,
& MXSTAT,Y0,Y1,YLB,YUB,STSKL,STLBL,MXPCON,CLB,CUB,
& CLBL,MXTERM,COEF,ITERM,TITLE,IER)

C
C ----INITIALIZE DATA FITTING PROBLEM
C
C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C ARGUMENTS:

INTEGER IPHASE,NPHS,METHOD,NSTG,NCF(5),NPF(2),NPV,NAV,NGRID,
& INIT(2),MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,
& ITERM(4,MXTERM),IER
DIMENSION P0(MXPARM),PLB(MXPARM),PUB(MXPARM),Y0(0:MXSTAT),
& Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT),YUB(-1:1,0:MXSTAT),
& STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON),
& COEF(MXTERM)
CHARACTER TITLE(3)*60,PLBL(MXPARM)*80,STLBL(0:MXSTAT)*80,
& CLBL(0:MXPCON)*80

C
PARAMETER (MAXRWD=8,MAXCLD=3,NTIME=8)
COMMON /EXPCM/ STDAT(MAXRWD,MAXCLD),NROWS
PARAMETER (NCONC=1)
COMMON /CONPAR/ CONC(NCONC)

C
DOUBLE PRECISION Y

C
DOUBLE PRECISION X1, X2, X3, T

C
C **
C
C ----INITIALIZE USER-DEFINED ERROR FLAG
C

IFERR = 0
C
C ----NUMBER OF PHASES
C

NPHS = 1
C
C ----DEFINE INITIAL AND FINAL TIME
C

TINITIAL = 4.0000000000D0
TFINAL = 96.0000000000D0

82

C
C ----NUMBER OF GRID POINTS
C

NGRID = NTIME
C
C ----SUCCESS/ERROR CODE
C

IER = 0
C

NTERM = 0
NKON = 0
TITLE(1) = ’PARAMETER ESTIMATION PROBLEM: TP333’
TITLE(2) = ’SOLVED USING LEAST SQUARES’
STLBL(0) = ’TIME Time’

C
C ----SET INTEGRATION METHOD TO TRAPEZOIDAL
C

NSTG = 1
METHOD = 3

C
C ----INITIALIZE PROBLEM DATA
C

CALL INIEXP
C

PLBL(1) = ’p1 Parameter 1’
PLBL(2) = ’p2 Parameter 2’
PLBL(3) = ’p3 Parameter 3’

C
C ----GUESS FOR INITIAL PARAMETER VALUES AND BOUNDS
C

P0(1) = 3.0000000000D+01
P0(2) = 4.0000000000D-02
P0(3) = 3.0000000000D+00
PLB(1) = 0.0000000000D0
PUB(1) = 1000.0000000000D0
PLB(2) = 0.0000000000D0
PUB(2) = 1000.0000000000D0
PLB(3) = 0.0000000000D0
PUB(3) = 1000.0000000000D0

C
C ----INITIALIZE PROBLEM DATA
C NAV - NUMBER OF ALGEBRAIC VARIABLES
C NPV - NUMBER OF DISCRETE PARAMETERS
C NDE - NUMBER OF DIFFERENTIAL EQUATIONS
C NDAE - NUMBER OF DIFFERENTIAL ALGEBRAIC EQUATIONS
C NDF - NUMBER OF DATA FITTING FUNCTIONS
C

NAV = 1
NPV = 3
NDE = 0
NDAE = 0
NDF = 1

C
C ----NUMBER OF DIFFERENTIAL EQUATIONS

83

C
NCF(1) = NDE

C
C ----NUMBER ALGEBRAIC EQUATIONS
C

NCF(2) = 0
C
C ----NUMBER OF DISCRETE DATA FUNCTIONS
C

NCF(5) = NDF
C
C ----INITIAL GUESS TYPE FOR INTERNAL STATES: CONSTRUCT A LINEAR
C INITIAL GUESS BETWEEN Y0 AND Y1
C

INIT(1) = 1
C
C ----SET INITIAL AND FINAL TIME
C

Y0(0) = TINITIAL
Y1(0) = TFINAL

C
C ----FIX INITIAL AND FINAL TIME
C

YLB(-1,0) = Y0(0)
YUB(-1,0) = Y0(0)
YLB(1,0) = Y1(0)
YUB(1,0) = Y1(0)

C
C ----DEFINE GUESSES FOR INITIAL CONDITIONS FOR CONTROL VARIABLES
C

DO II=NDE+NDAE+1,NDE+NAV
Y0(II) = 0.D0

ENDDO
C
C ----DEFINE GUESSES FOR FINAL CONDITIONS FOR ALL VARIABLES
C

DO II=1,NDE+NAV
Y1(II) = Y0(II)

ENDDO
C
C ----DEFINE OBSERVATION PATH CONSTRAINT FOR CONTROLS
C

CALL PTHCON(NTERM,NKON,NCF,IPHASE,ITERM,MXTERM,COEF,
$ CLB,CUB,CLBL,MXPCON,0.D0,0.D0,1.D0,’ACON1’,
$ ’Algebraic constraint 1: u1 = 0’,IERPTH)

C
C ----DEFINE LEAST SQUARES OBJECTIVE
C

MAXMIN = 2
CLBL(0) = ’LSQ DISCRETE DATA’

C
DO II = 1,NDF

NTERM = NTERM + 1
C

84

C ----TERM II IS PART OF NLP OBJECTIVE FUNCTION
C

ITERM(1,NTERM) = 0
C
C ----TERM II IS COMPUTED IN IPHASE
C

ITERM(2,NTERM) = IPHASE
C
C ----TERM II IS ASSIGNED TO DISCRETE DATA
C

ITERM(3,NTERM) = 2
C
C ----TERM II IS DISCRETE DATA FUNCTION II
C

ITERM(4,NTERM) = II
ENDDO

C
RETURN
END

C
C

SUBROUTINE INIEXP
C
C ----DATA FOR PARAMETER ESTIMATION PROBLEM
C PROBLEM DATA IS READ IN FROM FILE TP333.DAT
C
C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C

PARAMETER (MAXRWD=8,MAXCLD=3,NTIME=8)
COMMON /EXPCM/ STDAT(MAXRWD,MAXCLD),NROWS
CHARACTER*80 DATFL1
SAVE DATFL1
DATFL1=’TP333.dat’

C
C **
C

IPN = 3
OPEN(IPN,FILE=DATFL1,STATUS=’UNKNOWN’)
READ(IPN,*) NROWS,NCOLS
IF(NROWS.GT.MAXRWD) THEN
PRINT *,’NROWS GT MAXRWD; NROWS =’,NROWS
STOP

ENDIF
DO II = 1,NROWS

READ(IPN,*) (STDAT(II,JCOL),JCOL=1,NCOLS)
ENDDO
CLOSE(IPN)

C
RETURN
END

C
C

SUBROUTINE EXPDDL(IPHASE,NDD,NDDST,MXDATA,TDATA,DATA,WTDATA,

85

& NDATA,IER)
C
C ----LOAD DISCRETE DATA FOR PARAMETER ESTIMATION PROBLEM
C
C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C

PARAMETER (MAXRWD=8,MAXCLD=3,NTIME=8)
COMMON /EXPCM/ STDAT(MAXRWD,MAXCLD),NROWS
DIMENSION TDATA(NTIME),DATA(NTIME),WTDATA(NTIME)
PARAMETER (NCONC=1)
COMMON /CONPAR/ CONC(NCONC)
COMMON /NDDCNT/ COUNT

C
C **
C
C ----RESET ERROR/SUCCESS CODE TO 0
C

IER = 0
C
C ----NUMBER OF DYNAMIC VARIABLES (ODEs and DAEs)
C

NDYN = 0
C
C ----LOAD STATE NDD TARGET VALUES
C

NDATA = NTIME
SUM_OF_SQRS = 0.D0

C
C ----INITIALIZE COUNTER FOR NDD FUNCTIONS NOT FITTING A
C STATE VARIABLE
C

IF(NDD.EQ.1) THEN
COUNT = 1

ENDIF
C

NDDST = NDD
C
C ----COMPUTE SUM OF SQUARES SEPARATELY SINCE ALL DATA IS
C REQUIRED FOR SCALING = 1
C

DO II = 1,NTIME
SUM_OF_SQRS = SUM_OF_SQRS + STDAT(II,2*NDD)**2

ENDDO
C
C ----SET TIME VALUES TO FIRST COLUMN IN DATA FILE,
C CONCENTRATION VALUES TO SECOND (IF ANY), FUNCTION VALUES TO NEXT,
C AND WEIGHTS TO NEXT. . .
C

DO II = 1,NTIME
TDATA(II) = STDAT(II+(IPHASE-1)*NTIME,1)
DATA(II) = STDAT(II+(IPHASE-1)*NTIME,2*NDD)
WTDATA(II) = STDAT(II+(IPHASE-1)*NTIME,1+2*NDD)

ENDDO

86

C
C ----SCALING OF RESIDUALS (IF NEEDED)
C
C 0 - NO ADDITIONAL SCALING
C 1 - DIVISION OF RESIDUALS BY SQUARE ROOT OF SUM
C OF SQUARES OF CURRENT STATES MEASUREMENTS VALUES
C -1 - DIVISION OF EACH SINGLE RESIDUAL BY CORRESPONDING
C ABSOLUTE MEASUREMENT VALUE
C -2 - DIVISION OF EACH SINGLE RESIDUAL BY CORRESPONDING
C SQUARED MEASUREMENT VALUE
C

SCALE = -1
C

DO II = 1,NTIME
IF(SCALE.EQ.1) THEN
IF(SUM_OF_SQRS.NE.0.D0) THEN
WTDATA(II) = WTDATA(II)*1.D0/SQRT(SUM_OF_SQRS)

ENDIF
ELSEIF(SCALE.EQ.-1) THEN
IF(DATA(II).NE.0.D0) THEN
WTDATA(II) = WTDATA(II)*1.D0/ABS(DATA(II))

ENDIF
ELSEIF(SCALE.EQ.-2) THEN
IF(DATA(II).NE.0.D0) THEN
WTDATA(II) = WTDATA(II)*1.D0/(DATA(II)**2)

ENDIF
ENDIF

ENDDO
C

RETURN
END

87

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	2 Parameter Estimation and Optimal Control Problems
	2.1 Optimal Control Problems
	2.1.1 Historical Development of Optimal Control
	2.1.2 The Optimal Control Problem
	2.1.3 Direct versus Indirect Solution Methods
	2.1.4 Numerical Software for Optimal Control

	2.2 Parameter Estimation Problems
	2.2.1 Explicit Model Functions
	2.2.2 ODEs
	2.2.3 DAEs
	2.2.4 Breakpoints

	2.3 A Translator for Optimal Control Problems

	3 Translator Design
	3.1 Input Format for EASY-FIT
	3.1.1 Input of Explicit Model Functions
	3.1.2 Input of ODEs
	3.1.3 Input of DAEs

	3.2 Input Format for SOCS
	3.3 Sample Problem
	3.4 Software Architecture and Design
	3.4.1 The EF2SOCS GUI

	4 Results and Discussion
	4.1 Sample Explicit Model Problem
	4.2 Sample ODE Problem
	4.3 Sample DAE Problem
	4.4 Discussion

	5 Conclusions and Future Work
	References
	A Problem Data for Model TP333
	B SOCS Code for Problem TP333

