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Abstract

The numerical simulation of oceanic flow is a primary research tool for understand-
ing the physical properties of the world ocean. These models range from complex,
high-resolution models to simplified models in idealized domains. In the spirit of the
latter, a two-layer frontal geostrophic model is discussed for a wind-driven circum-
polar flow via an asymptotic reduction of the shallow-water equations. The model
is implemented using the finite element method via the software package FEMLAB.
The model is used to study the meridional balance, lower-layer outcropping, and pa-
rameter variation in the Antarctic Circumpolar Current, the dominant oceanic flow in
the Southern Ocean. The effects of varying resolution and timestepping parameters is
discussed. Experiments are performed in a number of domain and bottom topography
regimes to examine the effects of the Drake Passage and a topographic ridge on the
meridional balance and transport that prevails in the current. The results support
a mechanism of balance by which momentum imparted by winds at the surface is

transferred to the lower layer via eddies and dissipated by the ocean bottom.

Xiv



Acknowledgements

I wish to thank my co-supervisors, Richard Karsten and Ray Spiteri, for their generous
gift of their time and effort. Both brought their own expertise to this project to enable
its completion, and offered invaluable guidance and suggestions. Also, I wish to thank
Dr. Keith Thompson for offering his time and patience in serving as a reader for this
thesis. I also would like to thank the professors and staff of the Department of
Mathematics and Statistics at Dalhousie for their excellent teaching and assistance
throughout my time here.

I wish to thank my parents for their constant support and generosity throughout
my education, and my brothers for their humor, inspiration and influence. Finally, I
would like to thank my wife, Sionnach, for her encouragement, love, and companion-
ship that guides me through my studies, and my life.

Financial support was provided by the Natural Sciences and Engineering Research

Council through a PGS-M scholarship.

XV



Chapter 1

Introduction

The numerical simulation of oceanic flow is a primary research tool for understanding
the physical properties of the world ocean. These simulations take place on many
levels of complexity, ranging from high-resolution models of the entire world ocean,
to simplified models of particular flows. Although the former provide the most real-
istic representation of oceanic flow, the computational requirements for these models
are typically very large. Often, the information sought via a mathematical model
need not contain high detail or complexity, and so simpler models are used. These
simpler models are naturally much less computationally intensive. This allows de-
tailed exploration of parameter spaces as well as long-time simulations, both of which
are typically not feasible in complex ocean models. This thesis concerns a two-layer

frontal geostrophic model, an example of a simpler model.

The construction of this simplified model involves a number of mathematical con-
siderations. At the basis of the model physics is the shallow-water equations for fluid
flow, a set of partial differential equations (PDEs) that are derived from basic physics
principles. Asymptotic analysis is used to isolate the leading-order effects in these
equations such that higher-order terms can be legitimately discarded. Numerical
solution of the resultant PDEs strives for stability, efficiency, and flexibility, while
imposing boundary conditions and initial conditions to create a well-posed problem.

Finally, resultant data from the simulations must be analyzed and validated.

To address these mathematical concerns, this thesis maintains two threads through-
out. On one hand, this thesis is concerned with the mathematics of the model deriva-
tion and its numerical simulation. On the other, this thesis attempts to place the
model in a physical oceanographic context, especially in the motivating physics and

the analysis of the simulation results.

In this thesis, a two-layer frontal geostrophic (FG) model for wind-driven fluid flow
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is simulated with the finite element method, using the software package FEMLAB.
The model is used to study the Antarctic Circumpolar Current (ACC), the dominant
flow in the Southern Ocean. As we show in Chapter 2, the model used in this thesis

is well-suited to the ACC. A detailed description of the contents of the thesis follows.

Chapter 2 contains a description of the two-layer frontal geostrophic model. Sec-
tion 2.1 describes the motivating physics for the model in the context of the Antarctic
Circumpolar Current. Section 2.2 contains a detailed derivation of the shallow-water
equations from basic physical principles followed by the reduction of the shallow-water
equations to the frontal geostrophic model equations. Sections 2.3 and 2.4 complete
the model description by discussing the domain, boundary conditions, and initial con-
ditions. These sections also give some sense of the temporal domain that is required

for our analysis.

Chapter 3 outlines the steps taken to simulate the two-layer FG model in the
finite element software package FEMLAB. Section 3.1 contains a short introduction
to the software and the motivation for this choice of implementation. Section 3.2
describes the adaptation of our model equations into a form that is acceptable to
FEMLAB. This process turns out to require considerable manipulation. Section 3.3
is a discussion of the model parameters used in our simulations, most of which are
derived from [33], the work we use as a guide for our experimentation with the model.
Sections 3.4 and 3.5 specify the implementation of domain and initial conditions
discussed in Sections 2.3 and 2.4 in the context of FEMLAB. This section includes

the introduction of bottom topography, and details its incorporation into the model.

Chapter 4 details the results from running a number of experiments with our finite
element model implementation. Central to our experimentation is the varying Ekman
pumping strength. This chapter is primarily oceanographic in nature. Section 4.1,
4.2, and 4.3 introduce the concepts that are needed to understand the simulation
results. Section 4.4 describes the results of experiments in a simple channel corre-
sponding to a rectangular domain. These results are conveyed primarily through
time-average plots. Section 4.5 describes the results of experiments in a modified

channel that mimics the Drake Passage in an idealized sense. Section 4.6 combines
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the data from the experiments of Sections 4.4 and 4.5 into a discussion of the trans-
port and the effects of wind strength, topography, and land barriers on the established
transport. Section 4.7 contains a short analysis of the effects of varying resolution,
and provides justification for the resolution used for the experiments performed in
this work. Section 4.8 contains a description of the time-stepping scheme used and
some results on the efficiency of our finite element implementation as compared to a
number of other models for oceanic flow on a similar scale.

Chapter 5 contains some concluding remarks and possible future work.



Chapter 2

The Two-Layer Frontal Geostrophic Model

2.1 Introduction

The Antarctic Circumpolar Current is the major oceanic current of the southern
hemisphere. It travels around Antarctica (see Figure 2.1), and acts as a conduit for
the transport of quantities such as heat, salt, and carbon dioxide between the major
ocean basins, thus having a significant impact on the Earth’s climate. This strong
and deep-reaching zonal (i.e., east-west or latitudinal) current also acts as a barrier
to transport across the current, leaving the ocean to the south of the ACC relatively
isolated from heat and substance sources from the rest of the world ocean [25]. The
flow of the ACC is predominantly influenced by strong westerly winds that circle
the southern hemisphere. These winds attain a maximum strength in the latitudinal
region of 52° — 57° south (see Figure 2.2), precisely the latitudes in which the ACC
flows around the earth, providing evidence of the importance of these winds on the
flow. These winds impart an eastward momentum into the ACC.

The flow variability of the ACC has been imaged by sea surface height measure-
ments via satellite. The data attest to the existence of eddies throughout the region
of flow (see Figure 2.3). The turbulent, meandering flow characterized by eddies is
hypothesized to play an important role in thermodynamical transport and balance in
the southern hemisphere.

In any region of flow in the ocean, momentum forcing is primarily applied in
two ways: by winds interacting at the surface of the ocean and by frictional forces
occurring between flowing water and the ocean bottom (or land boundaries). Any
boundary region that transmits these forces is known as an Ekman layer. Accordingly,
there exists an Ekman layer both at the surface and bottom of the ocean. There is
a third ‘force’; the Coriolis force, which is the effect of the spinning of the earth

upon moving objects. The Coriolis force is actually a fictitious force; its effect is the

4
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Figure 2.1: The path of flow of the Antarctic Circumpolar Current, as estimated by
satellite altimetry data (adapted from [12]).



Figure 2.2: The zonal wind stress in the Southern Ocean, in Nm™2, attaining a
maximum in the region of flow of the ACC, from the Southampton Oceanographic
Centre (SOC) data set.

result of measuring velocities in a rotating frame of reference and not due to any
real physical consideration. In the northern hemisphere, the Coriolis force appears
to deflect moving objects to the right, and in the southern hemisphere, to the left
[17]. There are also buoyancy forces resulting from salinity and temperature fluxes,
though these are not considered in this thesis.

At the immediate ocean surface, the impact of the wind force on the water imparts
momentum on the surface water, which, due to the Coriolis deflection, is oriented to
the left of the wind force. As the imparted momentum is successively transferred to
the underlying layers of water, the frictional resistance decreases the velocity of the
water, increasing the deflection by the Coriolis force. The result of this process is a
spiraling flow with diminishing velocity with depth, called an Ekman spiral [24]. The
Ekman spiral has a net flow in the Ekman layer, oriented perpendicular to the wind
force and in the direction of the Coriolis deflection (see Figure 2.4 for an idealized
model of this process).

The westerlies which prevail over the ACC decline in strength latitudinally as one
moves away from the region of flow. Thus, south of the ACC, the positive wind-force

curl creates an area of divergence, and thus, upwelling (Figure 2.5). Similarly, north
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Figure 2.3: Sea surface altimetry data below Australia showing the eddy-dominated

flow of the ACC, from the TOPEX/ERS2 data set.
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Figure 2.4: The Ekman spiral: In the southern hemisphere, wind forcing results in a
net flow perpendicular and to the left of the wind direction (adapted from [22]).

of the ACC, there is a negative wind-force curl, which creates an area of convergence,
and thus downwelling (Figure 2.5). The northward Ekman transport at the surface
along with the downwelling and upwelling create an overturning circulation known
as the Deacon Cell (see Figure 2.6). The Deacon cell tilts the isopycnals (lines of
constant density), creating a density gradient in the fluid known as a front. The
sloped isopycnals impart momentum into the fluid, though directed perpendicular
and to the left of the positive density gradient due to the Coriolis force [19]. Thus,
there is a relatively strong net eastward forcing resulting from the Deacon cell which
drives the eastward flow of the ACC. The flow of the ACC is basically geostrophic,
meaning that the zonal current velocity is determined by the meridional (i.e., north-
south or longitudinal) balance that occurs between the hydrostatic pressure gradient
associated with the sloped isopycnals, and the Coriolis force. Thus, the density profile
of the water column in the region of the ACC plays the dominant role in driving the

eastward current [25].

In layer models, the density profile is represented by discrete layers of fluid, with a
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Figure 2.5: The wind forcing (black) attains a maximum in the central latitudes of
the ACC. At the south of the ACC, the positive wind stress creates a net outflux
in Ekman transport (i.e., divergence) (shown in red), drawing up water from below
(i.e., upwelling) (shown in green). In the north, the negative wind stress creates a
net influx of Ekman transport (i.e., convergence), which pushes water downward (i.e.,
downwelling).

Zonal Wind
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Figure 2.6: The Deacon Cell: the dotted lines represent isopycnals, which are sloped
by the overturning circulation (adapted from [13]).
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depth
density
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Figure 2.7: The zonally averaged density profile of the southern ocean over depth in
m, and latitude, from hydrographic data. Density units are given by kg/m? above
1000 kg/m?, the density of pure water. The sloped isopycnals resulting from the
Deacon cell are apparent. The dotted lines represent the approximate region of flow
of the ACC (adapted from [12]). The thick black line separates the density profile

into two layers.

constant density in each layer. The dynamics of the flow can then be understood from
the behavior of the density layer interfaces, which determine the pressure gradient.
In the two-layer frontal geostrophic (FG) model, we treat the density gradient as two
separate layers of constant density, with the resulting interface governing the flow
of the current (see Figures 2.7 and 2.8). A density value is chosen to separate the
density profile into two discrete layers.

The westerly winds which prevail over our region of flow constantly impart mo-
mentum into the water. In order to achieve a steady state of flow, there must be a
balancing force to counteract the constant forcing of the wind. When treating the
ocean as two layers, we seek a balance in forcing in each layer. In the lower layer,
momentum is dissipated via bottom formstress, which transfers momentum out of
the water and into the solid earth by flow interaction with bottom topography [25].
However, no such bottom formstress exists in the upper layer; here there must be
another mechanism of momentum dissipation, or else the zonal flow would accelerate
indefinitely with the continuous imparting of momentum via the wind forcing. It

turns out that there is a vertical transfer of momentum from the upper layer to the
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z fy/ 2

<

Figure 2.8: The two-layer FG model geometry. p; is the upper layer density, ps is
the lower layer density, h is the upper layer depth, and p is the lower layer pressure
(adapted from [18]).

lower layer via eddy interfacial formstress, caused by eddy-induced fluctuations in the
zonal pressure gradient (see [25] for details). This transfer of momentum to the lower
layer is then dissipated by bottom formstress, thus allowing a momentum balance in

both layers.

In the presence of land masses, a frictional boundary layer around the land mass
can also play an important role in balancing the wind forcing. This effect is most
prominent at the Drake Passage, where the meridional spread of the ACC is con-
strained by the Antarctic Peninsula, and South America. The important effects of

land masses motivate the inclusion of land barriers in the modelling domain.

The two-layer frontal geostrophic model is so named for three reasons. First, it
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uses two layers to model the density profile. Second, the flow is geostrophic; that
is, at leading order, flow is balanced by the pressure gradient and Coriolis force
[17]. Finally we model the ‘front’ of tilted isopycnals to determine the flow pattern.
The model we use to simulate the flow dynamics of the ACC was first developed
by Cushman-Roisin et al. [6], and independently for flow over a sloping bottom
by Swaters [31]. Karsten and Swaters [14] established conditions on the nonlinear
stability of the model, and extended the applicability of the model to a much larger
range of flow geometries. In two companion papers, Karsten and Swaters provided
a comprehensive description of the nonlinear dynamics of the model from a strong-
B [15] and weak- [16] standpoint. Reszka and Swaters [28] applied the model to
buoyancy-driven coastal currents, and found an agreement between the reduced FG
model results and primitive-equation models. Reszka and Swaters [29] used the model
in a study of the Gaspé Current, finding an agreement between observed data and
model results, and also noting the destabilizing effect of bottom topography, and its
importance in the consideration of such coastal flows. The model used in this thesis
lacks both the refinement and complexity of other models (e.g., General Circulation
Models (see, e.g., [36])) that similarly model the flow pattern in the ACC. However,
the computational requirement for the solution of these other models is quite large.
This requirement impedes experimentation with model variables and parameters. In
this thesis, we seek to create a reasonable numerical model which gives solutions on a
more manageable time scale, allowing oceanographers to more easily experiment with
the model inputs to see the effects on the generated flow patterns. The two-layer FG
model we use is essentially a simplification of the shallow-water equations [19]. The
simplification is achieved mainly through making leading-order approximations for
variables and ignoring higher-order terms. Thus, the two-layer FG model is unable
to resolve high-order phenomena, such as internal gravity waves. However, these
phenomena are only important in models of either very high resolution or very small

domains, both of which do not immediately concern us.

The two layers of the FG model do not include the Ekman layer at the surface
of the ocean. In the Ekman layer, there is a northward transport of water, but we

are concerned only with the effect of this transport on the underlying water (i.e.,
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the upper layer of the model). The primary effect is the downwelling and upwelling
processes of the Deacon Cell that are represented by Ekman pumping terms in the
model. However, a number of other processes occur which are not resolved in the
model. Specifically, the northward transport in the Ekman layer implies coastal
downwelling along the north boundary of the domain, and upwelling at the southern
boundary, both of which are not included in the model. Also, by representing the
wind forcing as a stress (i.e., the curl of the wind forcing), the model is unable to

properly model a spatially uniform wind.

2.2 Governing Equations

Because we are modelling a region for which the length scale is much larger than the
depth scale, we are justified in using a shallow-water approximation for our model. We
now derive the shallow-water equations for two layers following [19]; we subsequently
derive our model equations from this basis.

To derive the two-layer shallow-water equations, we begin with the conservation

of momentum equation,

D 1
Dl;—|—2Q><u:—ﬁVp—§—Ru+ﬁV2u, (2.1)

and the continuity equation for an incompressible fluid,
V-u=0, (2.2)

where u = (u, v, w) is the velocity of the fluid, with u directed eastward, v northward,
and w upward, p is the fluid pressure, p is the constant average fluid density, g§ =

(0, 0, g) is the force of gravity on the fluid, applied in the vertical direction,

v 00
v=10 v 0],
0 0 0

where v is the coefficient of horizontal turbulent viscosity representing unresolved

scales, and Q = (2, Q,, €2,) is the angular velocity vector of the earth [19]. The term
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— Ru represents the effect of the Ekman layer at the ocean bottom, where

r 0 0
R=10r 0],
000
where r is the coefficient of Ekman friction.

The 2% term in (2.1) is the material derivative of u, defined as

Dt = Ot '

This term is the Lagrangian acceleration of the fluid, representing the sum of the local
acceleration (the flow changing with respect to time) and advective acceleration (the
flow changing with respect to space). It is thus the total acceleration experienced by
a parcel of fluid [17].

Large-scale geophysical flow problems are often most conveniently solved in spher-
ical co-ordinates. However, when width scales (north-south) are relatively small in
comparison to the radius of the earth, we can ignore the curvature of the earth, and
instead adopt a local Cartesian system on a tangent plane [19]. For the ACC, a typ-
ical width scale is 2000 km, while the mean radius of the Earth is 6371 km, giving a
ratio of approximately 0.30. This value is sufficiently small to allow the adoption a
Cartesian system, although our scalings lie in the limits of applicability for this sim-
plification [12]. If we were to extend the longitudinal scale of our model, the adoption
of a spherical co-ordinate system would likely be necessary.

Using the local Cartesian system, we rewrite the components of the angular ve-

locity, €2, as
Q, = 0,
Q, = [92]cosb,
Q. = |Qsinb,

where 6 is the latitude. The Coriolis force is thus

A~ ~ ~

i F k
20 xu = | 0 2|Qcosf 2|Qsind
u v w

= 2|Q[i(w cos f — vsin ) + jusin  — ku cos d], (2.3)
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where i,j, and k are the elementary unit vectors. Because we are making a shallow-
water approximation, w < v, and so we can assume that the w cosf term in (2.3) is

negligible [19]. Then we can write the three components of the Coriolis force as

(2Q xu), = —(2/92]sinf)v = —fu,
2Q xu), = (2|Qsinf)u = fu,
(22 xu), = —(2|Q|cosb)u,
where we have defined
[ =2|Q|sin0,

known as the Coriolis parameter. The vertical component of the Coriolis force is
generally negligible, dominated by the other terms in the vertical equation of motion

[19]. This allows us to reduce the Coriolis force to

—v

2Qxu~f| wu

Although the Coriolis parameter, f, varies with latitude, this variance is only impor-
tant for phenomena with very long length scales [19]. Otherwise, we can approximate
f by a constant value,

fo =2 sin by, (2.4)

where 6 is the central latitude of flow. This approximation is known as an f-plane
approzimation [19]. One can achieve a better approximation by expanding f in a

Taylor series about 6,

I =Jfo+ Dy, (2.5)

(dfdo
- (na)

where R is the radius of the earth, and we have used dy = R df. The approximation

where

_ 4
ﬁ—dy

2|92 cos by

o, (2.6)

90 6’0

(2.5) is known as a (-plane approzimation [19]. Approximating the Coriolis force by
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the 3-plane approximation is valid for the ACC [15], and thus we let

—v
2xux(fo+6y)| u |. (2.7)

Our model is based upon two layers of fluid with a constant density value within
each layer. However, for flows with sufficiently small velocity and depth scales, density
changes in a fluid can be neglected in the horizontal components of the momentum
equation (2.1). This approximation, known as the Boussinesq approzimation [19],
is used in our model [12]. We thus use p for our constant reference density in the
horizontal components of (2.1). We note that in the vertical direction, the density
difference is significant, and so we allow density to vary in the vertical component of
(2.1). This is accomplished by letting p; and ps be the upper and lower layer constant
densities, thereby discretizing the density profile.

Because we represent our ocean domain by two layers of fluid, equation (2.1) holds
in each layer. We rewrite equation (2.1) for each layer in component form, using the
subscripting convention that 1 refers to variables in the upper layer, while 2 refers to

variables in the lower layer:

lgfﬂfﬁﬁy)(—vl) = —;%];1 —T1U1+V16§$’ (2:8)
%u: _ _;%p; g (2.10)
%fﬂfwﬁy)(—vz) = —;_%;2 —7“2U2+V2%25;’ (2.11)
%U; + (fo+ By)us = _;a;; — T2l V??J;’ (2.12)
Dw, _ 10p (2.13)
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Furthermore, the continuity equation (2.2) holds in each layer, and with the same

subscripting convention as above, we write

V-u =0, (2.14)

V-uy =0. (2.15)

Because there is no bottom friction in the upper layer, we set r; = 0.
The ocean can be viewed as a very thin fluid sheet, in which the depth scale is
much less than the horizontal scale. Fluid trajectories are very shallow, and vertical

velocities are generally much smaller than horizontal velocities [19]. We can therefore

Dw1q Dwo
Dt Dt

and is negligible compared

assume that vertical acceleration in each layer,
with gravitational /buoyancy forces; this is known as a hydrostatic state. Then (2.10)

and (2.13) reduce to

Ip1 .
92 —9pP1, (2.16)
Ip2

= —qpo. 2.1
02 gp2 (2.17)

Equations (2.16) and (2.17) are the hydrostatic equations in each layer. Integrating
(2.16) and (2.17), we write

P1 = —gp1z + ﬁﬁl('xvya t)a (218)
P2 = —gp2z + ﬁﬁ?(xa Y, t)7 (219)

where p; and py denote the normalized time-dependent pressure in each layer (in
units of pressure per unit density) called the dynamic pressure. Replacing p; and ps

in (2.8)-(2.13),

Du 10(—gp1z + pp1(x,y,t 0%u
7 + (ot By)(—v) = — oo o (@1 ax21’ (2.20)
Dv 10(—gp1z + pp1(z,y,t 0*v
Sy T o+ By)u = —— (=90 3 Wy ) Ly, 7 (2.21)
Du, _ 10(—gpsz + pha(x,y,t)) 0%uy
ot (fo+ By)(—v) = - o =ty + 1y, (2.22)
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Doy 10(—gpoz + ppa(z,y,t)) 9,
D7t+(f0+59)uz—i oy —7“2U2+V267y2a (2.23)

where (2.10) and (2.13) are now redundant. We note that the horizontal components

of the upper layer momentum equation (2.20) and (2.21) simplify to

Du opy(x,y,t 0*u

5y T+ ot By)(=m) = — 1((% )i, o (2.24)
Dv op1(z,y,t 0%
7; + (fo+ By)(w) = — 1(8y ) 40, ay21‘ (2.25)

From (2.24) and (2.25) it is clear that by applying the hydrostatic assumption, that
the horizontal velocities, u; and vy, are now independent of depth. The same ar-
gument applies in the lower layer, implying that us and v, are also independent of
depth. We are thus able to make a fundamental simplification. We transform the
three-dimensional system to a two-dimensional system by incorporating the vertical
effects into the horizontal equations. It will become clear as the derivation progresses
that the continuity equations (2.14) and (2.15) allow this inclusion of vertical effects
by connecting vertical velocities to changes in upper-layer height, h. In keeping with

this simplification, we define

Uy g = (Ul, Ul)v (2-26)
Ug g = (U2, UQ)?

to be the horizontal components of the velocity vector in each layer. As well, we

require two-dimensional analogues of our standard three-dimensional operators. Thus

we define
o 0
Vg =[—,— 2.27
and
i j k
kxug:=[0 0 1| =(-v,u0)|g=(-v,u). (2.28)
u v 0
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From (2.27) and (2.28) we note the following important identity:

~ (0b Oa), 0Ob Oa

~ ~

k- (Vi x(a,b) =k-

>~ g‘@ (SN
o o /Y

i
)
oz
a
We also define the two-dimensional restriction of (2.7) as

—7v
(fo+By)| u | = (fo+Bykxuy, (2.30)
H

where fj is defined by (2.4) and (3 is defined by (2.6).

We continue our derivation focusing on the upper layer, with the derivation for
the lower layer being entirely analogous, unless otherwise stated.

We first replace u; by uy g in (2.8)—(2.9), let all operators be their two-dimensional
analogues where applicable (as defined in (2.27)—(2.28)) and replace the Coriolis term

with (2.30), giving, in vector form,

Dul,H
Dt
where we have replaced Vp; by Vp; following (2.24) and (2.25). We further assume a

~ 1 B
+ (fo + 5?/)1( X Uy,g = —EVle(L yat) + Vlv%{ul,Ha (2-31)

continuous pressure across the layer interface (i.e., at z = —hy(z,y,t)). Then (2.18)
gives

gplhl(xayat) + ﬁﬁ1($,y>t) = gp2hl($ay7t) + ﬁﬁ?(xvyat)a

from which we can solve for py(x,y,t) as
ﬁl(xvyat) =g (W) hl(xvyat) +]52($,y,t) (232)

We substitute this into (2.31), giving

Dul,H

D1 + (fo + By)k x Wy = —gVuhi(z,y,t) — Vupa(r,y,t) + i Vyu g, (2.33)

where ¢/ := ¢ (%) is the reduced gravity [17].

We now expand the upper-layer continuity equation (2.11) to
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8u1 81}1 8w1

+——+ =0,
ox dy 0z
and then integrate both sides over the depth of the upper layer, noting that u; and

v1 are independent of z, to obtain

0 8U1 81}1 8w1
—+—+—=—|d
/hl(x,y,t) <83: + Jy + 0z > -

0 0
- h’l(‘ray7t) (;xl + 8?;) + w(I7y707t) - ’(U(I,y7 —h1($,y,t),t) = 0. (234)

We account for the wind forcing by including a downward Ekman pumping force

[12] at the surface of the upper layer; i.e,
w(xay707t> = Towlye('rﬂz%t)? (235>
where 7y is a wind strength parameter and

we(x,y,t) if hy(z,y,t) >0,

(2.36)
0 if hi(x,y,t) =0,

wie(x,y,t) = {
where w,(z,y,t) is the Ekman pumping velocity. Incorporating the wind forcing in
this manner is a distinguishing feature of this model as compared to other similar
models. Because we model the resultant Ekman pumping force instead of the wind
forcing directly, we do not include the surface Ekman layer in our model geometry,
but instead include the effect of this Ekman layer on the subsurface ocean.
At the interface of the two layers, z = —hy(z,y,t), we apply a kinematic boundary
condition (see [19]), such that the vertical velocity is given by the total change in the
upper layer depth with respect to time; i.e.,

Dhy(z,y,t Oh(z,y,t
UJ(:L’,y, _h'l(xv y7t)7t> = _M = - M + ul,H : th(xvya t)
Dt ot
(2.37)
We substitute (2.35) and (2.37) into (2.34), noting that
hi(z,y, )V -a1g +w gVehi(z,y,t) = V- (h(z,y, t)um),
to obtain
Ohy(x,y,t
Onlz,y,t) + V- (hi(z,y,t)urg) = —Towi(x,y,t). (2.38)

ot
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In the lower layer, the derivation is completely analogous. Thus, with the lower-
layer analogues of (2.33) and (2.38), we arrive at the two-dimensional, two-layer

shallow-water equations,

ou .
S Vi (o By x
= _glthl (l’, Y, t) - vaQ (ZE, Y, t) + Vlvzul,Hv (239)
ah‘l ('Ta Y, t)
T + Vg - (hl(l’,y,t)ul,H) = _70w1,6<x7y7t)a (2-40)
8u27H ~
ot + - Vausy + (fo+ By)k x wa
= —Vupa(2,y,t) — ratou + 12 Vg m, (2.41)
Oho(x,y,t
2(8ty) + Vi - (he(z,y,t)ag,q) = —mowa(2,y,1), (2.42)

where
W (1,1, 1) = { 0 if hy(z,y,t) >0, (2.43)
we(x,y,t) if hy(z,y,t) =0.
We have defined our Ekman pumping forces in the upper layer (2.36) and lower layer
(2.43) such that the forcing is applied on each layer only where that layer reaches
the surface. In a typical model run, the upper layer covers the entire surface of the
domain (i.e., h(z,y,t) > 0 everywhere on the domain). In this case, no forcing would
be applied to the lower layer. However, there is also the case of outcropping, i.e.,
where the upper layer vanishes on some region of the domain, and the lower-layer
outcrops, or reaches the surface. In this case, w.(z,y,t) is applied to the lower layer
via (2.43) on the outcropping region.
Because our model deals with a number of variables, we seek to redefine these
variables on a scale which allows each variable to be compared. This is accomplished
by a nondimensionalization (see, e.g., [26]), wherein we rewrite our variables with

associated characteristic scales. Thus, let

[E:Li’, y:L:&, t:TZ?, uLH :UllNlLH, ]’Ll :HliLh

U g = UQUQ}H, P = Ppg, Wi,e = WUJLG, Wo.e = Ww2,e
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where L is a characteristic length scale, T" is a characteristic time scale, U; and U,

are characteristic horizontal velocity scales, H; and H, are characteristic layer depth

scales, P is a characteristic pressure scale, and W is a characteristic Ekman pumping

velocity scale.

We expand and rewrite equations (2.39)—(2.42) with the nondimensionalized vari-

ables, dropping the tildes, and suppressing all arguments:
U1 aul U12 aul U12 aul
T ot T L™ T L "oy

. —g,Hl 8h1 Papg U12 82161

L Ox L ox 2" ox?’

(fo + By)Urvy

U1 81)1 U12 81}1 U12 aUl
To T L Mor T Ly, ot Ayl

. —g/Hl 8h1 Papg i U—IQV 827}1
T L 9y Loy  L* oy

E(?hl H1U1 3h1u1 4 8h1u1 — —Wrw
T 0Ot L Ox oy | 0T
U, 8u2 U22 (‘9u2 U22 aUQ
?E—i_fqmaix—i_fwﬁiy (fo + By)Usv,
PapQ U22 02’&2
T Lo etV

UQ 81)2 U22 81)2 U22 an
T ot + 7 Y25, + 7 v y + (fo + By)Usuy

P(?pg U22 (92@2
= —zaiy — UQ?"QUQ —+ ﬁy287y27

Hy, 0hy  HyUs <8h2u2 n ahzlu) = —Wrywa,.

T Ot L ox dy

Also, we note that

thl + H2h2 - [’I7

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

with H the total depth. We now divide (2.44) and (2.45) by U|fo|, and (2.46) by

Hy|fol|, noting that because we are dealing with a flow in the southern hemisphere,

0y < 0, and hence fy < O:
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1 6u1 U1 6u1 Ul aul (f() + ﬁy)

+ U + v — v
Tlfol ot " Lifol "0z " Lifo] 'y fol
—g/H1 8h1 P 8p2 ] U1 82U1
= - —_— — —u + —— , 2.51
L|f0|U1 Ox L’fo|U1 Ox \ | \fo|L2 S Ox? ( )
1 Oun Ui 37}1 Ui 81}1 (fo+ By)
— —+ PRI TR
T|fo| Ot L|f0’ L|f0| | fol !
—g/Hl @hl P 3p2 T U1 8 (%1
_ _ + 2.52
LifolUr 0y LIfolUi 0y | fol o | fol L2 oy dy? (2:52)
1 8h1 U1 <8h1u1 8h1u1> w
+ = —————ToW1e. 2.53
T\fol 0t " Lifo| \ 0 Ay \folHy *" (2:53)

Similarly, we divide (2.47) and (2.48) by Us|fo| and (2.49) by Hs|fo| to obtain

1 (9’&2 UQ 8’&2 U2 auQ (f() + By>

U + v — VU
gl 0t " Lifl 0 LISl ™ 0y ol
P dpy 1 Uy  0%ug
=— + 2 : 2.54
Lflls 0r Tl ™™ T Th2" 02 (2:54)
1 81)2 U2 81)2 UQ 81)2 (f() —|—ﬁy)
S Uy U
Tlfol 0t ' Lifo] “0x " LIfo] *dy | fol 2
P Opp 1 Uy 0%y
= — — TV + Vo, 2.55
LIfolUz 0y [fol 272 [folL2 7 0y? (2:55)
1 8h2 U2 <3h2u2 8h2u2> 4
T|fo] 0t ' Lifo| \ 0z Dy \fol Hy ©% (2.56)

We now seek to determine the relative sizes of the non-dimensionalized variables.
For this we define the Rossby number, €, as the ratio of the nonlinear acceleration to
the Coriolis force. The Rossby number has magnitude

B UZ/L U
|folUr  [fol L

(2.57)

A small Rossby number; i.e., € < 1 (calculations are preformed in Chapter 3) implies

a geostrophic balance in our model.
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From (2.4) and (2.6), and noting that L < R, it is clear that at mid-latitudinal
6y values, By < fo. Then the coefficient of the Coriolis term in (2.51) and (2.52)
satisfies

| fol

Furthermore, geostrophic flow in the upper layer implies that both the Coriolis terms
and pressure gradient terms in (2.51) and (2.52) are leading-order terms. Then it
follows that the pressure gradient terms in (2.51) and (2.52) are also O(1), and we
thus set

—¢'H,
=1, 2.58
LI, (2:58)
and
L =1 (2.59)
LifolUh 7 '

because these are the coefficients of the expanded normalized pressure p(x, y,t) given
by (2.32). At this point, we make a number of assumptions in the scaling of our
variables. Depending on the chosen scaling, there are a number of models which can
be derived; these are described in detail in [15]. Our scaling choice corresponds to the
weak-(, thin-layer (WT) model from [15]. Continuing with this scaling, we assume

the flow in the lower layer is an order of € smaller than the upper layer; i.e.,
Uy = €Uy = €| fo| L. (2.60)

We assume as well that the time scale is given by the advective scale in the lower
layer; i.e.,
L 1
T=—=——. 2.61
Us  €|fol ( )

Also, we assume a thin upper layer; i.e.,
H, = pe*Hy, (2.62)

and

H, = H. (2.63)

We include the additional parameter x in (2.62) to more accurately compare the layer

depths. In our model of the ACC, p has a value of 1.21 (see Section 3.3). We choose
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an upper-layer wind forcing of order O(€?); i.e.,

W 2
= €°. 2.64
ol H, (2:64)

From (2.62) and (2.64), we can determine the lower-layer wind forcing scale:

W 2 W 4
| fol Ha He | fol H1 He (2.65)

With the assumptions (2.58)—(2.65), we can rewrite (2.51)—(2.56) in terms of the

original variables and €, except for the following: the Coriolis term,

1
Wﬁy

in (2.51), (2.52), (2.54), and (2.55), the upper-layer Laplacian friction term

in (2.51) and (2.52), and the lower-layer friction terms

Uz g and VQV%IUQ’H

) Uy
ol [ fol L2
in (2.54)-(2.55). Because each of these terms involve one of the model parameters
0,79, V1 OF Iy, we can redefine these parameters such that we eliminate scaling factors,
while also associating the aforementioned Coriolis term and friction terms with a more

representative order of magnitude of €. Thus, we write

1
mﬁy = 625,9,
U
WUI = EV:{ = 621/57 (266)
0
1 2.0
|f70|7’2 = €Ty,

where (', ), v], and v} are suitably scaled parameters. Also, from (2.66) and (2.60),

we have that

Us
| fol L?

2 2. 172
VQVHUQ,H =€ VQVHu2,H-
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We now divide (2.50) by H,

and using (2.62) and (2.63), we can then express hy in terms of hy:
h2 =1- ,uezhl. (267)

By applying (2.58)—(2.67) to (2.51)—(2.56) and simplifying, we arrive at the non-

dimensional two-layer shallow-water equations:

0 R
2 1;}1 +e(ury - Vau )+ (-1+E8y)k x upy
= ~Vuhi =€ (Vap+iViug), (2.68)
oh
Eaitl + VH . (hluLH) = —ET()’U)L@, (269)
20Uy gy 2 29 AT,
o + e (uyp - Vy)ugy + (—1+ € Fyk x ugy
== —VHp — 62 (réulH — VQV%IUZ,H) s (270)
oh
—MEQaitl + VH : ((1 — ezuhl)ugﬂ) = —62/17'0’(1]2,@, (271)

where we have suppressed arguments of variables for notational ease. Henceforth,
we also suppress the subscript 1 on h. We now rewrite the upper-layer momentum

equation (2.68) as
kX u y=Vgh+e (VHp +(wg-Vg)ug— u{V%uLH) + O(€?). (2.72)
We then take k x (2.72) and drop O(e?) terms to obtain
k x (lAc X u17H> =k x [VHh +€ (VHp +(wy-Vg)u g — U{V%{ul,Hﬂ )
This allows us to use the vector identity
kx(kxv)=-v (2.73)
to solve implicitly for u; p:

U g = —IA{ X {VHh + € (va + (ul,H . VH) Uy g — I/{V%[uLHﬂ . (274)
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We expand

U g = ug% + eugb)q + e

It is clear from (2.74) that
ul’), = —k x Vyh. (2.75)
We can use ug% as an approximation for u; g to simplify the right-hand side of (2.74),
giving
Urng =

—k x [Vah+€(Vap+ ((k x Vih) - Vi)(k x Vyh) + vV (k x Vgh)| . (2.76)

We simplify this expression by noting that

—k x [((kx Vgh) - Vi)(k x Vyh)] = —kx ([

where J(A, B) .= A, B, — A, B, denotes the Jacobian in the determinant sense. Then

we can write (2.76) as
wry = —k x Vyh — ¢ [k x Vigp + J(Vyh, h) — v} V3 Vh]. (2.77)

From (2.77),
ul'y = —k x Vyp — J(Vyh, h) + v, V4 Vh.

Substituting (2.77) into (2.69) and noting that the geostrophic velocity cannot
advect the upper-layer depth [12], i.e.,
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at order € we get

oh
o T Vi (haf'}) = 70w . (2.78)

We similarly rearrange the lower-layer momentum equation (2.70) to get
—k x U g =—Vup+ Ole)
and again using (2.73), solve for uy g, giving
Uy = —k X Vp+ O(e). (2.79)

Expanding uy g as

Up g = ug?l)q + eugl)q + -

we note from (2.79) that the lower-layer geostrophic velocity is
u) = —kxV
2H = HD- (2.80)
We continue by applying the identity (2.29) to the momentum equation (2.70),
giving

. 9 .
k- <VH X [EQI;’H + e ((agp - Vi)ugw) + (=14 E6'y)k x uZH])

= f{ . (VH X [—VHp - EQ(Téuz,H - VQV%IUZH)]) )

or

6261} . (VH X u2’H)

+k (Vi % (a1 - Vir)uzr))+k- (Vi x [(=1 + €3'y)k x ug z1])

ot
=k (Vi x [-Vap — by — iV ) . (2.81)
But, noting that
lA{ . (VH X {(—1 + EQﬂ/y)f{ X UQ7H:|) = VH . ((_1 + €2ﬁ’y)u2,H> 7 (282)

and also that
Ve xVup=0,
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we can simplify (2.81) to

6261; . (VH X UQ,H)
ot

+ k- (Vi x (o - Vir)uo ) + Vi - ((—1 + EQB'Q)UQ,H)

— _¢2 (7“2 (Vu X ugpg) — ik (VHVH X U H)) (2.83)

which we call the vorticity equation [12]. Noting that
1;' (VH X [(UQ,H . VH) 112,H]) =Vpg- ([f( (VH X 112,H)} 112,H) )
we can rewrite (2.83) as

aC 2 2 ! _ 2 /
o +Vyg- ((e (—1+4¢€ By) u27H> = —¢ (7“2C ZAves C) (2.84)
where ¢ = k- (Vy X uy ) is the relative vorticity [17).

We now rewrite (2.84) as follows:

9¢

VH'LIZH—E <8t

£V (C+ By t] + 1 — VR <) (2.85)

We approximate uy g on the right-hand side of (2.85) with the geostrophic velocity

in the lower layer ug%, and use (2.80) to approximate ¢ by

~

O % (v i xu) ) V2,

to get

oVp
ot

Vi Uy =—€ < . {( wp— 3 ) } +r5Vip Vévirl{p> . (2.86)

We now consider the lower-layer depth equation (2.71). Expanding and using (2.86),

we rewrite (2.71) as

WO (av%,p v

—pue? e ot wp— 0 )U-Q H} + 75V D yéV%p)
—*Vy - ((uh)u2 1) = —€uTows,. (2.87)
We approximate ug g in (2.87) by u - and divide by —¢? to get

0
6—? +Vu- (qu(2 l)q) = UToWs,e — 5N 5D + VAV D (2.88)
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where

q:=Vip+ ph — 3y. (2.89)

Equation (2.88) is called the potential vorticity equation, where ¢, defined in (2.89),

is the potential vorticity. This expression for potential vorticity can be independently

derived by reduction of the shallow-water analogue of potential vorticity (see [19]).
Combining (2.78) and (2.88), we have the advective form of the two-layer FG

model equations,

oh
a + VH : (huf}{) = —ToW1ie, (290)
0
873 + Vg - (qug?l)q) = utowa,e — rHVHD + V4V ED (2.91)
where
ul'y = —k x Vyp — J(Vyh, h) + v, V4 Vh, (2.92)
uy) = —k x Vpp, (2.93)
and
q = Vip+ ph = f'y. (2.94)

2.3 Spatial Domain, and Boundary Conditions

The ACC flows continuously eastward around the globe. Because the meridional
spread and the depth scale of the ACC are sufficiently small, we can approximate the
spatial domain of the ACC by a geometrically simple channel with periodic boundary
conditions in the direction of flow (see Figure 2.9). We investigate a number of
different channels with our model. We are interested in the effect of the presence of
land masses on the flow, and so we run our model first in a simple channel with no
land masses and then include a land barrier in our domain, such that we can compare

the nature of the flow in each case.
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— g —~ | L

Figure 2.9: The true shape of the domain of the ACC is approximated by a simple
periodic rectangular domain.

2.3.1 Simple Channel

In the simplest domain, we approximate the domain of the ACC by a rectangular
region. With = oriented east-west and y oriented north-south, we express the nondi-

mensionalized domain as

where x, xR, and D are suitably chosen real numbers. Because the mean oceanic

flow is oriented east to west, we impose periodic boundary conditions in z; i.e.,

h(xLayat) = h(xRayat)a p($L7y7t) :p<$R,y,t>- (295)

From (2.94), ¢(x,y,t) is dependent only on p(x,y,t), h(x,y,t), and y. Then the
periodicity in h(z,y,t) and p(x,y,t) implies periodicity in ¢(z,y,t) as well. For the
boundary conditions in y, we impose no-normal flow conditions on the upper and

lower boundaries; i.e.,

vy =v3=0o0on y=0,D.
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Recalling (2.75) and (2.80), the leading-order velocities in the upper and lower layer

respectively are

ul ;= -k x Vyh = Z , (2.96)
o _ 1 _| Py
u, ;= —k xVyp= (2.97)
| Pz |
Letting v; = vo = 0 in (2.96) and (2.97), we get that
hy =0 on y=0,D. (2.98)
p.=0on y=0,D. (2.99)

These boundary conditions alone would create an ill-posed problem, however, because
we cannot specify tangential derivatives on the boundary. At next order, we examine

the upper-layer velocity,

W) = kX Vyp— J(Tyh h) = | Py ety haha
’ Do — hayhy + hyyha
Imposing v; = 0 implies that
P — hyahy — hyghe = 0.
Using (2.98) and (2.99) we can rewrite this boundary condition as

(hl)e =0 on y=0,D. (2.100)

We can now conclude that h, is (at most) only a function of time on y = 0, D. Due to
the aforementioned ill-posedness of our derived boundary conditions for h(z,y,t) and
p(z,y,t), we must modify these conditions somewhat. We proceed with two methods
of implementing a viable boundary condition on h(x,y,t), with a short discussion of

the effects of each implementation.

Boundary Method I for A(z,y,t)

We can enforce the condition on h(x,y,t) from (2.98) and (2.100) by letting h(x,y, t)
be defined as only a function of time on y = 0, D. We implement this by defining a



33

Dirichlet condition for h(z,y,t),
h(%y, t) = havg,O on y= 07
h(x,y,t) = hapgp o0 y = D.

ere 1s an average of ‘near values o T or some time t; i.e.
Here, haug,0 f° by’ val fh(x,y,t) fi t t; ,

1 )
B :7// h(z,y, Ddady, 2.101
9,0 CL’I“GCZ(RQ) Ro (l’ y ) €z y ( )

where Ry is a region near the boundary y = 0. Similarly, h,., p is defined as

1 )
B :7// h(z,y, Ddzdy, 2.102
g,D CL?"QCL(RD) Rp (I y ) x y ( )

where Rp is a region near the boundary y = D. With the above definition, h(z,y, t)
takes on a spatially constant, but time-dependent value on y = 0, D. In addition, the
normal derivative of h(z,y,t) at y = 0, D is bounded by the deviation of h(z,y,1)
from the mean value (i.e., hayg0 O hayg,p) along the boundary. In this sense, (2.101)

and (2.102) approximate a Neumann condition for h(z,y,t), i.e.,
n-Vyh(x,y,t)~0, on y=20,D. (2.103)

Because the upper-layer geostrophic velocity is along streamlines of h(z,y,t), (2.103)
is an approximation to a no-slip condition in the upper layer. Note that (2.103) also

implies that (2.100) is approximately satisfied.

Boundary Method II for h(x,y,t)

Alternatively, we can directly impose
n-Vh=0, on y=0,D,

such that we exactly impose a no-slip condition in the upper layer. However, this
condition allows normal flow into the boundary; i.e., the tangential derivative of
h(z,y,t) along y = 0, D is not constrained to 0. Therefore, we must modify our
boundary condition to force h to be constant along y = 0, D, that is, to impose

v1 = 0 at each of these boundaries. We can accomplish this by using a sponge layer,



34

a technique used in a variety of atmospheric and oceanic models (see, e.g., [21]). A
sponge layer is a region around a boundary in which velocities are artificially damped
so that problematic or ill-posed boundary conditions may be satisfied. In our case,

the sponge layer takes the form of two regions,

Ro,sponge = {(2,9)ly € [0,0],6 > 0},

and
RD,sponge - {(x7y)|y € [D - 57 D]75 > 0}7

where the parameter o controls the width of the sponge layer. In this layer, Ekman
(i.e., linear) friction is increased via a large friction coefficient applied only on the
regions Ro sponge aNd Rp sponge- As the friction coefficient increases, the fluid in these
two regions is artificially made more viscous. The viscosity in the regions can be
raised sufficiently via the friction coefficient so that all velocities are damped; then all
along the boundary regions Ry sponge and Rp sponge, and thus all along the boundaries,
the solution of h(z,y,t) will ‘settle’ on a representative value for each boundary. This
value is constant along each boundary at a given time step, but it can evolve through

time.

Boundary Conditions for p

In determining the boundary condition for p(z,y,t) on y = 0, D, we have some
freedom. Equation (2.94) determines p(z,y,t) only up to an additive constant. We
are then free to choose the value of p(x,y,t) somewhere on the domain. Because

(2.99) implies that p(z,y,t) is constant on y = 0, D, we can choose to set
p(z, D,t) = 0. (2.104)
For the boundary y = 0, we impose a Neumann condition on p(zx,y,t),
n-Vp(z,y,t) =0 on y = 0. (2.105)

This condition allows ‘natural’ values of p(x,y,t) to evolve on the lower boundary;
this is useful for calculating quantities (e.g., lower-layer transport) in the analysis of

numerical simulations. Imposing (2.105) does not strictly enforce (2.99) for p(z,y,t),
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although the variation in p(z,y,t) along the y = 0 boundary is small in numerical

simulations.

Remaining Boundary Issues

We must choose between the two boundary implementation methods for h(x, y,t), and
we must also impose a boundary condition on ¢(x,y,t). Boundary method I assigns a
constant value along each of the boundaries y = 0 and y = D via an integral average of
nearby values. In deriving the shallow-water equations, the conservation of mass was a
fundamental physical principle used. Indeed, for our reduced equations (2.90)—(2.94),
it can be shown that mass is exactly conserved (see Section 4.2 for details). However,
when using boundary method I, the representative boundary value arrived at via the
integral average does not necessarily conserve mass. Instead, the boundary values
of h(x,y,t) that are imposed act as sources or sinks of mass. Although these mass
changes are small at each time step, they accumulate over time and become significant
over long-time integration. As the boundaries become more complex, this source/sink
effect is heightened, and great mass changes can be seen. Through experimentation
with the parameters defining the integral average regions Ry and Rp, an attempt was
made to try to minimize the mass drift. However, parameters were very sensitive
to a host of factors, including 7y, the geometry, and friction, and thus a given set
of parameters minimizing mass change in one case did not necessarily minimize this
change in another simulation. This property of mass drift is a violation of physical
principles at the most fundamental level, and thus, we cannot use boundary method

I for h(x,y,t).

Boundary method II, however, does not artificially impose a value at the bound-
aries y = 0, D. Instead, through the high-viscosity sponge layer, the system itself
determines an appropriate boundary value. This boundary method does allow for
the conservation of mass, up to numerical error. This error arises because of the spa-
tial discretization. The Ekman forcing function must integrate to 0 over the domain
in order to conserve mass, but the use of a function which analytically integrates to 0

on the discretized domain can only approximate this zero-integration. The difference
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accumulates at each time step, and leads to a small drift in mass. However, the rela-
tive mass drift is on the order of le=7 for our chosen resolution, whereas the relative
mass drift using Boundary Method I can be on the order of 1; i.e., the change in mass
can be as large as the initial total mass. This error predictably decreases as spatial
resolution is increased. Although other issues arise from using these sponge layers
(e.g., spikes in higher order derivatives near the d-interfaces of Ry sponge a0d Rp sponge)
these issues do not invalidate the model.

For our model variable ¢(z,y,t), we can determine its boundary condition accord-

ing to its definition (2.94). We assume that
Vip=0

on the boundary, and thus, in a Dirichlet sense, we define g on the boundaries y = 0, D

to be
q=ph—pGy. (2.106)

But here again we must determine a proper boundary value for h(x,y,t). Using
boundary method I to determine h(z,y,t) in (2.106) does not affect conservation

properties, and so it is used here. Thus we set

q<.’l§', Y, t) = :uhavg,o - ﬁ/y on y= 07

and

q(z,y,t) = phawgp — 'y on y=D.

2.3.2 Channel with Passage

The ACC flows around the earth largely uninhibited by land barriers. However, be-
tween the southern tip of South America and the Antarctic Peninsula lies a relatively
narrow oceanic region called the Drake Passage (see Figure 2.10). In this region, the
meridional spread of the ACC is constrained between the land barriers. In addition
to providing a convenient station for measuring the transport of the ACC, the Drake
Passage also influences the path of the flow. Because of these flow implications, we

want to incorporate this geography into our model domain. The upper and lower
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Figure 2.10: The Drake Passage (adapted from [§]).

‘morth" boundary

K_’Y ‘south' boundary

Figure 2.11: The model domain representing the ACC domain constrained by the
Drake Passage.



38

boundaries of the simple channel are modified to include this constriction by drawing
the two boundaries together on a small part of the domain (see Figure 2.11).

Although we have modified the boundaries of our domain, the conditions imposed
remain largely the same. As in the simple channel, we impose the periodic conditions
in z for both h(z,y,t) and p(z,y,t) (i.e., (2.95)). As in Section 2.3.1, this implies
periodicity in ¢(z,y,t) as well. The remaining boundaries are grouped as ‘north’ and
‘south’ as in Figure 2.11. This is done because the boundary conditions imposed
are the same for all boundaries within the ‘north’ group. Similarly, the boundary
conditions imposed are the same for all boundaries within the ‘south’ group. This
designation simplifies our discussion. As in the simple channel, we impose no-flow
conditions normal to the boundaries in both the upper and lower layers. Also, as in the
simple channel, the ill-posedness of these conditions forces us to modify the conditions
to imposing a spatially constant, but time-dependent boundary condition for h(x,y, t)
on the ‘north’ and ‘south’ boundaries. We impose the analogue of Boundary Method
IT for this domain by defining Rsouth,sponge a0 Rnorth, sponge 1O be suitable regions near
the south and north boundaries respectively. Then in addition to the no-slip condition
at the boundaries, the high viscosity along each boundary forces the solution to be
constant along each boundary, and this imposes no-normal flow, as in the simple
channel.

For p(z,y,t) on the ‘north’ and ‘south’ boundaries, we apply the analysis from
the simple channel, and thus impose p(z,y,t) = 0 along the ‘north’ boundary, and
apply the analogue of (2.105) along the ‘south’ boundary,

n-Vp(z,y,t) = 0. (2.107)

Again, we have not forced p(z,y,t) to be constant along the ‘south’ boundary, but

the variation along the boundary as a result of imposing (2.107) is small.

2.4 Initial Conditions and Time Integration

The evolution of the two-layer frontal geostrophic model can be likened to taking an

unforced oceanic domain and ‘turning on’ the forcing, specifically the Ekman pumping
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force caused by winds. The evolution has two distinct phases: the non-turbulent front-
building interval and the turbulent phase. In the first phase, the Ekman pumping
force acts upon the initially constant h(z,y,t). This force creates a gradient, or
front, in the solution of h(z,y,t). The Ekman pumping force continually increases
the magnitude of the gradient, until the buildup of potential energy in the front is
released. This release occurs in the second phase. The gradient in h(z,y,t) breaks
into a turbulent profile, and the system eventually reaches a balance between the
momentum imparted by the winds and the momentum dissipated by the turbulence

and friction.

As the solution of h(z, y,t) evolves and becomes turbulent, we want to analyze the
‘steady state’ solution that prevails as a result of the momentum balance. However,
we do not seek a steady state in the typical sense of h(x,y,t) and p(z,y,t) remaining
unchanged for all ¢ > T for some T" > 0. Instead, we seek a steady state such that
the time-averaged, zonally averaged profile of h(x,y,t) and p(x,y,t) over some time
interval T, < t < T, in the turbulent regime is unchanging (within some tolerance)
compared to the same profile in a previous turbulent interval, T, < t < T},. We refer

to this state as a quasi-steady state.

The model is evolved until a quasi-steady state is established in the solution of
h(z,y,t) and p(x,y,t). The strength of the Ekman pumping force determines the
length of time required for the first phase. The length of time of the second phase
is determined by the time needed to establish steady state, and the desired amount
of turbulent data needed to construct meaningful time-averages. In our model runs,
we typically evolve our model to ¢ = 30000 (corresponding to roughly 33 years),
in which time the front is created, turbulence is established, and a quantitatively
verifiable steady state is observed. For weak-forcing models and other models that
take longer to establish a quasi-steady state, we evolve the model for longer, typically
to t = 60000. In [33], in which similar experiments are performed, their model is

evolved to 30 years.

Because the initial state of the model is a flat, unforced oceanic domain, both layers
are flat; i.e., h(x,y,t) is constant for all (z,y). Thus, we set h(x,y,0) to a constant

value throughout the domain. Similarly, the pressure is initially constant throughout
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the domain, and so we set p(x,y,0) equal to a constant (we choose p(z,y,0) = 0 to
satisfy boundary conditions). Because ¢(x,y,t) is determined by the h(x,y,t) and
p(l’, Y, t)7 we set



Chapter 3

FEMLAB Implementation

3.1 Introduction

To numerically solve the model, we turn to the finite element method. The finite
element method is a discretization method that easily allows for irregular domains.
This is important in adapting our model to realistic domains. Because the flow of
the ACC is affected by the presence of land barriers in the region of flow (e.g., the
Drake Passage), representation of these land barriers is important for the validity of
the model. We implement the model in the software package FEMLAB. FEMLAB
is an interactive environment for solving a system of partial differential equations
via the finite element method, and includes routines for spatial discretization (i.e.,
meshing), solving, and analysis of the solution. FEMLAB is most widely used for
its application modes which contain predefined equations for a variety of physical
phenomena, but the inclusion of general PDE forms allows the modelling of our FG
model equations. In the following, we suppress arguments of variables, unless their

inclusion aids clarity.

3.2 Solution of the Model Equations in FEMLAB

Adapting our model equations to the required FEMLAB input requires some manip-
ulation. We use the time-dependent, general-form partial-differential-equation mode,

which requires model equations in the form

dag?:vLVH-F:F, (3.1)
where d, is the mass coefficient, and u is the model variable. From (2.92) and (2.93),
it is clear that both uﬁl}, and u;?})q depend only on spatial derivatives of A and p.
Thus, we can explicitly substitute for ugl}{ and ug?}{ in terms of h and p. This leaves

us with 3 independent model variables, h, p, and q.

41
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An additional restriction on solving our model equations with FEMLAB is that
the I" and F terms in (3.1) can contain only the dependent and independent variables
and first partial derivatives. Thus, higher-order derivatives must be converted to

lower order as a system of equations. To this end, we define a helper variable ¢ as
c:=VHh, (3.2)

which we can write in the form of (3.1) as

Oc h
oat+vH[hy] —c. (3.3)

With the 4 model variables h, p, g, and ¢ we transform our model equations (2.90)—
(2.94) into a system of 4 equations of the form of (3.1).

We use this helper variable in writing equation (2.90) in an acceptable FEMLAB
form. Though already in the form of (3.1), we must convert the second-order deriva-
tives of h in ugl}l to first-order via c. In addition, we wish to do this conversion using
as few extra variables (and thus, equations) as possible. The size of the linear system
used in the solution of the model equations at each time step is directly related to
the number of model variables, which motivates using a minimal number of extra

variables. We can limit ourselves to just the one extra equation (3.3) by using the

following identity:

hyhg + hyh, | —h
~Vu - [hJ(Vgh,h)] =V - (hc+ ;r“ [ . Y D : (3.4)

We show this identity by expansion of the left- and right-hand sides of the equation.
On the left, we have

~Vi - [hJ(Vih,h)] = =V - (h { haalty + hayhs D

hyzhy + hyyhy

hhgghy + hhayhy
hhyhy + hhyyh,
= — (hhashy), — (hhyshy), + (hhayha), + (Rhyyhs),

:_VH.h[

= - ((hhxa:)xhy + hhmhyx) - ((hhy:v)yhy + hhyxhyy)
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+ (Phay)she + hhsyhes) + (Bhyy)she + hhyyhay,)

= —hyhaghy — hhagghy — Bhathyt — hyhyshy — hhyeyhy, — hhyghy,

Fhahayhs + hhyyehy + hhayhay + hyhyyhe + Bhygyhy + hhyyhe,. — (3.5)

Assuming sufficient continuity in s, we can interchange the order of the partial deriva-

tives, cancel terms, and simplify the left-hand side (3.5) to

—hghgghy — hhggehy — hyhyohy — hhygyhy + hohgyhy + hhgyohy + hyhyyhy + hhyy by
(3.6)
We now expand the right-hand side of (3.4):

V- (hc+ haha + hyhy { —hy ]) v, { —hhyyhy — hhyyh, — teh, — hyZhyhy

2 he |) —Rhgehy + hhyyhy + by, 4 oy

2

= —hghgahy — hhggehy — hhgphy, — hyohyyhy — Ry hy,

hohe + hyh
_hhyyh/y;z - hyh$h$x — h/yhyhy$ —_ fyyhyx
+hyhxmhm + hhxmyhx + hhl’xhyy —+ hyhyyh:p + hhyyyhx

hohg + hyh

Similarly, we can simplify the right-hand side (3.7) to

by — Bhyyahy — hyhahas — h—y hyhys + hhagyhy + hhyhyyy + hehohay + hahyhy,.
(3.8)
It is easily verified by inspection that (3.6) is equal to (3.8), and we have thus verified
(3.4).
We now expand (2.90):

?;Z +Vy- (h (_]A{ X Vup— J(VHh, h) + V{V%V}ﬂl)) = —ToW1,e;

ie.,

oh
5 TV

hp,
—VH : (V{hV%{VHh) = —ToWi,e-

— Vg (hJ(Vuh,h))
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Then, using (3.4) and (3.2), we get

h hp, + vihe, hyhy + hyh, | —h
i+VH- Py T 10E + hc—i——+ £ ! = —ToWe. (3.9)
ot —hp, + v1hey 2 hy 7

Now (2.90) is written in the form of (3.1) using only the model variables and first
partial derivatives in the I and F' terms. We can input this equation into FEMLAB.
Now expanding (2.91)

dq p
—+Va-{q| || = wmowse = Vip+ bV
we rewrite it in the form of (3.1) as

dq Dy

Dz
by

/
+ 75

] ) = utowa.e + U4V D (3.10)
To eliminate the high-order derivatives in the friction term

vV irp,
we rewrite in terms of ¢. First, we expand

Via = Vi(Vip+ph—Gy)
= Vyp+ uVyh. (3.11)

Thus,
N yp = vh (quq — ,uV%,h) : (3.12)

We can use (3.12) to rewrite (3.10) as

0 " :;:
Py 4y

+ Vot
Now (3.13) is also expressed in the form of (3.1), using only the model variables and

!
+ 7y

h
= utowae.  (3.13)
hy

first partial derivatives in the I' and F' terms.
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We now rewrite the expression ¢ = V4p + ph — 3'y in the form of (3.1):
Pz .
O+VH-[ ]:q—,uh+ﬁy. (3.14)

Combining (3.3), (3.9), (3.13), and (3.14), we have our model equations as a system
of 4 PDEs in the required form (3.1):

h hp, + Vic, hyh, + hyh —h
87 + Vg Py T 1€ + | he + Ralts T fylty Y = —ToWie, (3.15)
at _hpx + Vicy 2 h:c 7

a T / x / hI
afq +Vy- (q [ Py + 1 p ] — Uy [ a + v ]) = utowa., (3.16)
¢ Pz py Qy hy
Jq Dz ,
0— 4+ Vy - =q—ph+ Gy, (3.17)
ot Py
oc h,
0— . = c. 3.18
ot + Vg |: hy ] C ( )

3.3 Parameters

After implementing the model equations in the FEMLAB environment, we specify
parameter values for our model. Model parameters will fall into two categories: fixed
parameters, which remain constant throughout all experiments, and variable param-
eters, which vary in a range of values in our experiments.

We base our numerical experiments on the work of Tansley and Marshall [33],
wherein numerical experiments were conducted using a balanced geostrophic vorticity
model. Like the equations of the frontal geostrophic model, the geostrophic vorticity
equations are asymptotic reductions of the shallow-water equations [33]. Because we
are basing our experiments on [33], we derive our parameter values from there. The
geostrophic vorticity model is dimensional; i.e., it has not been non-dimensionalized.
Therefore, we non-dimensionalize the parameter values in [33] following Section 2.2.

However, in our determination of the non-dimensional horizontal turbulent viscosity
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Table 3.1: Dimensional model parameters from [33]

parameter symbol value
Longitudinal extent 3Ly 5760 km
Latitudinal extent Ly 1920 km
Upper-layer height scale Hy 1200 m
Total Depth H 4000 m
Coriolis parameter fo —1.3x107*s7!
Beta parameter Bo 1.5 x 107" m~1s7t
Surface wind-stress 7o 0.01 - 0.25 Nm™2
Reduced gravity q 0.02 ms—2
Reference density o 1035 kg m~3
Bottom linear friction coefficient Rs 1x1077s7!

friction parameters, v/; and vy, we cannot use the parameter values in [33], because
the geostrophic vorticity model does not include this type of friction. The geostrophic
vorticity model instead uses a higher-order friction called hyperviscosity. To obtain
a value for v and v, these parameter spaces were explored. From (2.66), we can

deduce that

and thus, we need only explore one parameter space. With v; = 0, the solver is
prematurely halted due to a failure in convergence of the modified Newton iteration
(see Section 4.6 for details of the solver), caused by the growth of small-scale noise.
A relatively large value of v/} can affect the balances established (see Chapter 4). We
choose a value of /| = 1.93e-3, which implies a value of v, = 3.86e-3. This choice cor-

responds to a dimensional horizontal turbulent viscosity of 400 m?s~*

, considerably
smaller than 2000 m?s~! used in [4] for a three-dimensional primitive equation model
of the ACC, but in the (fairly wide) range of 10> m?s™! to 10* m?s™! given in [17].
The chosen value for v] adequately smooths the solution via damping of high-order
derivatives, while leaving the established layer balances largely unaffected. Table 3.1

shows the dimensional model parameters used in [33].

We calculate the value of the eddy Rossby number using (2.57) along with the
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parameter values from Table 3.1:

Q’Hl
e— 97 _ 50, 3.19
(| fol Leady)? (3.19)

where L4q, = 60km is a characteristic eddy length scale. Geostrophy requires € < 1;
here € is small enough to imply geostrophy [12], though this value lies in the limits of
applicability.

There is some difference in implementation of the forcing term between the geostrophic

vorticity model and our model. The former uses a surface wind stress given by

. Y L L
s = — ) —5Sy< S 2
Ts = Tp COS ( T ) 5 SYUSS (3.20)

The Ekman pumping force used in our model implementation is given by the non-

dimensionalized curl of the wind stress [12]:

ToWe = Vi X <y<

Ts d T Tow . WY L

- - (), -5
|folpo  dy|folpo  polfolL L 2
Additionally, we model over the latitudinal domain y = [0, D], where D is the non-

N | B

dimensionalized analogue of L, and so we translate the forcing term into our domain,

obtaining X
ToT ( 7ry>
ToWe = cos| —= ), 0<y<D. 3.21
’ pol fol L D ( )
Then from (3.21) we can obtain the coefficient of the Ekman pumping force, 7y, as
7A'07T
T0 — .
pol fol L

From Table 3.1, 7y ranges from 0.01 — 0.25 Nm~2; the corresponding range for 7y is

3.961 x 107% — 9.905 x 107°. Next, we calculate ', the nondimensional analogue of

507 as

Bo
g = = 0.03.
| fol Le?
We also calculate p from (2.62) and (2.63):
H,/H
= 12 =121
€

Next, we calculate our non-dimensional frictional parameters. However, we deviate

somewhat from the values given in Table 3.1. The value of Ry in [33] is given for
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Table 3.2: Non-dimensional model parameters

Non-dimensional parameter symbol value
Longitudinal extent 3D 96
Latitudinal extent D 32
Beta parameter o4 0.03
Relative layer depth parameter W 1.21
Surface wind-stress To 3.961 x 1075 —9.905 x 107
Bottom linear friction coefficient Ty 0.04
Upper-layer horizontal turbulent viscosity 2 1.93 x 1073
Lower-layer horizontal turbulent viscosity Vo 3.86 x 1073

a typical channel with bottom topography. However, without the dissipative role of
bottom topography, artificially large transports occur that are an order of magnitude
larger; these transports do not interest us. In our simple channel without bottom to-
pography, we increase the amount of bottom friction to compensate for the artificially

smooth bottom. We thus use a dimensional bottom friction coefficient of
Ry =1.0x 107571,

We proceed to calculate the non-dimensional friction parameters:

R/ fol

€

= 0.04,

T =

2
_ AL g3 1072,
€ €

>
vy — An/L| fol

- = 3.86 x 1073,

%1

We also obtain our domain parameter, D = L/L.44, = 32. We summarize our non-

dimensional model parameters in Table 3.2.

3.4 Domain and Bottom Topography

We have thus far avoided any mention of the bottom topography of the ocean, except
for a short justification of altering the bottom linear friction coefficient. Indeed the
ocean bottom in the region of the ACC contains a widely varying topography that

has profound effects on the nature and course of the flow of the ACC. Fortunately,
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the inclusion of bottom topography in our model is fairly simple. Because we are
modelling in a two-dimensional regime, we do not alter our domain. Instead, we

rewrite (2.67) as

hy := 1 — pue*hy — ppehp(z,y),
where pp is a bottom topography parameter, and hg(z,y) is a function which de-
scribes the topography of the ocean bottom. When this additional term is carried

through the derivation, it results only in a modification of equation (2.94) defining g,

to
q=Vp+ ph+ ughp(z,y) — B'y.

We can easily modify the FEMLAB implementation of this equation accordingly by
replacing the right-hand side of (3.17) with

q— ph — pghg(z,y) + By.

For simulations without bottom topography, we set g = 0. The variations of domain
and topography provide the basis for our experiments with the model, following the

experiments of [33].

3.4.1 Simple Channel

Our simplest experiment involves a latitudinally re-entrant (i.e., periodic in x), flat-
bottom (i.e., hp(z,y) = 0) rectangular domain, Q = {[0,3D] x [0, D]} = {[0,96] x
[0,32]}. See Figure 3.1.a.

3.4.2 Simple Channel with Topographic Ridge

We modify our simple channel to include a simple ridge in the bottom topography.

We thus define
—17\?
hp(z,y) = exp (— <x 3 ) ) , (3.22)

i.e., hp(z,y) defines a ridge of maximal height 1, centered at © = 17, and independent
of y. We retain the domain of the simple channel run; i.e., Q = {[0,3D] x [0, D]} =
{[0,96] x [0,32]}. See Figure 3.1.b.
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Figure 3.1: a: Simple channel domain. b: Simple channel domain with contoured

topographic ridge. ¢. Channel with passage domain and contoured topographic ridge.

These experiments are based on [33].
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3.4.3 Channel with Passage and Topographic Ridge

We further modify our simple channel to include a passage as described in Section
2.3.2. We begin with the simple channel geometry, using a base domain of ) =
{[0,3D] x [0, D]} = {[0,96] x [0, 32]}. Following [33], two rectangular regions of width
6 centered at © = 17 are subtracted from this domain, leaving a restricted passage for
the flow centered approximately at D/4. However, the construction of the domain
using rectangles leads to sharp corners, or singularities [1] in the modelling domain.
Singularities can cause errors in meshing and in the solution; however they can be
avoided by filleting [1] any singularities in the modelling geometry. Filleting is a
process by which sharp corners are rounded by a given radius. In our geometry, the
passage created by subtracting the two rectangular domains is filleted at the corners,
rounding the land barriers. This is not unphysical; the use of rectangular sections to
construct our original domain is idealized. Indeed, rounded land barriers are more in
keeping with observed coastlines. The bottom topography in (3.22) is included. Taken
together, the topography and ridge geometry are a simplification of the topography
of the Drake Passage, as illustrated in Figure 3.2. See Figure 3.1.c. for the idealized

domain.

3.5 Implementation of Boundary Conditions, Initial Conditions

FEMLAB implements boundary conditions via the system of equations

=1 81)7;

Ri=0, i=1...n, (3.24)

aj, i=1...n, (3.23)

where n is the outward unit normal vector, I'; is the i*! component of T' from (3.1), G;
and R; are fields specified by the user, ¢ is a Lagrange multiplier [1], v; is the it model
variable, and n is the number of model variables. Additionally, the user specifies the
boundary as either Neumann or Dirichlet. The combination of this specification and
the system (3.23)—(3.24) allows for 3 boundary definition possibilities. First, when
specifying a boundary as Neumann, FEMLAB imposes
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Figure 3.2: The topography of the Drake Passage, from WORLDBATH:ETOPO5
U.S. Navy data. The bottom topography through the Drake Passage is much higher
than the surrounding ocean, which motivates our topographic ridge in the geometry
of Figure 3.1.c.

and (3.24) reduces to

-n-IKh=G;, i=1...n

Alternatively, by specifying a boundary as Dirichlet but having non-zero entries for
G; for all ¢ = 1...n, the Lagrange multipliers are chosen so as to render (3.23)
redundant; i.e., the left-hand side of (3.23) is made equal to the right-hand side, such
that nothing is imposed. This redundnacy leaves just the condition (3.24). Lastly,
one can impose a combination of Dirichlet and Neumann conditions on a boundary
by specifying the boundary as Dirichlet, but setting some (but not all) entries of
R; equal to 0. For illustration, we consider the boundary conditions for our model

variables on the y = 0 (or, equivalently, 'south’) boundary.
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Specifying the boundary as Dirichlet, both (3.23) and (3.24) apply. We set

0

q — phavgo — pehp + By
0
0

where R = [R; Ry Ry R4]", and hyy, 0 is given by (2.101). We also set

o]
0

G-= ,
0
_0_

where G = [G] G5 G3 G4]T. Additionally, define the vector of dependent variables
by Y = [v; v9 v3 4] = [h q p ¢|T. With these definitions, (3.23) gives the system of

equations
—n-I'y =0, (3.25)
—n -y = s, (3.26)
—n-I's =0, (3.27)
—n-I'y=0. (3.28)

Now (3.26) is solved for the Lagrange multiplier cs so as to render the equation
redundant. (3.27) and (3.28) are obtained by noting that all of the derivative terms
in the summation in (3.23) vanish, and we are left with two homogeneous Neumann

conditions. From (3.17) and (3.18), we deduce that

F3 = br )
L Py |
and _ _
D
1—\4 = 3
L hy _

which implies that (3.27) and (3.28) give the Neumann conditions

—n-Vgp =0,
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Table 3.3: Boundary Condition Implementation

boundary 1| Gy R; Resultant Boundary Condition
y=20, ‘south’ | 1] 0 0 —n-Vy(hu g)=0
2| 0 | q— phavgo — pshs + By q = phavgo + pphs — 'y
310 0 —n-Vgp=0
41 0 0 —n-Vgh=0
y=2D, ‘north’ | 1| 0 0 —n-Vy(hug)=0
2| 0 | q— phagp —puhe + 08y | q= phawgp + pshs — By
310 P p=20
410 0 —n-Vygh=0
—1n - VHh =0.

In this sense, boundaries can contain both Dirichlet and Neumann conditions. There
is a separate procedure for defining periodic boundaries; these are implemented as
extrusion coupling variables [1]. An extrusion coupling variable is defined by a non-
local expression in a source domain that is mapped to a destination domain while
maintaining some orientation. The implementation is straightforward in the FEM-
LAB GUI. We summarize our implementation of the boundary conditions discussed
in Section 2.3 in Table 3.3. We include both the simple channel domain and the pas-
sage domain in the same table because the boundary conditions are identical except
for the shape of the boundary.

Initial conditions must be specified for all model variables in FEMLAB. As we have
non-dimensionalized h(z,y,t) with respect to a characteristic upper-layer depth, we
set h(z,y,0) = 1. Next, we set p(x,y,0) = 0, which we note is consistent with
the boundary conditions imposed upon p(x,y,t). We set ¢(x,y,0) = 0 because all
spatial derivatives of h(z,y,0) are initially 0. Lastly, using (3.4) in (2.108), the initial
condition ¢(x,y,0) is determined in terms of p(x,y,0) and h(zx,y,0); i.e.,

q(z,y,0) = Vip(z,y,0) + ph(z,y,0) + ushp(z,y) — By = pu+ pphs(z,y) — B'y.



Chapter 4

Results

4.1 Introduction

Numerical simulations of our FEMLAB model were performed to correspond to the
various domain and bottom topography cases - namely, the simple channel, the simple
channel with bottom topography, the channel with a passage, and the channel with a
passage and bottom topography. In addition to examining the effects of domain and
topography, we explore a number of parameter spaces. The relatively short compu-
tational times needed to perform a full simulation allow this parameter investigation;
this investigation is not feasible with the more complex, higher-resolution models
(e.g., OCCAM [35]), or with models using the full shallow-water equations (e.g., HIM
[9]). In addition to the parameter investigations that are described here, a number of
parameter values in the model were obtained by systematically experimenting with
a range of values and choosing the optimal one. This process was primarily used in
determining the boundary parameters, specifically the width of the sponge layer, the
sponge layer linear friction coefficient, and the region width corresponding to bound-
ary method I (see Section 2.3.1). These values were chosen so as to have minimal
impact on the nature of the solution while still achieving the intended purpose of
obtaining well-posed and physical boundary conditions.

Included in this section is an investigation of the effects of wind forcing on the
characteristics of the flow. We study the effects (primarily on the transport of the
flow) of changing the strength of winds via the parameter 75 and also the effects of
varying the structure of the wind. In the latter, we study both balanced and unbal-
anced winds (having zero and non-zero integrals over the domain, respectively) that
have important effects on conserved quantities. Because our model represents wind
forcing by the resultant Ekman pumping forcing, variations in wind are manifested

in variations in the Ekman pumping forcing. We also study the effects of varying
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initial upper-layer depth. In using relatively shallow initial upper-layer depths, our
model allows for the study of outcroppings, that is, locations where the upper layer
vanishes, and the lower layer outcrops; i.e., the lower layer reaches the surface. This
is an advantage that our model has over other similar models of the ACC (e.g.,
quasi-geostrophic models (e.g., [37]) and semi-geostrophic models (e.g., [32])) that do
not permit outcroppings and consequently either use relatively deep upper layers, or
artificially maintain a thin upper layer.

In this section, we also discuss a number of numerical issues involved with the
model. These include an investigation of the effects on the model of varying the
timestepping parameters; this has implications in various physical quantities associ-
ated with the model. As well, we discuss the effects of mesh resolution.

In the model simulations, we are concerned with the momentum balance that oc-
curs between the wind forcing and dissipation via turbulence, as described in Chapter

2. This balance is discussed in the context of our model results.

4.2 Physical Quantities of the Model

The two-layer FG model is derived from the two-layer shallow-water equations. These
equations are based on two fundamental physical principles for fluid flow: the conser-
vation of mass and the conservation of momentum. These quantities are conserved
locally, however; in this section we concern ourselves with quantities that are globally
conserved. Naturally, these globally conserved quantities are related to the locally
conserved quantities.

The non-dimensional mass of the fluid in our model is given by

Mya = [[ s+ (1 = peh) pa dady, (4.1)

where () is the non-dimensional model domain. Because pi, po, i, and € are all con-

stants, M,,4 is a linear function of the quantity

M= / /Q h dady, (4.2)

and thus we use this quantity as representative of the mass of the fluid in our model.



Consider the time variation of M,

gt / /Q hdxdy,
// dxdy.

Using equation (2.90), we rewrite (4.3) as

which we can write as

// Tows cdxdy — // Vg - dxdy.

Writing
Vi - (hal'),) dad
/Q H ( LH) ray

J| (valy), dzdy + [[ (nof'y) dody.

from (4.4) as

(1)
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(4.4)

(4.5)

(4.6)

where u; 3; and vﬂ){ are the components of ug}{, we can further simplify by noting

that

y=D

//Q (huﬂ{)mdxdy =

hu1

T=X],

Il o

I
o

0

I
o

Y

by the periodicity of A.

Additionally, we exchange the order of integration on

/Q (hv%?ﬁ)y dzdy

from (4.6), which we can then write as

[ ) = [ o

=xy,

where we have used that

T=xR

dy
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due to the imposition of no-normal flow at the boundaries. Then we have that (4.5)

vanishes, and therefore, from (4.3) and (4.4),

//Q g}; drdy = //Q Tow cdxdy. (4.7)

If we apply an Ekman forcing function w, . to the upper layer such that

//Q wy cdxdy = 0, (4.8)

we have from (4.7) that

;//thxdy —0; (4.9)

i.e., that mass is invariant through time. We denote an Ekman forcing function

satisfying (4.8) as balanced. Accordingly, if

J[[ wiedady # 0.

we denote the Ekman forcing function as unbalanced.

There are a number of quantities that remain invariant under the evolution of
the two-layer shallow-water equations (2.68)—(2.71) in the absence of Ekman forcing,
(i.e., 70 = 0). Our model loses this exact conservation in two ways; first by neglecting
higher-order terms in the derivation of the FG model equations, and second, by using
Ekman forcing terms. Unforced models (e.g., [28], [29]) prescribe an initial gradient
in h(x,y,t) with sufficient magnitude such that turbulence develops, whereas the
implementation in this thesis prescribes an initially constant upper-layer depth, with
the gradient in h(z,y,t) growing through time as a result of the forcing.

The first such quantity we consider is the total energy. The total energy for the

unforced two-layer shallow-water equations is given by

1
Eow = 5 //Q (g/h% + hiuy g -ugg + houg g - 112,H) dxdy, (4.10)

where all variables are as in (2.68)—(2.71) [11]. The first term in (4.10) represents the
potential energy, while the second and third terms represent the kinetic energy in the
upper and lower layer, respectively. We replace u; g and ug i by their leading-order
terms, and according to the convention of Chapter 2, we let h(z,y,t) := hi(x,y,t).

We then approximate the lower-layer (non-dimensional) height using (2.67) as

h2(x>y7t) =1- [LEQh(Zlf,y,t) ~ L.
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After an appropriate scaling, the FG analogue of (4.10) becomes

//Q (P* +eh (B2 +1y) + € (02 +p}) ) dedy.

We then define the non-dimensional FG potential energy as

//Q h2dzdy (4.11)

and the non-dimensional kinetic energy as

/ /Q (eh (P2 + hy) + (2 + p}) ) dady. (4.12)

In the unforced FG model equations, the quantity in (4.11) is exactly conserved. In
our forced FG model implementation however, potential energy is not conserved; it
changes as a result of forcing and turbulence. Kinetic energy (4.12) is not conserved in
either the forced or unforced FG model, although it is a useful quantity for discussing
the evolution of the solution.

Next, we consider the lower-layer momentum. The two-layer zonal momentum

invariant for the two-layer unforced shallow-water equations is given by

Now = [ haus + (H = hyu = H (foy + ;mﬁ) ,

where all variables are as in (2.68)—(2.71) [11]. A similar process of leading-order
approximations and appropriate scaling yields the non-dimensional FG lower-layer

momentum
N://Q y V2, pdady (4.13)

(see [11] for details). In the unforced FG model equations, (4.13) is exactly conserved,;
the presence of forcing in our implementation destroys this conservation property.
In addition to facilitating a discussion of the evolution of the solution, the un-
conserved quantities associated with the model (potential energy, kinetic energy, mo-
mentum) provide an indication of the establishment of a quasi-steady state. These
quantities (and indeed, any physical measure based on the model variables) will os-

cillate about a mean constant value at the quasi-steady state.
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4.3 The Meridional Balance of the ACC

As discussed in Chapter 2, a process of meridional overturning occurs in the ACC
that is called the Deacon cell. This process of overturning maintains the isopycnal
slope and thus maintains the leading-order velocities. In this section, we examine this
balance more closely. Because the flow in which we are interested is turbulent, we
are concerned with mean quantities, both in time and in the z-direction, to quantify
the properties of the model. We introduce a number of definitions for evaluating our
system in a mean sense. We use the quantity h(x,y,t) for our definitions, although
they are applicable to all quantities in our model.

We define a zonal average of a quantity h(x,y,t) as

1 TR
h(ya t) - - / h(l’, Y, t)d.ﬁlﬁ,

TR — L Jar
where z;, and xg are the x domain limits. With this definition, we can decompose a

model variable, h, into its mean and zonally varying components as
h(x,y,t) = h(y,t) + W' (z,y,1).

It is clear that the zonal average of the non-averaged term is zero; i.e.,

1y, %) = 0. (4.14)

In addition to zonally averaging, we also average quantities in time. Because we
are investigating the turbulent quasi-steady state that occurs in the time evolution
of our system, averaging in time eliminates the local effects of the turbulence and
facilitates an analysis on a true steady state from our time-dependent quasi-steady
state. We do not alter our notation to denote the time-mean, but instead henceforth
assume that all quantities are time-averaged unless otherwise denoted. The time-
averages are calculated over a period in which the system has reached a quasi-steady
state. As a result of this time-averaging, we let

?;Zzo, g]t’zo, gfzo. (4.15)
We now return to our frontal geostrophic equations, (2.90)—(2.91), and formulate

the time-averaged, zonally averaged analogues. Applying (4.15) to (2.90)—(2.91) and
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dropping arguments gives
Vi - (hu%) — — Ty, (4.16)

and

Vi - <qu;‘3},) = pmolne — 15V P + VD (4.17)
Considering (4.16), we replace all variables by their (zonal) mean and varying com-

ponents; 1.e.,

VH.<OV+M)OHH+4ﬁ%)>:—4mm& (4.18)

Noting that x-derivatives vanish, we have that
0 1 I
o () (oD + o)) = o (119
(1)

where v; 7 is the y-component of uﬁ{ Recalling (4.14), we can expand and simplify
(4.19) to

ie.,
0 [~ 0
iy <h §}I) + 87y (h, (5 H) = _TOTM- (420)

From (4.20), we note that we have decomposed the zonally averaged total height flux

hvf}, into the zonally averaged mean height flux EUSI){ and the zonally averaged eddy
height fluz, h’vfl);; ie.,

hvf}{ = Evfl){ + h’vill);. (4.21)

Using (4.21) in (4.20) we express the upper-layer, time-averaged, zonally averaged

equation as

0 (/T o
ayow30::‘%wm- (4.22)

We also note that by integrating both sides of (4.22),
hily +C = —7on(y), (4.23)

where 71(y) is the wind stress applied to the upper layer and C' is a constant of

integration.
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Now moving to (4.17), we replace all variables by their (zonal) mean and varying

components and drop arguments as in (4.16); i.e.,

Vi ((q +q) (ué% - uéf’%é)) = proe — iV (B4 P) + sV (7). (4.24)

where we note that ws, is independent of x. Noting that z-derivatives of the time
averaged, zonally averaged variables vanish (see Section 4.4.1 for a discussion), we

rewrite (4.24) as

o (,_ 0 0)/ . 0? ot
(‘% ((q +q') (Uéz){ + Uéé)) = UToWz e — T’Qa—yg (p + p’) + z/éa—y4 (p + p’) . (4.25)
where vg?l){ is the y-component of ug?l)q. As above, with (4.14), we expand and simplify

(4.25) to

O (200 o _pr gy OO
ay qUQ,H q U?,H = HToWa2,e ) ay2p Vo ay4p7
ie.,
0 (0)> 8(/(0)/> L ,827 ,647
= = - R ~ 4.26
9 <qv2,H + oy \d'V201 | = 1T = 7 ay2p+ Vo iP (4.26)

Using the property (4.21) for ¢ and vé?l)q, we can simplify the left-hand side of (4.26)

to get the lower-layer, time-averaged, zonally averaged equation as

o (~o\_, . 0 0 A
aiy (qUQ,H) = UToW2.e — Tganyp + Vgaiyzlp. ( .27)
Integrating in y, we have the alternate equation
0 + C = promal, 3,8) — rh o + ug—gfa, (4.28)
’ dy ay?

where 75(z,y,t) is the zonal-mean wind stress in the lower layer, and C' is a constant
of integration.

Combining (4.22) with (4.27), we have the time-averaged, zonally averaged ana-
logues of the FG model equations.

In (4.22), m is the mass transport in the upper layer. At quasi-steady state,
time-averaged leading-order streamlines are essentially zonally invariant (see Section
4.4.1) and thus there is essentially no net meridional transport. Equation (4.22)

suggests that this zero net transport is achieved by the balancing of the Ekman
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pumping forcing by a mass transport in the upper layer. Similarly, (4.27) suggests that
the potential vorticity flux qvé?l)q is balanced by a combination of lower-layer friction
and Ekman forcing on the lower layer (via outcroppings). To more precisely analyze

the balance in the upper layer, we decompose upper-layer meridional transport as

hot'ty = “hp, + I (Vih, h) + "y,

= Tgeostrophic + Tmmlinear + Tfrictiony (429)

where we have expanded hv&){ using the y-component of (2.92). The lower-layer
terms are already suitably decomposed into potential vorticity flux, lower-layer Ek-

man pumping, and friction terms.

4.4 Simple Channel

In equation (4.21), we separated h”SI){ into mean and eddy components. However,

the time-averaged zonally averaged meridional velocity vgll){ is typically very small in

the simple channel; i.e.,

D~ bl (4.30)

Thus, Tyeostrophic T€Presents the second-order geostrophic eddy height fluz, noting that
the flux associated with the leading-order geostrophic velocity is 0 (see Section 2.2).

By a similar argument, we define q’vé% R qvé’ol){ to be the eddy potential vorticity

fluz.

The simulations that were performed in the simple channel geometry are sum-

marized in Table 4.1. In this table, we assign a name to each simulation performed
for easy referencing (i.e., (SC-1)—-(SC-16)). Each simulation is described by 4 aspects
of the model that is varied. The second column lists the initial upper-layer height
used, and the third column list the type of Ekman pumping force used. The term
‘balanced’ is used to refer to an Ekman pumping force we(x,y,t) satisfying (4.8). For
the simple channel,

Q = {[0,96] x [0,32]},
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Table 4.1: Simple Channel Simulations

simulation | h(z,y,0) | forcing type To bottom topography
SC-1 1.00 balanced 1.981e-5 no
SC-2 1.00 balanced 3.961e-5 no
SC-3 1.00 balanced 5.942e-5 no
SC-4 1.00 balanced 7.922e-5 no
SC-5 0.25 balanced 1.981e-5 no
SC-6 0.25 balanced | 3.961e-5 no
SC-7 0.25 balanced 5.942¢-5 no
SC-8 0.25 balanced | 7.922e-5 no
SC-9 0.25 unbalanced | 1.981e-5 no
SC-10 0.25 unbalanced | 3.961e-5 no
SC-11 0.25 unbalanced | 5.942e-5 no
SC-12 0.25 unbalanced | 7.922e-5 no
SC-13 1 balanced | 1.981e-5 yes
SC-14 1 balanced | 3.961e-5 yes
SC-15 1 balanced | 5.942e-5 yes
SC-16 1 balanced | 7.922e-5 yes

and the Ekman pumping force as given in (3.21) is balanced in this domain. For an

unbalanced wind, we use an alternate forcing function

T8 —y
we(Y) = X(y<8) + X(y>8) COS <(24)> : (4.31)

where y is the characteristic function over the given domain. Because

s (E-y)\
/:L"/y:8 cos( o )dxdy—O,

it is clear that

//Q we(y)dzxdy > 0, (4.32)

where w,(y) is as in (4.31). Noting the negative sign on the right-hand side of (2.90),
(4.32) implies a net upward Ekman pumping force, which destroys upper-layer mass.
We discuss the implications in Section 4.4.3. The fourth column lists the Ekman
pumping strength and the last column indicates whether a topographic ridge (yes) or

a flat bottom (no) has been used in the simulation.
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4.4.1 SC-1 - SC-4

We first consider the simulations SC-1 to SC-4. This is a basic set of simulations in
which the lower layer will not outcrop due to the sufficiently large initial upper-layer
depth and balanced Ekman forcing.

In the presence of a balanced wind, we showed in Section 4.2 that mass should be
conserved; i.e., (4.9) holds. The model clearly displays conservation of M (4.2), and
thus conservation of total mass. For SC-4, relative error in the conservation of M
over the entire integration period is on the order of le-7, in the realm of numerical
error as discussed in Section 2.3.1.

Figure 4.2 shows the evolution of FG potential energy (4.11) for SC-4. As the front
builds (see Figure 4.1.a), potential energy increases. At the onset of turbulence (see
Figure 4.1.b), the potential energy decreases due to the release of potential energy
stored in the front into kinetic energy (4.12) via eddy formation. We see a rapid
corresponding increase in kinetic energy at the onset of turbulence; see Figure 4.3.
At the establishment of a quasi-steady state (see Figure 4.1.c), both potential energy
and kinetic energy oscillate about a mean constant value. Figure 4.4 shows lower-
layer FG momentum (4.13), which also indicates a quasi-steady state by oscillating
about a mean constant value. Thus, while the conservation of mass lends credence
to the validity of the numerical solution, the oscillation about a mean of the energies
and momentum support the notion that a quasi-steady state has been established.

The leading-order, geostrophic flow in the upper and lower layers respectively is
given by (2.75) and (2.80). From these equations, we can deduce that the upper
and lower-layer velocities are oriented perpendicular to the gradient of h(x,y,t) and
p(z,y,t) respectively. Therefore, we can easily construct streamlines of the leading-
order flow in the upper layer via contours of h(z,y,t), and in the lower layer via
contours of p(x,y,t). In the absence of any topography or land barriers as in the
simple channel case, the time-mean flow should be invariant in x. The time-averaged
leading-order streamlines in both layers are shown in Figure 4.5. These streamlines
imply that since the leading-order flow is primary directed zonally, time-averaged
meridional velocities are very small.

Figure 4.6 shows the zonally averaged geostrophic leading-order velocity in each
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Figure 4.1: a): A snapshot in time of h(x,y,t) before turbulence, t = 4180, b): a
snapshot in time of h(x, y,t) at the initial onset of turbulence, t = 5190, ¢): a snapshot
in time of h(z,y,t) at quasi-steady state, t = 12360. (SC-4)
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Figure 4.2: Time series of nondimensional FG potential energy (4.11). (SC-4)
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Figure 4.3: Time series of nondimensional FG kinetic energy (4.12). (SC-4)
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Non-dimensional lower-layer momentum vs. time
10 T T T T T

momentum
a0 | .

time (non-dimensional)

Figure 4.4: Time series of nondimensional FG lower-layer momentum N (4.13). (SC-
4)
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Figure 4.5: Streamlines of geostrophic flow in each layer for a strong wind, 79 =7.922e-
5. (SC-4)
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Upper-layer zonally averaged velocity, tau0=7.922e-5
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Figure 4.6: Upper- and lower-layer time-averaged, zonally averaged velocity for 7y =
1.981e-5 — 7.922e-5. As 7y increases, the magnitude of velocity in each layer increases.
Note that these are nondimensional velocity values. (SC-1 — SC-4)

layer for 4 Ekman pumping strengths. In the upper layer, the flow is organized into
zonal jets, in keeping with the results of [33]. As the Ekman pumping strength in-
creases, the velocity required to balance the forcing also must increase to achieve a
quasi-steady state. Thus, the zonal velocity increases in magnitude through succes-
sively larger values of 7y, as indicated in Figure 4.6. For 15 = 5.942e-5, results from
the geostrophic vorticity model [33] show a single jet predominating; this is not the
case for this FG model implementation nor the HIM model [12]. The single jet is
caused by low values of lower-layer Ekman friction, allowing an unphysically large

transport as discussed in Section 3.3.

We now examine the upper-layer zonally averaged mass balance in the context

of our model results. As discussed in Section 4.3, we can analyze the upper-layer
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balance via either (4.22) or (4.23). However, numerical results for (4.22) require a
fair amount of smoothing to clearly observe the signals present in the balance due
to the non-smooth high-order y-derivatives and relatively small signals in the time-
mean. Thus, we mainly show results using (4.23), and show results for (4.22) only

where necessary.

Figures 4.7 and 4.8 show upper-layer mass balances using (4.23) for 2 values of
7o corresponding to SC-1 and SC-4. Because we must have an essentially zero net
meriodional transport of h(z,y,t) at a quasi-steady state, we must have a balance of
the transport terms, and thus, the constant of integration C' in (4.23) is 0. This is
evident in Figures 4.7 and 4.8. We can deduce from these plots that the leading-order
balance occurs between the transport driven by the geostrophic eddy height flux,
Tyeostrophic, and the transport driven by the Ekman pumping force, defined as Triman
(supporting the use of a geostrophic model). Although the nonlinear component
of transport, T},oniinear, i small, these terms are important for the development of
eddies, and hence they are not negligible [15]. The nonlinear component also plays a
role in the acceleration of zonal jet as evidenced by the correspondence between the
position of the upper-layer jets in Figure 4.6 and the nonlinear component in Figure
4.8. Additionally, although the frictional component of transport, 7't iction, is small,
the presence of friction is important for the stability and smoothness of solutions,
as well as the feasibility of our boundary conditions. The composition of the upper-
layer mass balance remains similar as 7y increases. However, the leading-order balance
terms, Tyeostrophic a0d TEkmaen increase in magnitude with 7 relative to the frictional
and nonlinear terms. Thus, as 7y increases, the leading-order balance becomes even

more dominant.

We also include a plot indicating the same balance as shown in Figure 4.8, but
instead using Equation (4.22). The data in Figure 4.8 are rather noisy, and this effect
is magnified upon calculating the derivative. As a result, a 5-point moving aver-
age smoothing calculation was performed to reduce the noise. This moving average

computes a point z; using an average of the 5 previous points; i.e.,

1 5
T, = — Ti—j.
5].21 !
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Figure 4.7: Time-averaged zonal-mean balance in upper layer for a weak wind,
7o =1.981e-5, from (4.23). Transport terms are defined by (4.29). (SC-1)

Figure 4.8: Time-averaged zonal-mean balance
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72
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Figure 4.9: Time-averaged zonal-mean balance in upper layer, 79 = 7.922e-5, from
(4.22). (SC-4)

Nevertheless, the balance between components of (4.22) shown in Figure 4.9 is clear.
The presence of this balance is conclusive evidence that a quasi-steady state has been

reached in the upper layer.

We now consider the lower-layer zonally averaged balances using the model results
from SC-1 — SC-4. We note that because n- Vgp and n- Vgg are not necessarily
zero at the boundary y = 32 (where instead we have applied a Dirichlet condition;
see (2.104)), the constant of integration in (4.28) is nonzero. However, it remains
constant in y, and thus (4.27) still holds. Figures 4.10 and 4.11 show the balance
established in the lower layer using (4.28) for 2 values of 7. Additionally, we show
this balance via (4.27) for 7o = 7.922e-5 in Figure 4.12. As in the upper layer, the
data are smoothed using a moving-average calculation due to the noisy derivative
terms. These figures clearly show that the leading-order balance is between the eddy
potential vorticity flux —¢’p’,, and linear friction. As in the upper layer, the balances
remain largely similar as 7y increases save for an increase in magnitude of potential

vorticity flux and linear friction terms. To further understand the lower-layer balance,
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Figure 4.10: Time-averaged zonal-mean balance in lower layer, 75 = 1.981e-5, from
(4.28). (SC-1)

we decompose ¢'pl, by expanding q(z,y,t) from (2.94). Figure 4.13 plots the zonally
averaged decomposition of ¢'pl, into ph'pl,, By'pl, and V4 p'p,,. From this plot, it is
evident that ¢/p/, is essentially determined by ph/p/,, which is an eddy mass flux.

We now can formulate a balance mechanism based on the simulation results SC-1
— SC-4. Momentum is imparted at the surface by a wind stress, which is manifested
by a resultant Ekman pumping force in our model. This momentum is balanced in
the upper layer by an eddy height flux. In the lower layer, the eddy height flux is
balanced by the Ekman friction at the bottom. Thus the eddy height flux acts to
transfer momentum from the upper layer to the lower layer, where it is eventually

dissipated at the bottom. We note that the eddy height flux can be interpreted as

the eddy interfacial formstress, as discussed in Section 2.1 [12].

4.4.2 SC-5 - SC-8

The simulations SC-5 — SC-8 use a relatively shallow initial upper-layer depth with a

balanced Ekman pumping force. Then, as the front develops, outcropping will occur;
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Figure 4.11: Time-averaged zonal-mean balance in lower layer, 75 = 7.922e-5, from
(4.28). (SC-4)
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Figure 4.12: Time-averaged zonal-mean balance in lower layer, 79 = 7.922e-5, from

(4.27). (SC-4)
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5 X 10’4 Decomposition of Potential Vorticity Flux
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Figure 4.13: Decomposition of —¢'p/,. (SC-4)

that is, a region of h(x,y,t) = 0 will form, such that the lower layer intersects the
surface. Recall the definition of the upper Ekman pumping force wy ((z,y,t) defined
in (2.36):

we(x,y,t) if h(z,y,t) >0,

W1i,e $7y7t =
el 9 ) { 0 if h(z,y,t) =0,

where we(x, y, t) is the Ekman pumping velocity. Thus, on the region where h(x,y,t) =
0, there is no forcing applied to the upper layer. Then the Ekman pumping force is
no longer balanced, and mass is not conserved. Yet for a quasi-steady state to ex-
ist, the mass must be constant, as otherwise the frontal profile of h(z,y,t) would be
changing. The system still reaches a steady state, however. By advection of h(z,y,t),
the outcropping region (i.e., where h(x,y,t) = 0) becomes smaller in area until the
winds are once again balanced. In the case of a balanced wind, this can only oc-
cur when the outcropping region vanishes, at which point the system can achieve a
quasi-steady state. Figure 4.14 shows a time series of mass for SC-8. This process of
establishing a steady state via the vanishing of an outcropping is time consuming —

Figure 4.14 was run to 90 000 units, or 3 times the normal time-integration period.
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Figure 4.14: Time series of nondimensional upper-layer mass M. The mass remains
constant until an outcropping occurs, at which time the unbalanced winds create
a mass influx. This outcropping slowly disappears, at which point mass becomes
conserved again. (SC-8)

Data from simulations SC-5 — SC-7 are not shown because the weaker winds require
much longer integration times to achieve a steady state, and these data are of no

particular interest.

For SC-8, we plot the upper- and lower-layer balances in Figures 4.15 and 4.16 to
validate the existence of a quasi-steady state. Because the outcropping region disap-

pears at quasi-steady state, the balances are qualitatively the same as for simulations
SC-1 — SC-4.

Figure 4.17 shows a time series of upper-layer mass for SC-8 with a variety of
initial values for h(x,y,t). These results suggest that for simulations that exhibit
outcropping, the upper-layer depth at quasi-steady state is independent of the initial
upper-layer depth. Outcropping will occur when the initial value of h(z,y,t) is less
than the mean value of h(x,y,t) at quasi-steady state. From Figure 4.17 we note that

the upper-layer mass at quasi-steady state for SC-8 is given by approximately 1507.5.



15 x107% Upper-layer balance, tau0=7.922e-5
E T T T T
- (d/dY)Tgens(rophic
- (d/dY)Tfriction
- (d/dY)Tnonlinear
1+ - (d/dY)TEkman
— (d/dy)Ttotal

05

-0.5

Figure 4.15: Time-averaged zonal-mean balance (4.22) in upper layer. (SC-8)
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Figure 4.16: Time-averaged zonal-mean balance (4.27) in lower layer. (SC-8)
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Non-dimensional upper-layer mass vs. time
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Figure 4.17: Time series of upper-layer mass M for 3 different initial values for
h(x,y,t). In each run, an upper-layer mass of approximately 1507.5 prevails at the
quasi-steady state. (SC-8)

Thus, we find a mean value of h(z,y,t) at quasi-steady state of 1507.5/(32 - 96) =
0.4907.

4.4.3 SC-9 — SC-12

Runs SC-5 — SC-8 are characterized by an outcropping of the lower layer that vanishes
at quasi-steady state. However, it is possible to have an outcropping at the quasi-
steady state. If an unbalanced Ekman forcing term is used, the system evolves to
form an outcropping. This outcropping increases in area until the Ekman forcing
term is balanced on the remaining upper layer. Thus, the effect of the lower-layer
outcropping is to redefine the upper-layer domain such that the forcing is balanced

on this new domain, and thus a quasi-steady state solution can be established.

Runs SC-9 — SC-12 use an unbalanced Ekman forcing function as defined in (4.31).

Here, we have defined w,(y) such that on x(,~s), we(y) is balanced. Then we expect
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Figure 4.18: Time-averaged zonal-mean profile of h, the upper-layer depth, from SC-
12. The y-axis has been negated to intuitively display h as a depth. The outcropping
(where h=0) covers the predicted region y ~ [0, 8.

the outcropping to cover the area {[0,96] x [0,8]}. Figure 4.18 shows the zonal-
mean upper layer depth from SC-12. Clearly, the outcropping interface occurs in the
predicted region of y = 8. Notice in Figure 4.18 that our FEMLAB implementation
smooths discontinuities in the solution of h(z,y,t), and thus we get small, but non-
physical negative values near the outcropping interface.

Associated balances for the runs are similar (except for the specific values of
the magnitudes) for the various values of 7y, and thus, we show upper- and lower-
layer balances for just one value of 7y in Figures 4.19 and 4.20. We proceed with
this convention of showing balances for only one value of 7y for the remainder of the
chapter. In the region of lower-layer outcropping, the Ekman pumping force is applied
to the lower layer via ws(x,y,t) (see 2.43)). As a result, the prevailing lower-layer
balance on the outcropping region is between the Ekman pumping force and the linear
friction dissipation, as shown in Figure 4.20. There is some error in the balance in
the region of the outcropping interface. This is likely due to small negative values of

h(z,y,t) that cannot be forced to 0 after each timestep. Negative values of h(z,y,t)
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Figure 4.19: Nondimensional zonal-mean upper-layer balance (4.22). (SC-12)

cause significant problems in the finite-difference FG implementation [29], requiring a
modified timestepping scheme that eliminates negative values at each time step [12].
However, the presence of negative values does not affect the stability of the finite
element implementation in this thesis, although unphysical values of h(x,y,t) < 0
are present.

The final state of h(z,y,t) in these simulations is independent of the initial value,
h(z,y,0). Figure 4.21 shows upper-layer mass for a variety of initial values in sim-
ulation SC-12. For each initial value, the upper-layer mass converges to a value of

approximately 836.3.

4.4.4 SC-13 — SC-16

Simulations SC-13 — SC-16 are characterized by the inclusion of a topographic ridge
defined by (3.22). The inclusion of bottom topography significantly affects the flow
profile in the simulations. Figure 4.22 shows the time-averaged flow in the upper
and lower layers for a weak wind, 75 = 1.981e-5. The flow in the upper layer is

deflected northward along the topographic ridge. The zonal transport is significantly
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Figure 4.20: Nondimensional zonal-mean lower-layer balance (4.27). (SC-12)
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Figure 4.21: Time series of upper-layer mass for varying values of h(z,y,0). Also
shown in the dashed line is the mass value to which the system converges. (SC-12)
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Time-averaged streamlines of h, tau0=1.981e-5
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Figure 4.22: Time-averaged streamlines in the upper and lower layers. (SC-13)

reduced, and recirculating gyres appear on both sides of the ridge. In the lower
layer, the topographic ridge effectively eliminates any zonal transport, although an
unrealistically strong flow appears above the topographic ridge, which is a known
problem in a number of other idealized models [12]. Figure 4.23 shows the time-
averaged flow in the upper and lower layers for a strong wind, 7y = 7.922e-5. The
profile is similar to Figure 4.22, although in the upper layer, the recirculating gyres

are smaller, allowing a larger zonal transport.

In contrast to the simple channel simulations with no bottom topography, simula-
tions with bottom topography do not have a zonally invariant mean flow. Therefore,
there is the possibility of meridional mean mass fluxes and eddy mass fluxes, as in
(4.21). However, in Figures 4.22 and 4.23, there is a northward flow west of the
topography, and an southward flow to the east of the topography. Upon zonally av-
eraging meridional flow, these two flows essentially cancel out, leaving a very small

net meridional mean flow. The decomposition of hp, is shown in Figure 4.24.

Figures 4.25 shows the upper-layer balance for a strong wind, 79 =7.922e-5. As

in the simple channel simulations with no topography, the leading-order upper-layer
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Time-averaged streamlines of h, tau0=7.922e-5
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Figure 4.23: Time-averaged streamlines in the upper and lower layers. (SC-16)
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Figure 4.24: Decomposition of hp, into mean (hp;) and eddy (h/p,) components.
(SC-16)
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Figure 4.25: Time-averaged zonal-mean balance (4.22) in upper layer. (SC-16)

balance is established between the eddy-flux transport and the Ekman transport. In
the lower layer, as in simulations SC-1 — SC-4 the potential vorticity flux is balanced
by bottom friction. However, the implication of this balance is different due to the
inclusion of bottom topography. In these simulations, ¢(z,y,t) includes the additional
term pphy(z,y) representing bottom topography. With this additional term, ¢'p/, is
no longer essentially determined just by uh/p,, but instead it is the addition of this
term and pphp(z,y)p, that essentially determines ¢’p,. The lower-layer balance is
shown in Figure 4.26. In this figure, potential vorticity flux is decomposed into ph'p,
and pphp(z,y)p..

From Figure 4.26, we deduce an altered balance mechanism in the presence of
bottom topography. As is the case with no topography, momentum imparted at
the surface by a wind stress is balanced in the upper layer by an eddy height flux
(i.e., interfacial formstress) that transfers momentum to the lower layer. However, in
the lower layer, now a combination of bottom friction and bottom topography (i.e.,
bottom formstress) act in concert to dissipate the momentum and achieve a balanced

state. As bottom friction is reduced, the bottom formstress dominates the balance.
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Figure 4.26: Time-averaged zonal-mean balance (4.27) in lower layer. PV total flux
has been smoothed by a 5-point moving average. (SC-16)

We now compare the upper-layer depth and lower-layer pressure profiles for the
three simple channel simulation types. Figure 4.27 shows profiles of h(z,y,t) for SC-
4, SC-8, and SC-12. To display slope differences, profiles for SC-8 and SC-12 have
been translated to agree with SC-4 at y = 0. Figure 4.27 suggests that the occurrence
of outcropping in SC-8, although transient, enables a steeper gradient in h(z,y,t) at
quasi-steady state, implying a stronger upper-layer flow. For SC-12, in which the
outcropping prevails at quasi-steady state, the gradient in h(z,y,t) is very similar to
that of SC-8, except on the region of outcropping, where the gradient is essentially
flat. The total change in h(z,y,t) in SC-4 and SC-12 is almost equal, as the stronger
gradient in SC-12 is counterbalanced by the outcropping region of essentially zero

slope.

Figure 4.28 shows profiles of p(z,y,t) for SC-4, SC-8, and SC-12. The gradient is
smallest with no outcropping (SC-4); it is considerably stronger for the outcropping
simulations (SC-8 and SC-12). There is a tailing off effect in p(z,y,t) for SC-12 due

to the outcropping region.
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Figure 4.27: Upper-layer depth profiles, h(x,y,t). (SC-4, SC-8, SC-12)
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Table 4.2: Channel with Passage Runs

run | h(x,y,0) | forcing type To bottom topography
DP-1 1.00 balanced 1.981e-5 no
DP-2 1.00 balanced | 3.961e-5 no
DP-3 1.00 balanced | 5.942¢-5 no
DP-4 1.00 balanced | 7.922e-5 no
DP-5 1.00 balanced | 1.981e-5 yes
DP-6 1.00 balanced | 3.961e-5 yes
DP-7 1.00 balanced | 5.942e-5 yes
DP-8 1.00 balanced | 7.922¢-5 yes

4.5 Channel with Passage

The runs that were performed in the channel with passage geometry are summarized
in Table 4.2. In this table, ‘topography’ indicates a value of up defined by (3.22),
while ‘no topography’ indicates up = 0. ‘Balanced’ and ‘unbalanced’ forcing types

are as in Table 4.1.

4.5.1 DP-1 - DP-4

In simulations DP-1 — DP-4, we consider simulations in the passage domain as de-
scribed in Section 3.4.3, with no bottom topography. The presence of the land barriers
in this geometry restricts the circumpolar flow to the gap between the land barriers.
Figure 4.29 shows the time-averaged streamlines for both layers in the presence of
a weak Ekman forcing (79 = 1.981e-5) while Figure 4.30 shows the time-averaged
streamlines for a strong Ekman forcing (79 = 7.922e-5). In both cases, part of the
flow enters into a recirculating gyre in the northern part of the domain, while the
remaining flow passes through the passage, with a northward deflection after exiting
the passage. In the lower layer, flow is similar to the upper-layer flow in both wind
cases, admitting a combination of recirculating and circumpolar flow. Whereas the
upper-layer velocity is not affected greatly by varying the Ekman pumping strength,
the lower-layer velocity increases almost linearly with the Ekman pumping strength,
as shown in Figure 4.31. As in simulations SC-13 — SC-16, mean meridional flow
is possible. However, a similar cancelling of meridional flows is seen after zonally

averaging, as in simulations SC-13 — SC-16, leading to a very small mean meridional
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Time-averaged streamlines of h, tauo=1 .981e-5
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Figure 4.29: Time-averaged streamlines in the upper and lower layer. (DP-1)

eddy height flux (see Figure 4.32).

The balance in the upper layer for DP-4 is shown in Figure 4.33. Whereas the
simple channel has a clear leading-order balance between eddy flux and Ekman forc-
ing, the Ekman forcing in the upper layer for DP-4 is balanced by a combination of
eddy flux and upper-layer friction. Friction becomes important in this balance as a
result of the highly viscous region along the land barriers. This viscous boundary
region allows a meridional transport via a mean flux along the peninsula [12]. The
contribution of friction to the upper-layer momentum balance can be likened to the
effect of a horizontal friction (i.e., the effect of the current rubbing against continents).
See [20] for a detailed explanation of this effect.

The balance in the lower layer for DP-4 is shown in Figure 4.34. A clear leading-

order balance is established between the potential vorticity flux and linear friction.

4.5.2 DP-5 - DP-8

We consider the runs DP-5 — DP-8 that are characterized by the passage domain

as described in Section 3.4.3, and also include a topographic ridge at the passage
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Time-averaged streamlines of h, tauo=7.922e—5
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Figure 4.30: Time-averaged streamlines in the upper and lower layer. (DP-4)

as in Figure 3.1.c. Figure 4.35 shows the time-averaged streamlines for both layers
in the presence of a weak Ekman forcing (1 = 1.981e-5), while Figure 4.36 shows
the time-averaged streamlines for a strong Ekman forcing (19 = 7.922e-5). In both
cases, the upper-layer velocity is deflected northward as the flow moves through the
passage. As the wind increases, this deflection becomes somewhat more pronounced.
In both cases, the presence of the land barriers creates closed contours indicating a
recirculation of flow that reduces the overall zonal transport. In the lower layer, the
presence of the topographic ridge effectively shuts off lower-layer transport, blocking

all circumpolar contours and instead creating two recirculating gyres as found in [33].

Figure 4.37 shows the zonal-mean geostrophic velocity in each layer for 4 Ekman
pumping strengths. As in simulations DP-1 — DP-4, there is a weak dependence on 7
in the upper layer velocity, while increasing 7y almost linearly increases the strength
of the gyre flow in the lower layer.

Upper- and lower-layer balances are shown in Figures 4.38 and 4.39 for DP-§,

where the potential vorticity flux has been decomposed as in Section 4.4.4 and 4.5.1.

The upper-layer balance is very similar to the DP-4 simulation, exhibiting friction
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Figure 4.31: Upper- and lower-layer time-averaged zonally averaged velocity for
To =1.981e-5 — 7.922e-5. There is a stronger dependence on 7 for the lower-layer
velocity as compared to the upper-layer velocity. (DP-1 — DP-4)
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Figure 4.33: Nondimensional zonal-mean upper-layer balance (4.22). (DP-4)
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Figure 4.34: Nondimensional zonal-mean lower-layer balance (4.27). (DP-4)

and potential vorticity flux balancing the Ekman forcing. The lower-layer balance is
less clear. Although noisy, there is a balance established through the passage, and
another balance established in the meridional region of the land barrier, although
there is a slight upward drift in y. By decomposing potential vorticity flux, we can
deduce that the bottom formstress is predictably most prevalent in the gap between

the land barriers, which is the only region that the flow interacts with the topography.

4.6 Transport

There is some debate concerning what determines the circumpolar transport of the
ACC (see [33] for a review of theories). A number of numerical studies have been
performed, including [33], in which the authors conclude that the zonal transport
is determined by a ‘complex interplay between wind forcing, eddy fluxes, and topo-
graphic effects.” In this section, we study the relationship between transport and
Ekman pumping magnitude for the various experiments that were conducted with
our implementation of the FG model. Because we wish to compare our numerical

results with those of other models, we dimensionalize our quantities in this section
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Figure 4.35: Time-averaged streamlines in the upper and lower layer
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Figure 4.37: Upper- and lower-layer time-averaged zonally averaged velocity for
To =1.981e-5 — 7.922e-5. (DP-5 — DP-8)
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by multiplying variables by their scale factors from Section 2.2.
We first define a number of terms to distinguish components of zonal transport.

A (dimensional) barotropic transport is defined by

Tyarotrope = | Lir HUzuyd 4.33
barotropic 0 H 2Ug gAY, ( : )

where ug(’}, is the z-component of ug?l)q, U, is the lower-layer velocity scale factor, Ly

is the dimensional domain width, and H is the total depth. The term ‘barotropic’
refers to a flow in which motions are uniform over the depth of the ocean.

A (dimensional) baroclinic transport is defined by
Tyaroctine = [ Lir i (0% — Uyay ) d 4.34
baroclinic 0 Hil1 1 UILH QUQ,H Y, ( . )

where H; is the upper-layer depth scale factor, U; the characteristic upper-layer

velocity scale factor, uﬂ{ is the z-component of ug?}{, and all other quantities are

as in (4.33). The term ‘baroclinic’ refers to the depth-dependent flows as a result
of sloped isopycnals. There are alternative definitions for baroclinic and barotropic

transport for a two-layer model (see, e.g., [11]), but we choose the definitions used in

[33]. Units of transport are m3s~!

Sv = 105 m3s~ 1.

; we express quantities in Sverdrups (Sv), where 1

We also define upper-layer transport as

T — (" Ly U
upper—layer 0 HH1aiv1ty g Y,

and lower-layer transport as

T 7 L(H = Hib)UpuDhd
lower—layer 0 H( 1 1) 2u2,H Y,

where all quantities are as in (4.33) and (4.34).

Figure 4.40 shows upper-layer transport for a range of Ekman pumping values.
The graphs include data for the simple channel, the simple channel with topography,
the channel with passage, and the passage and topography simulations. As we ex-
pect, upper-layer transport is largest in the simple channel, as there is no land or
topographic effects to reduce the overall zonal flow via recirculating gyre flows and

horizontal frictional dissipation. There is little difference in upper-layer transport for
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Table 4.3: Scaling Exponents for Baroclinic Transport vs. 7

simulation exponent
simple channel 0.21
channel with passage 0.31
channel with passage and topography 0.39
simple channel with topography 1.06

the cases of the passage and the passage with topography. We can reasonably con-
clude that in this case the land barriers are the primary determinant in the upper-layer
transport, as the northward deflection seen in the simple channel with topography is
blocked by the land barriers and thus there is little effect by the topographic ridge in
the presence of land barriers.

The lower-layer transport is shown in Figure 4.41 for a range of 7y values for
the 4 cases as listed above. The transport increases linearly with 75 for the two
cases (the simple channel and the passage) that allow a lower-layer circumpolar flow.
In the two cases with the topographic ridge (passage with topography, and simple
channel with topography) the lower-layer circumpolar flow is blocked by the ridge,
and circumpolar flow is 0. As in the upper layer, the total lower-layer transport is
reduced by the presence of land barriers in the passage case, due to the recirculating
gyre flows that occur as a result of the land barriers, and that do not contribute to
circumpolar transport. Lower-layer transport is essentially the same as barotropic
transport, except for a different scale factor.

Figure 4.42 shows baroclinic transport. Because this transport is a measure of the
transport driven by the density gradient, it provides a good indicator of transport for
our model. Johnson and Bryden [10] deduced that the baroclinic transport should
scale with the square root of wind stress magnitude, whereas Visbeck et. al. [34]
predict that the baroclinic transport scales with the cube root of wind stress. Table
4.3 shows the scaling exponent with wind-stress for baroclinic transport for each
case. Values were obtained by the slope of the line of best fit through log-log data of
transport vs 7.

In our simple channel runs, we found that

0.21
Tbaroclinic X Ty
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Figure 4.40: Upper-layer zonal transport vs. 1y for the simple channel (SC-1 — SC-4),
the simple channel with topography (SC-13 — SC-16), the channel with passage (DP-1

— DP-4), and the channel with passage and topography (DP-5 — DP-8).
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Figure 4.41: Lower-layer zonal transport vs. 7 for the simple channel (SC-1 — SC-4),
the simple channel with topography (SC-13 — SC-16), the channel with passage (DP-1
— DP-4), and the channel with passage and topography (DP-5 — DP-8).
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Figure 4.42: Baroclinic zonal transport vs. 7y for the simple channel (SC-1 — SC-4),
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whereas in [33], baroclinic transport was proportional to approximately 7'01/ ?. For
the channel with passage and the passage and topography simulations, the scaling
exponent is very close to that predicted by [34]. This contrasts with [33], who find
that baroclinic transport in these cases is essentially independent of 7y. In the case
of the topographic ridge in the simple channel, there is an essentially linear growth
in baroclinic transport as 7y is increased. This is in sharp contrast to [33], where

13
/ . In our

it is reported that baroclinic transport increases approximately with 7'01
simulations, we found the presence of recirculating gyre flow on both sides of the
topographic ridge in the upper layer. As wind increases, this gyre flow reduces,
increasing the overall transport, contributing to the large exponent.

To investigate the role of bottom Ekman friction, 7, was reduced by a factor of
10 in both the simple channel (SC-2) and the passage and topography case (DP-
6). In the simple channel, the reduction in ry by a factor of 10 increased barotropic
transport by nearly a factor of 10, from 73.5 Sv to 656.1 Sv. A similar scaling was
seen in [33]. The baroclinic transport decreased from 101.98 Sv to 14.96 Sv with the
reduction of ry by a factor of 10 because the upper-layer transport scaled more weakly
(124.09 Sv to 212.41 Sv) than the lower-layer transport (51.43 Sv to 458.67 Sv). In
the case of the passage and topography, a much different response to varying bottom
friction occurs. Barotropic transport is unchanged at 0 Sv, as lower-layer transport is
blocked by the topographic ridge. Upper-layer transport (which is equal to baroclinic
transport in the absence of lower-layer transport) increased by only a small amount

from 66.9 Sv to 71.21 Sv in the presence of a decrease in ry by a factor of 10.

4.7 Resolution Analysis

In a finite element discretization, the resolution is determined by the number of nodes
in the domain. In FEMLAB, this is controlled by setting a maximum element size.
A wvalid resolution choice should satisfy a number of requirements. First, the resul-
tant mesh should resolve eddies; that is, it should have a sufficiently dense spacing
of nodes such that an eddy is represented by n solution points, where n is chosen
based on mean eddy size and some measure of clarity of resolution. Second, refine-

ment of the mesh should not result in finer-scale turbulence, only smoothing of the
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observed turbulence. Finally, the mesh should lie in a reasonable region of conver-
gence for quantities associated with the model, with these quantities depending on

the particular use of the model.

Figure 4.43 shows a typical upper layer turbulence field given by h(z,y, t) for three
resolutions; a very coarse mesh of 2516 elements, the mesh used for the model runs
(e.g., SC-1 — SC-12) containing 12228 elements, and a fine mesh of 60124 elements.
Clearly, the coarse mesh does not properly resolve the turbulence field, whereas there
is little qualitative difference in the turbulence between our chosen resolution and the

high resolution.

Figure 4.44 shows a comparison of some basic quantities associated with the model
under three resolutions. The coarse 2516-element mesh yields quantities that are
certainly on the same order as higher-resolution quantities, although the error is
large enough to warrant a finer resolution. The resolution chosen for our runs (e.g.,
SC-1 — SC-12) is 12288 elements, so as to correspond to the 192 x 64 finite difference
mesh used in [33]. The relatively small difference in the 12288-element and 60124-
element cases implies that the resolution chosen for our model runs is valid. In
Figure 4.44.a, the upper-layer depth has a somewhat sharper gradient for the coarse
resolution. There is little change in the 12288-element and 60124-element cases. In
Figure 4.44.b, the zonal-mean profile of p shows a considerable difference in coarse
resolution, whereas the difference is negligible in the 12288-element and 60124-element
cases. In Figure 4.44.c, the upper-layer zonal-mean velocity structure is not well-
resolved with the coarse resolution. The structure and magnitude are similar in the
12288-element and 60124-element cases, although mesh refinement from 12288 to
60124 seems to slightly translate the zonal jets. In Figure 4.44.d, the lower-layer
zonal-mean velocity is noticeably weaker with a coarse resolution, whereas the profile
is similar in the 12288-element and 60124-element cases, although again there is a
slight translation of zonal jets under mesh refinement from 12288 to 60124. We note
that varying the mesh invariably leads to small differences in the final state of the

model.

Figure 4.45 shows a comparison of upper-layer and lower-layer transport for a

series of resolutions. For coarse resolutions, lower-layer transport is widely variant;
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Figure 4.43: A mesh comparison for solutions with meshes containing [a] 2516 ele-
ments, [b] 12288 elements, and [c] 60124 elements. Each picture shows upper-layer
depth, h(x,y,t), at t = 30000. (SC-4)
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Figure 4.45: A comparison of upper-layer and lower-layer transports for a series of
mesh resolutions. (SC-4)

at the 10174-element resolution, a clear convergence prevails. In the upper-layer,
there is little change in transport after the 20128-element resolution, although the

overall difference in upper-layer transport for all meshes is small.

4.8 Time-stepping

FEMLAB has a built-in time-stepping algorithm, FLDASPK for differential-algebraic
equations (DAE) up to index-2. This is a modification of DASPK [5] for the FEMLAB
environment. DASPK is itself an extension of DASSL [27]. DASPK expanded the
linear system solution options to include Krylov iterative methods, whereas DASSL
was limited to direct methods. FLDASPK is a variable-order, variable-step backward
differentiation formula (BDF) method. The BDF class of methods is a linear multi-
step method, which we describe here applied to a scalar ODE for notational ease.

Counsider the first-order scalar ODE

y/ = f(tvy)
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A BDF method is derived by differentiating the polynomial that interpolates past
values of y, and setting the derivative at ¢, to f(t,,y,) [3]. The result is a k-step
BDF of order p = k, defined by

k

1_.

=1

where h is the step size, and V is the backward difference operator given by

vofl - f17
Vifi = V7=V

We note that BDF methods are stable only for k < 7; k = 6 is also typically avoided
because of a lack of robustness. BDF methods are implicit and require the solution
of a nonlinear system at each time-step. FLDASPK uses a modified Newton iteration
to solve the nonlinear algebraic equations at each time step. This is a variant of

Newton’s method, defined by

OF OF

-1
n — Yn—-1 — a a G t7 n—1, n— )
Yn = Yn—1 C<a8y’+8y> (t, Yn—1, QYn—1 + f3)

where F'(t,y,ay + (3) is the nonlinear equation to be solved at each time step, « is
a constant that depends on step size, 3 is a vector that depends on the solution at
past times, and G is a function of known values [2]. In a system of equations, the
iteration matrix, «dF /0y’ + OF /Jy is rewritten via an LU decomposition and then
solved. FLDASPK offers a number of solvers at this stage; we choose a direct method
called UMFPACK [7] which we find to be the most efficient of the available methods.
UMFPACK is an un-symmetric multi-frontal method for direct LU factorization. This
software is able to take advantage of the sparse matrices that prevail in the finite
element method. Despite being somewhat more memory intensive than iterative
methods (e.g., GMRES [30]), the high efficiency of the method coupled with its
inherent stability as a direct method makes it the optimal choice. In the finite element
discretization, a test function at a node is a function of only its neighboring nodes;
hence the finite element discretization results in a sparse matrix to be solved [1]. As we
increase the resolution, the number of nodes, and thus the number of test functions,

increases. However, the number of non-zero matrix entries introduced with each new
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equation is constant, depending only on the order of the element. Therefore, using a
highly efficient solver like UMFPACK allows for an almost-linear scaling in the time

requirement as resolution is increased.

In addition to choosing the linear solver, FEMLAB allows the user a number of
time-stepping options. The user may enter a list of times for which the solution is
stored. Then, the user chooses between a free, intermediate, or strict time step. With
a strict step, the solver is forced to take a time step at each user-defined time, and may
take time steps in between as needed. With an intermediate step, the solver is forced
to take at least one step in each interval between the user-defined times. With a free
step, there is no user restriction on the timestepping; the time-stepping is determined
by local error restrictions in the solver. The user can also enter a maximum time-step
value as an alternative to modifying output times via the strict setting. DASPK
starts with an initial time step (which the user can set). Typically the time step is
successively increased (but at most doubled each step) until a local error calculation
exceeds the user-defined tolerance [2]. In our FEMLAB model, before the onset
of turbulence the solution is very simple and as a result, the successive time-step
increases resulted in very large steps (O(1000 units)). This large step is unable to
properly resolve the onset of turbulence. Figure 4.46 shows a comparison of some
exact and approximate model invariants under a free time-step setting and with a
maximum time-step of 5 time units. The free time-step setting results in a marked
delay of the onset of turbulence. When the solution does become turbulent, there
is a jump in upper-layer mass causing the failure of mass conservation, as well as
unphysical ‘spikes’ in lower-layer momentum and kinetic energy. These spikes occur
as a result of noisy data that create large spatial derivatives of model variables. Using
a maximum time-step setting prevents the spikes and the mass jump, while having
little effect on the overall time, as the typical turbulent time step is less than 5 units.
As is shown in Figure 4.47, there is no advantage in greatly restricting the time-
step, whereas there is a clear disadvantage in solution time as a result of the added
unnecessary time steps. Interestingly, from Figure 4.46 we note that the energy and
momentum quantities from the free time-step setting approximately converge through

time to the restricted time-step setting, whereas the upper-layer mass is conserved



108

Time series of upper-layer potential energy (b) Time series of upper-layer mass
T r T — 3079
— free timstepping — free timstepping
— maxtimestep =5 =eee max timestep = 5

(a) 4s00

4600 - 3078

4400
3077

4200
3076
4000

3075
3800

3074
3600

3073
3400

3072

3200

3000 n L L L L 2071 n L L L L
0 05 1 15 2 25 3 0 05 1 15 2 25 3

Time series of lower-layer momentum Time series of kinetic energy
50 T T T T 1200
(©) — free timstepping (d) — free timstepping

— max timestep = 5 — max timestep = 5

0 1000
800

600

) L
[ =

Figure 4.46: FExact and approximate model invariants compared against a free time
step and a time step restricted by a maximum of 5 time units. [a] Potential energy,
[b] mass, [c] lower-layer momentum, [d] kinetic energy. (SC-4)

following the jump at the onset of turbulence.

As mentioned earlier in this section, the computational time required to solve
the finite-element implementation of the FG model can ideally scale almost linearly
with the number of nodes in the spatial discretization. In Table 4.4, we show the
performance of our model for the test case SC-4 run to ¢ = 30000, using a maximum
time step of 5 time units. We also show performances for two shallow-water equation
models, HIM [9] and MITgcm (23], and the finite-difference implementation of the
FG model. Computational times for HIM, MITgecm and the finite-difference FG
model were provided in [12] and were run on a single AMD64 Opteron 250 processor.
The finite-element FG model was run on a combination of Intel Xeon 3.06 Ghz and

Opteron 250 processors. We note that the MITgem is a six-layer model, whereas the
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Figure 4.47: Exact and approximate model invariants compared against maximum
time-step settings of 0.05 and 5 time units. [a] Potential energy, [b] mass, [c] lower-
layer momentum, [d] kinetic energy. (SC-4)
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Table 4.4: Performance of ocean models for SC-4

10174 nodes
20228 nodes
40220 nodes
60124 nodes

model resolution computational time

finite element FG model
2516 nodes 4140.48 s = 1.15 hrs
5016 nodes 9143.76 s = 2.54 hrs

20990.342 s = 5.83 hrs
45576.33 s = 12.66 hrs
100543.13 s = 27.92 hrs
213812.45 s = 59.39 hrs

finite diff. FG model

192 x 64 = 12288 pts
384 x 128 = 49152 pts
768 x 256 = 196608 pts

2.2 hrs
52.9 hrs
approx. 1700 hrs = 71 days

HIM
192 x 64 = 12288 pts 19.9 hrs
384 x 128 = 49152 pts 201 hrs = 8.37 days
768 x 256 = 196608 pts 1620 hrs = 67.5 days
MITgem

36 hrs

192 x 64 = 12288 pts

others are two-layer models.

Although the finite difference implementation of the FG model is roughly twice
as fast as our finite element model for a 192 x 64 resolution, performance drops off
quickly, and after doubling the resolution (i.e., increasing the number of nodes by
a factor of 4), the finite element implementation outperforms the finite difference
implementation, almost by a factor of 2. This exponential growth in computational
time is due to the explicit nature of the timestepping in the finite difference code.
As resolution is increased, a stability restriction requires a corresponding decrease in
the time step, increasing the computational requirement. However, the finite element
implementation is implicit, and thus no spatially dependent stability restriction exists
for this method. Regardless of resolution, FEMLAB maintains essentially the same
time step (from 2516 nodes to 60124 nodes, there was only a 0.3% change in the
time step size). The HIM model also exhibits a reduction in time step with increased
resolution (proportional to the change in Ax). The MITgem data were included to
emphasize the relative computational time scales for our reduced model versus the

more complex primitive-equation MITgecm model.



Chapter 5

Conclusion

In this thesis, a two-layer frontal geostrophic model for wind-driven flow was simulated
with the finite element method via the software package FEMLAB. The use of the fi-
nite element method facilitated the extension of the model to irregular domains. This
implementation is most notably efficient for higher resolutions, due to the favorable,
almost-linear scaling of computation time with resolution. The implementation is also
stable, improving on the finite-difference implementation that failed under negative
values of h(x,y,t) or relatively large values of h(z,y,t) (e.g., h(z,y,t) = 1.5) [12].
However, the boundary conditions in this implementation were fairly problematic; the
decision to use a sponge layer around boundaries very likely strongly affects model
results and makes comparisons with similar models more difficult. As the geometry
is extended to irregular domains, these boundary issues become more important, and
the specification of the sponge layer becomes difficult. The natural extension of this
model into realistic domains (see Figure 5.1) is possible, although the specification of
sponge layers becomes difficult in FEMLAB. Our efforts to extend the model to real-
istic domains was limited to using Boundary Method I, which loses the fundamental
conservation of mass property of the model. This implementation was designed for

studying an idealization of the Antarctic Circumpolar Current.

This implementation does develop a verifiable quasi-steady state in a host of do-
main and parameter regimes, allowing for an investigation into the meridional balance
suggested by the model results. In the simple channel, the model results support the
theory of momentum balance wherein momentum imparted by wind stress at the sur-
face is transferred from the upper layer to the lower layer via interfacial form stress,
and then dissipated in the lower layer by bottom friction. In the presence of bottom
topography, this lower-layer dissipation is achieved jointly by bottom friction and bot-

tom form stress, and as the lower-layer friction is reduced, primarily by bottom form
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Figure 5.1: Solution of model equations using FEMLAB in a more realistic domain,
using idealized land masses in the Southern Ocean. Valid boundary conditions are
the main concern in this extension.
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stress. The implementation allows for outcroppings, both transient (disappearing
at quasi-steady state) and permanent (prevailing at quasi-steady state). The onset
of outcropping establishes a larger gradient in both h(x,y,t) and p(z,y,t) at quasi-
steady state, which implies stronger upper- and lower-layer leading-order velocities.
We also found that in the presence of outcropping (both transient and permanent),
the mass of the system at quasi-steady state is independent of initial upper-layer
depth; instead it is determined by the balance struck between winds and frictional

dissipation.

When the geometry is altered to include land barriers representative of the Drake
Passage, the highly viscous region around the barriers dissipates momentum in con-
cert with the eddy interfacial form stress transferring momentum to the lower layer.
Thus, our choice and implementation of boundary conditions in this geometry have
a strong impact on the prevailing momentum balance at quasi-steady state. When
a topographic ridge is added to the passage geometry, upper-layer transport is not
strongly affected, suggesting that the land barriers essentially determine the upper-
layer transport through the passage. The topographic ridge does essentially eliminate

lower-layer transport, however.

Baroclinic transport was calculated for the four domain/topography regimes. In
the simple channel, our results indicate a relatively weak growth in transport in
relation to wind strength. This contrasts with results in [33], although that model
uses different boundary conditions, a very low bottom friction, and a slightly different
set of model equations. We found the passage domain transport results to agree
strongly with [34], both in the presence of a topographic ridge and with no bottom
topography. In the case of bottom topography in the simple channel, we found a very
strong growth in baroclinic transport with wind strength, in sharp contrast with [33].
These results again are likely due to the viscous boundary region. Low wind strengths
create a larger northward deflection of flow, thus increasing dissipation of velocity as
more streamlines enter the viscous region. As wind strength increases, there is less

northward deflection, and this viscous layer dissipation is reduced.

When bottom friction is reduced by a factor of 10 in the simple channel, barotropic

transport increases approximately by a factor of 10. However, in the case of the
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passage with topography, barotropic transport remains unchanged (because lower-
layer transport is blocked by the ridge), and baroclinic transport changes only slightly
with a similar reduction in bottom friction.

The resolution chosen for our simulations sufficiently resolves the turbulence in the
solution of h(x,y,t) and p(x,y,t). The resolution also lies in a reasonable region of
convergence for the model variables h(x,y,t) and p(x,y,t), and for various quantities
associated with the model (velocities, transport). The solution validity was dependent
upon time step restriction. With no user-defined restriction (i.e., allowing the time-
stepping algorithm determine the time step-size), the onset of turbulence is delayed,
the solution is very noisy at the onset of turbulence leading to spikes in energy and
momentum quantities, and mass conservation is lost. This effect can be eliminated
by limiting the maximum step-size to 5 units, while having little effect on the overall
computational requirements.

There are several aspects of this work that remain to be explored. The investiga-
tion of other domains is possible with this finite element implementation of the model,
provided that boundary conditions can be imposed for arbitrary domain shapes. The
solution of the model in a more realistic domain as discussed above provides an ex-
ample of this possible work, as well as the difficulties that must be overcome. In
addition, the numerical integration of the model equations could be investigated with
a variety of different integrators. Structure-preserving integrators (e.g., symplectic
methods) hold interest for the ability to conserve certain model invariants. Also,
using this implementation, a more detailed exploration of parameters (e.g., bottom
topography, sponge layer properties, friction) may yield more information about the

dynamical balance that occurs in the ACC.
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