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Abstract

The numerical simulation of oceanic flow is a primary research tool for understand-

ing the physical properties of the world ocean. These models range from complex,

high-resolution models to simplified models in idealized domains. In the spirit of the

latter, a two-layer frontal geostrophic model is discussed for a wind-driven circum-

polar flow via an asymptotic reduction of the shallow-water equations. The model

is implemented using the finite element method via the software package FEMLAB.

The model is used to study the meridional balance, lower-layer outcropping, and pa-

rameter variation in the Antarctic Circumpolar Current, the dominant oceanic flow in

the Southern Ocean. The effects of varying resolution and timestepping parameters is

discussed. Experiments are performed in a number of domain and bottom topography

regimes to examine the effects of the Drake Passage and a topographic ridge on the

meridional balance and transport that prevails in the current. The results support

a mechanism of balance by which momentum imparted by winds at the surface is

transferred to the lower layer via eddies and dissipated by the ocean bottom.
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Chapter 1

Introduction

The numerical simulation of oceanic flow is a primary research tool for understanding

the physical properties of the world ocean. These simulations take place on many

levels of complexity, ranging from high-resolution models of the entire world ocean,

to simplified models of particular flows. Although the former provide the most real-

istic representation of oceanic flow, the computational requirements for these models

are typically very large. Often, the information sought via a mathematical model

need not contain high detail or complexity, and so simpler models are used. These

simpler models are naturally much less computationally intensive. This allows de-

tailed exploration of parameter spaces as well as long-time simulations, both of which

are typically not feasible in complex ocean models. This thesis concerns a two-layer

frontal geostrophic model, an example of a simpler model.

The construction of this simplified model involves a number of mathematical con-

siderations. At the basis of the model physics is the shallow-water equations for fluid

flow, a set of partial differential equations (PDEs) that are derived from basic physics

principles. Asymptotic analysis is used to isolate the leading-order effects in these

equations such that higher-order terms can be legitimately discarded. Numerical

solution of the resultant PDEs strives for stability, efficiency, and flexibility, while

imposing boundary conditions and initial conditions to create a well-posed problem.

Finally, resultant data from the simulations must be analyzed and validated.

To address these mathematical concerns, this thesis maintains two threads through-

out. On one hand, this thesis is concerned with the mathematics of the model deriva-

tion and its numerical simulation. On the other, this thesis attempts to place the

model in a physical oceanographic context, especially in the motivating physics and

the analysis of the simulation results.

In this thesis, a two-layer frontal geostrophic (FG) model for wind-driven fluid flow

1



2

is simulated with the finite element method, using the software package FEMLAB.

The model is used to study the Antarctic Circumpolar Current (ACC), the dominant

flow in the Southern Ocean. As we show in Chapter 2, the model used in this thesis

is well-suited to the ACC. A detailed description of the contents of the thesis follows.

Chapter 2 contains a description of the two-layer frontal geostrophic model. Sec-

tion 2.1 describes the motivating physics for the model in the context of the Antarctic

Circumpolar Current. Section 2.2 contains a detailed derivation of the shallow-water

equations from basic physical principles followed by the reduction of the shallow-water

equations to the frontal geostrophic model equations. Sections 2.3 and 2.4 complete

the model description by discussing the domain, boundary conditions, and initial con-

ditions. These sections also give some sense of the temporal domain that is required

for our analysis.

Chapter 3 outlines the steps taken to simulate the two-layer FG model in the

finite element software package FEMLAB. Section 3.1 contains a short introduction

to the software and the motivation for this choice of implementation. Section 3.2

describes the adaptation of our model equations into a form that is acceptable to

FEMLAB. This process turns out to require considerable manipulation. Section 3.3

is a discussion of the model parameters used in our simulations, most of which are

derived from [33], the work we use as a guide for our experimentation with the model.

Sections 3.4 and 3.5 specify the implementation of domain and initial conditions

discussed in Sections 2.3 and 2.4 in the context of FEMLAB. This section includes

the introduction of bottom topography, and details its incorporation into the model.

Chapter 4 details the results from running a number of experiments with our finite

element model implementation. Central to our experimentation is the varying Ekman

pumping strength. This chapter is primarily oceanographic in nature. Section 4.1,

4.2, and 4.3 introduce the concepts that are needed to understand the simulation

results. Section 4.4 describes the results of experiments in a simple channel corre-

sponding to a rectangular domain. These results are conveyed primarily through

time-average plots. Section 4.5 describes the results of experiments in a modified

channel that mimics the Drake Passage in an idealized sense. Section 4.6 combines
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the data from the experiments of Sections 4.4 and 4.5 into a discussion of the trans-

port and the effects of wind strength, topography, and land barriers on the established

transport. Section 4.7 contains a short analysis of the effects of varying resolution,

and provides justification for the resolution used for the experiments performed in

this work. Section 4.8 contains a description of the time-stepping scheme used and

some results on the efficiency of our finite element implementation as compared to a

number of other models for oceanic flow on a similar scale.

Chapter 5 contains some concluding remarks and possible future work.



Chapter 2

The Two-Layer Frontal Geostrophic Model

2.1 Introduction

The Antarctic Circumpolar Current is the major oceanic current of the southern

hemisphere. It travels around Antarctica (see Figure 2.1), and acts as a conduit for

the transport of quantities such as heat, salt, and carbon dioxide between the major

ocean basins, thus having a significant impact on the Earth’s climate. This strong

and deep-reaching zonal (i.e., east-west or latitudinal) current also acts as a barrier

to transport across the current, leaving the ocean to the south of the ACC relatively

isolated from heat and substance sources from the rest of the world ocean [25]. The

flow of the ACC is predominantly influenced by strong westerly winds that circle

the southern hemisphere. These winds attain a maximum strength in the latitudinal

region of 52o − 57o south (see Figure 2.2), precisely the latitudes in which the ACC

flows around the earth, providing evidence of the importance of these winds on the

flow. These winds impart an eastward momentum into the ACC.

The flow variability of the ACC has been imaged by sea surface height measure-

ments via satellite. The data attest to the existence of eddies throughout the region

of flow (see Figure 2.3). The turbulent, meandering flow characterized by eddies is

hypothesized to play an important role in thermodynamical transport and balance in

the southern hemisphere.

In any region of flow in the ocean, momentum forcing is primarily applied in

two ways: by winds interacting at the surface of the ocean and by frictional forces

occurring between flowing water and the ocean bottom (or land boundaries). Any

boundary region that transmits these forces is known as an Ekman layer. Accordingly,

there exists an Ekman layer both at the surface and bottom of the ocean. There is

a third ‘force’, the Coriolis force, which is the effect of the spinning of the earth

upon moving objects. The Coriolis force is actually a fictitious force; its effect is the

4
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Figure 2.1: The path of flow of the Antarctic Circumpolar Current, as estimated by
satellite altimetry data (adapted from [12]).
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Figure 2.2: The zonal wind stress in the Southern Ocean, in Nm−2, attaining a
maximum in the region of flow of the ACC, from the Southampton Oceanographic
Centre (SOC) data set.

result of measuring velocities in a rotating frame of reference and not due to any

real physical consideration. In the northern hemisphere, the Coriolis force appears

to deflect moving objects to the right, and in the southern hemisphere, to the left

[17]. There are also buoyancy forces resulting from salinity and temperature fluxes,

though these are not considered in this thesis.

At the immediate ocean surface, the impact of the wind force on the water imparts

momentum on the surface water, which, due to the Coriolis deflection, is oriented to

the left of the wind force. As the imparted momentum is successively transferred to

the underlying layers of water, the frictional resistance decreases the velocity of the

water, increasing the deflection by the Coriolis force. The result of this process is a

spiraling flow with diminishing velocity with depth, called an Ekman spiral [24]. The

Ekman spiral has a net flow in the Ekman layer, oriented perpendicular to the wind

force and in the direction of the Coriolis deflection (see Figure 2.4 for an idealized

model of this process).

The westerlies which prevail over the ACC decline in strength latitudinally as one

moves away from the region of flow. Thus, south of the ACC, the positive wind-force

curl creates an area of divergence, and thus, upwelling (Figure 2.5). Similarly, north
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Figure 2.3: Sea surface altimetry data below Australia showing the eddy-dominated
flow of the ACC, from the TOPEX/ERS2 data set.
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Figure 2.4: The Ekman spiral: In the southern hemisphere, wind forcing results in a
net flow perpendicular and to the left of the wind direction (adapted from [22]).

of the ACC, there is a negative wind-force curl, which creates an area of convergence,

and thus downwelling (Figure 2.5). The northward Ekman transport at the surface

along with the downwelling and upwelling create an overturning circulation known

as the Deacon Cell (see Figure 2.6). The Deacon cell tilts the isopycnals (lines of

constant density), creating a density gradient in the fluid known as a front. The

sloped isopycnals impart momentum into the fluid, though directed perpendicular

and to the left of the positive density gradient due to the Coriolis force [19]. Thus,

there is a relatively strong net eastward forcing resulting from the Deacon cell which

drives the eastward flow of the ACC. The flow of the ACC is basically geostrophic,

meaning that the zonal current velocity is determined by the meridional (i.e., north-

south or longitudinal) balance that occurs between the hydrostatic pressure gradient

associated with the sloped isopycnals, and the Coriolis force. Thus, the density profile

of the water column in the region of the ACC plays the dominant role in driving the

eastward current [25].

In layer models, the density profile is represented by discrete layers of fluid, with a
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Figure 2.5: The wind forcing (black) attains a maximum in the central latitudes of
the ACC. At the south of the ACC, the positive wind stress creates a net outflux
in Ekman transport (i.e., divergence) (shown in red), drawing up water from below
(i.e., upwelling) (shown in green). In the north, the negative wind stress creates a
net influx of Ekman transport (i.e., convergence), which pushes water downward (i.e.,
downwelling).

Figure 2.6: The Deacon Cell: the dotted lines represent isopycnals, which are sloped
by the overturning circulation (adapted from [13]).
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Figure 2.7: The zonally averaged density profile of the southern ocean over depth in
m, and latitude, from hydrographic data. Density units are given by kg/m3 above
1000 kg/m3, the density of pure water. The sloped isopycnals resulting from the
Deacon cell are apparent. The dotted lines represent the approximate region of flow
of the ACC (adapted from [12]). The thick black line separates the density profile
into two layers.

constant density in each layer. The dynamics of the flow can then be understood from

the behavior of the density layer interfaces, which determine the pressure gradient.

In the two-layer frontal geostrophic (FG) model, we treat the density gradient as two

separate layers of constant density, with the resulting interface governing the flow

of the current (see Figures 2.7 and 2.8). A density value is chosen to separate the

density profile into two discrete layers.

The westerly winds which prevail over our region of flow constantly impart mo-

mentum into the water. In order to achieve a steady state of flow, there must be a

balancing force to counteract the constant forcing of the wind. When treating the

ocean as two layers, we seek a balance in forcing in each layer. In the lower layer,

momentum is dissipated via bottom formstress, which transfers momentum out of

the water and into the solid earth by flow interaction with bottom topography [25].

However, no such bottom formstress exists in the upper layer; here there must be

another mechanism of momentum dissipation, or else the zonal flow would accelerate

indefinitely with the continuous imparting of momentum via the wind forcing. It

turns out that there is a vertical transfer of momentum from the upper layer to the
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Figure 2.8: The two-layer FG model geometry. ρ1 is the upper layer density, ρ2 is
the lower layer density, h is the upper layer depth, and p is the lower layer pressure
(adapted from [18]).

lower layer via eddy interfacial formstress, caused by eddy-induced fluctuations in the

zonal pressure gradient (see [25] for details). This transfer of momentum to the lower

layer is then dissipated by bottom formstress, thus allowing a momentum balance in

both layers.

In the presence of land masses, a frictional boundary layer around the land mass

can also play an important role in balancing the wind forcing. This effect is most

prominent at the Drake Passage, where the meridional spread of the ACC is con-

strained by the Antarctic Peninsula, and South America. The important effects of

land masses motivate the inclusion of land barriers in the modelling domain.

The two-layer frontal geostrophic model is so named for three reasons. First, it
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uses two layers to model the density profile. Second, the flow is geostrophic; that

is, at leading order, flow is balanced by the pressure gradient and Coriolis force

[17]. Finally we model the ‘front’ of tilted isopycnals to determine the flow pattern.

The model we use to simulate the flow dynamics of the ACC was first developed

by Cushman-Roisin et al. [6], and independently for flow over a sloping bottom

by Swaters [31]. Karsten and Swaters [14] established conditions on the nonlinear

stability of the model, and extended the applicability of the model to a much larger

range of flow geometries. In two companion papers, Karsten and Swaters provided

a comprehensive description of the nonlinear dynamics of the model from a strong-

β [15] and weak-β [16] standpoint. Reszka and Swaters [28] applied the model to

buoyancy-driven coastal currents, and found an agreement between the reduced FG

model results and primitive-equation models. Reszka and Swaters [29] used the model

in a study of the Gaspé Current, finding an agreement between observed data and

model results, and also noting the destabilizing effect of bottom topography, and its

importance in the consideration of such coastal flows. The model used in this thesis

lacks both the refinement and complexity of other models (e.g., General Circulation

Models (see, e.g., [36])) that similarly model the flow pattern in the ACC. However,

the computational requirement for the solution of these other models is quite large.

This requirement impedes experimentation with model variables and parameters. In

this thesis, we seek to create a reasonable numerical model which gives solutions on a

more manageable time scale, allowing oceanographers to more easily experiment with

the model inputs to see the effects on the generated flow patterns. The two-layer FG

model we use is essentially a simplification of the shallow-water equations [19]. The

simplification is achieved mainly through making leading-order approximations for

variables and ignoring higher-order terms. Thus, the two-layer FG model is unable

to resolve high-order phenomena, such as internal gravity waves. However, these

phenomena are only important in models of either very high resolution or very small

domains, both of which do not immediately concern us.

The two layers of the FG model do not include the Ekman layer at the surface

of the ocean. In the Ekman layer, there is a northward transport of water, but we

are concerned only with the effect of this transport on the underlying water (i.e.,
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the upper layer of the model). The primary effect is the downwelling and upwelling

processes of the Deacon Cell that are represented by Ekman pumping terms in the

model. However, a number of other processes occur which are not resolved in the

model. Specifically, the northward transport in the Ekman layer implies coastal

downwelling along the north boundary of the domain, and upwelling at the southern

boundary, both of which are not included in the model. Also, by representing the

wind forcing as a stress (i.e., the curl of the wind forcing), the model is unable to

properly model a spatially uniform wind.

2.2 Governing Equations

Because we are modelling a region for which the length scale is much larger than the

depth scale, we are justified in using a shallow-water approximation for our model. We

now derive the shallow-water equations for two layers following [19]; we subsequently

derive our model equations from this basis.

To derive the two-layer shallow-water equations, we begin with the conservation

of momentum equation,

Du

Dt
+ 2Ω× u = −1

ρ̄
∇p− ĝ −Ru + ν̂∇2u, (2.1)

and the continuity equation for an incompressible fluid,

∇ · u = 0, (2.2)

where u = (u, v, w) is the velocity of the fluid, with u directed eastward, v northward,

and w upward, p is the fluid pressure, ρ̄ is the constant average fluid density, ĝ =

(0, 0, g) is the force of gravity on the fluid, applied in the vertical direction,

ν̂ =


ν 0 0

0 ν 0

0 0 0

 ,

where ν is the coefficient of horizontal turbulent viscosity representing unresolved

scales, and Ω = (Ωx, Ωy, Ωz) is the angular velocity vector of the earth [19]. The term
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−Ru represents the effect of the Ekman layer at the ocean bottom, where

R =


r 0 0

0 r 0

0 0 0

 ,

where r is the coefficient of Ekman friction.

The Du
Dt

term in (2.1) is the material derivative of u, defined as

Du

Dt
:=

∂u

∂t
+ u · ∇u.

This term is the Lagrangian acceleration of the fluid, representing the sum of the local

acceleration (the flow changing with respect to time) and advective acceleration (the

flow changing with respect to space). It is thus the total acceleration experienced by

a parcel of fluid [17].

Large-scale geophysical flow problems are often most conveniently solved in spher-

ical co-ordinates. However, when width scales (north-south) are relatively small in

comparison to the radius of the earth, we can ignore the curvature of the earth, and

instead adopt a local Cartesian system on a tangent plane [19]. For the ACC, a typ-

ical width scale is 2000 km, while the mean radius of the Earth is 6371 km, giving a

ratio of approximately 0.30. This value is sufficiently small to allow the adoption a

Cartesian system, although our scalings lie in the limits of applicability for this sim-

plification [12]. If we were to extend the longitudinal scale of our model, the adoption

of a spherical co-ordinate system would likely be necessary.

Using the local Cartesian system, we rewrite the components of the angular ve-

locity, Ω, as

Ωx = 0,

Ωy = |Ω| cos θ,

Ωz = |Ω| sin θ,

where θ is the latitude. The Coriolis force is thus

2Ω× u =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

0 2|Ω| cos θ 2|Ω| sin θ

u v w

∣∣∣∣∣∣∣∣∣∣
= 2|Ω|[̂i(w cos θ − v sin θ) + ĵu sin θ − k̂u cos θ], (2.3)
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where î, ĵ, and k̂ are the elementary unit vectors. Because we are making a shallow-

water approximation, w � v, and so we can assume that the w cos θ term in (2.3) is

negligible [19]. Then we can write the three components of the Coriolis force as

(2Ω× u)x = −(2|Ω| sin θ)v = −fv,

(2Ω× u)y = (2|Ω| sin θ)u = fu,

(2Ω× u)z = −(2|Ω| cos θ)u,

where we have defined

f = 2|Ω| sin θ,

known as the Coriolis parameter. The vertical component of the Coriolis force is

generally negligible, dominated by the other terms in the vertical equation of motion

[19]. This allows us to reduce the Coriolis force to

2Ω× u ≈ f


−v

u

0

 .

Although the Coriolis parameter, f , varies with latitude, this variance is only impor-

tant for phenomena with very long length scales [19]. Otherwise, we can approximate

f by a constant value,

f0 = 2|Ω| sin θ0, (2.4)

where θ0 is the central latitude of flow. This approximation is known as an f-plane

approximation [19]. One can achieve a better approximation by expanding f in a

Taylor series about θ0,

f = f0 + βy, (2.5)

where

β =
df

dy

∣∣∣∣∣
θ0

=

(
df

dθ

dθ

dy

)∣∣∣∣∣
θ0

=
2|Ω| cos θ0

R
, (2.6)

where R is the radius of the earth, and we have used dy = R dθ. The approximation

(2.5) is known as a β-plane approximation [19]. Approximating the Coriolis force by
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the β-plane approximation is valid for the ACC [15], and thus we let

2Ω× u ≈ (f0 + βy)


−v

u

0

 . (2.7)

Our model is based upon two layers of fluid with a constant density value within

each layer. However, for flows with sufficiently small velocity and depth scales, density

changes in a fluid can be neglected in the horizontal components of the momentum

equation (2.1). This approximation, known as the Boussinesq approximation [19],

is used in our model [12]. We thus use ρ̄ for our constant reference density in the

horizontal components of (2.1). We note that in the vertical direction, the density

difference is significant, and so we allow density to vary in the vertical component of

(2.1). This is accomplished by letting ρ1 and ρ2 be the upper and lower layer constant

densities, thereby discretizing the density profile.

Because we represent our ocean domain by two layers of fluid, equation (2.1) holds

in each layer. We rewrite equation (2.1) for each layer in component form, using the

subscripting convention that 1 refers to variables in the upper layer, while 2 refers to

variables in the lower layer:

Du1

Dt
+ (f0 + βy)(−v1) = −1

ρ̄

∂p1

∂x
− r1u1 + ν1

∂2u1

∂x2
, (2.8)

Dv1

Dt
+ (f0 + βy)u1 = −1

ρ̄

∂p1

∂y
− r1v1 + ν1

∂2v1

∂y2
, (2.9)

Dw1

Dt
= − 1

ρ1

∂p1

∂z
− g, (2.10)

Du2

Dt
+ (f0 + βy)(−v2) = −1

ρ̄

∂p2

∂x
− r2u2 + ν2

∂2u2

∂x2
, (2.11)

Dv2

Dt
+ (f0 + βy)u2 = −1

ρ̄

∂p2

∂y
− r2v2 + ν2

∂2v2

∂y2
, (2.12)

Dw2

Dt
= − 1

ρ1

∂p2

∂z
− g. (2.13)
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Furthermore, the continuity equation (2.2) holds in each layer, and with the same

subscripting convention as above, we write

∇ · u1 = 0, (2.14)

∇ · u2 = 0. (2.15)

Because there is no bottom friction in the upper layer, we set r1 = 0.

The ocean can be viewed as a very thin fluid sheet, in which the depth scale is

much less than the horizontal scale. Fluid trajectories are very shallow, and vertical

velocities are generally much smaller than horizontal velocities [19]. We can therefore

assume that vertical acceleration in each layer, Dw1

Dt
and Dw2

Dt
, is negligible compared

with gravitational/buoyancy forces; this is known as a hydrostatic state. Then (2.10)

and (2.13) reduce to
∂p1

∂z
= −gρ1, (2.16)

∂p2

∂z
= −gρ2. (2.17)

Equations (2.16) and (2.17) are the hydrostatic equations in each layer. Integrating

(2.16) and (2.17), we write

p1 = −gρ1z + ρ̄ p̃1(x, y, t), (2.18)

p2 = −gρ2z + ρ̄ p̃2(x, y, t), (2.19)

where p̃1 and p̃2 denote the normalized time-dependent pressure in each layer (in

units of pressure per unit density) called the dynamic pressure. Replacing p1 and p2

in (2.8)–(2.13),

Du1

Dt
+ (f0 + βy)(−v) = −1

ρ̄

∂(−gρ1z + ρ̄ p̃1(x, y, t))

∂x
+ ν1

∂2u1

∂x2
, (2.20)

Dv1

Dt
+ (f0 + βy)u = −1

ρ̄

∂(−gρ1z + ρ̄ p̃1(x, y, t))

∂y
+ ν1

∂2v1

∂y2
, (2.21)

Du2

Dt
+ (f0 + βy)(−v) = −1

ρ̄

∂(−gρ2z + ρ̄ p̃2(x, y, t))

∂x
− r2u2 + ν2

∂2u2

∂x2
, (2.22)
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Dv2

Dt
+ (f0 + βy)u = −1

ρ̄

∂(−gρ2z + ρ̄ p̃2(x, y, t))

∂y
− r2v2 + ν2

∂2v2

∂y2
, (2.23)

where (2.10) and (2.13) are now redundant. We note that the horizontal components

of the upper layer momentum equation (2.20) and (2.21) simplify to

Du1

Dt
+ (f0 + βy)(−v1) = −∂p̃1(x, y, t)

∂x
+ ν1

∂2u1

∂x2
, (2.24)

Dv1

Dt
+ (f0 + βy)(u1) = −∂p̃1(x, y, t)

∂y
+ ν1

∂2v1

∂y2
. (2.25)

From (2.24) and (2.25) it is clear that by applying the hydrostatic assumption, that

the horizontal velocities, u1 and v1, are now independent of depth. The same ar-

gument applies in the lower layer, implying that u2 and v2 are also independent of

depth. We are thus able to make a fundamental simplification. We transform the

three-dimensional system to a two-dimensional system by incorporating the vertical

effects into the horizontal equations. It will become clear as the derivation progresses

that the continuity equations (2.14) and (2.15) allow this inclusion of vertical effects

by connecting vertical velocities to changes in upper-layer height, h. In keeping with

this simplification, we define

u1,H = (u1, v1), (2.26)

u2,H = (u2, v2),

to be the horizontal components of the velocity vector in each layer. As well, we

require two-dimensional analogues of our standard three-dimensional operators. Thus

we define

∇H :=

(
∂

∂x
,

∂

∂y

)
, (2.27)

and

k̂× uH :=

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

0 0 1

u v 0

∣∣∣∣∣∣∣∣∣∣
H

= (−v, u, 0)|H = (−v, u). (2.28)
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From (2.27) and (2.28) we note the following important identity:

k̂ · (∇H × (a, b)) = k̂ ·

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

0

a b 0

∣∣∣∣∣∣∣∣∣∣
= k̂ ·

(
∂b

∂x
− ∂a

∂y

)
k̂ =

∂b

∂x
− ∂a

∂y
. (2.29)

We also define the two-dimensional restriction of (2.7) as

(f0 + βy)


−v

u

0


H

:= (f0 + βy)k̂× uH , (2.30)

where f0 is defined by (2.4) and β is defined by (2.6).

We continue our derivation focusing on the upper layer, with the derivation for

the lower layer being entirely analogous, unless otherwise stated.

We first replace u1 by u1,H in (2.8)–(2.9), let all operators be their two-dimensional

analogues where applicable (as defined in (2.27)–(2.28)) and replace the Coriolis term

with (2.30), giving, in vector form,

Du1,H

Dt
+ (f0 + βy)k̂× u1,H = −1

ρ̄
∇H p̃1(x, y, t) + ν1∇2

Hu1,H , (2.31)

where we have replaced ∇p1 by ∇p̃1 following (2.24) and (2.25). We further assume a

continuous pressure across the layer interface (i.e., at z = −h1(x, y, t)). Then (2.18)

gives

gρ1h1(x, y, t) + ρ̄ p̃1(x, y, t) = gρ2h1(x, y, t) + ρ̄ p̃2(x, y, t),

from which we can solve for p̃1(x, y, t) as

p̃1(x, y, t) = g

(
ρ2 − ρ1

ρ̄

)
h1(x, y, t) + p̃2(x, y, t). (2.32)

We substitute this into (2.31), giving

Du1,H

Dt
+ (f0 + βy)k̂× u1,H = −g′∇Hh1(x, y, t)−∇H p̃2(x, y, t) + ν1∇2

Hu1,H , (2.33)

where g′ := g
(

ρ2−ρ1

ρ̄

)
is the reduced gravity [17].

We now expand the upper-layer continuity equation (2.11) to
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∂u1

∂x
+

∂v1

∂y
+

∂w1

∂z
= 0,

and then integrate both sides over the depth of the upper layer, noting that u1 and

v1 are independent of z, to obtain∫ 0

−h1(x,y,t)

(
∂u1

∂x
+

∂v1

∂y
+

∂w1

∂z

)
dz

= h1(x, y, t)

(
∂u1

∂x
+

∂v1

∂y

)
+ w(x, y, 0, t)− w(x, y,−h1(x, y, t), t) = 0. (2.34)

We account for the wind forcing by including a downward Ekman pumping force

[12] at the surface of the upper layer; i.e,

w(x, y, 0, t) = τ0w1,e(x, y, t), (2.35)

where τ0 is a wind strength parameter and

w1,e(x, y, t) =

 we(x, y, t) if h1(x, y, t) > 0,

0 if h1(x, y, t) = 0,
(2.36)

where we(x, y, t) is the Ekman pumping velocity. Incorporating the wind forcing in

this manner is a distinguishing feature of this model as compared to other similar

models. Because we model the resultant Ekman pumping force instead of the wind

forcing directly, we do not include the surface Ekman layer in our model geometry,

but instead include the effect of this Ekman layer on the subsurface ocean.

At the interface of the two layers, z = −h1(x, y, t), we apply a kinematic boundary

condition (see [19]), such that the vertical velocity is given by the total change in the

upper layer depth with respect to time; i.e.,

w(x, y,−h1(x, y, t), t) = −Dh1(x, y, t)

Dt
= −

[
∂h(x, y, t)

∂t
+ u1,H · ∇Hh(x, y, t).

]
(2.37)

We substitute (2.35) and (2.37) into (2.34), noting that

h1(x, y, t)∇H · u1,H + u1,H∇Hh1(x, y, t) = ∇H · (h1(x, y, t)u1,H) ,

to obtain
∂h1(x, y, t)

∂t
+∇H · (h1(x, y, t)u1,H) = −τ0w1,e(x, y, t). (2.38)
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In the lower layer, the derivation is completely analogous. Thus, with the lower-

layer analogues of (2.33) and (2.38), we arrive at the two-dimensional, two-layer

shallow-water equations,

∂u1,H

∂t
+ u1,H · ∇Hu1,H + (f0 + βy)k̂× u1,H

= −g′∇Hh1(x, y, t)−∇Hp2(x, y, t) + ν1∇2
Hu1,H , (2.39)

∂h1(x, y, t)

∂t
+∇H · (h1(x, y, t)u1,H) = −τ0w1,e(x, y, t), (2.40)

∂u2,H

∂t
+ u2,H · ∇Hu2,H + (f0 + βy)k̂× u2,H

= −∇Hp2(x, y, t)− r2u2,H + ν2∇2
Hu2,H , (2.41)

∂h2(x, y, t)

∂t
+∇H · (h2(x, y, t)u2,H) = −τ0w2,e(x, y, t), (2.42)

where

w2,e(x, y, t) =

 0 if h1(x, y, t) > 0,

we(x, y, t) if h1(x, y, t) = 0.
(2.43)

We have defined our Ekman pumping forces in the upper layer (2.36) and lower layer

(2.43) such that the forcing is applied on each layer only where that layer reaches

the surface. In a typical model run, the upper layer covers the entire surface of the

domain (i.e., h(x, y, t) > 0 everywhere on the domain). In this case, no forcing would

be applied to the lower layer. However, there is also the case of outcropping, i.e.,

where the upper layer vanishes on some region of the domain, and the lower-layer

outcrops, or reaches the surface. In this case, we(x, y, t) is applied to the lower layer

via (2.43) on the outcropping region.

Because our model deals with a number of variables, we seek to redefine these

variables on a scale which allows each variable to be compared. This is accomplished

by a nondimensionalization (see, e.g., [26]), wherein we rewrite our variables with

associated characteristic scales. Thus, let

x = Lx̃, y = Lỹ, t = T t̃, u1,H = U1ũ1,H , h1 = H1h̃1,

u2,H = U2ũ2,H , p = P p̃2, w1,e = Ww̃1,e, w2,e = Ww̃2,e
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where L is a characteristic length scale, T is a characteristic time scale, U1 and U2

are characteristic horizontal velocity scales, H1 and H2 are characteristic layer depth

scales, P is a characteristic pressure scale, and W is a characteristic Ekman pumping

velocity scale.

We expand and rewrite equations (2.39)–(2.42) with the nondimensionalized vari-

ables, dropping the tildes, and suppressing all arguments:

U1

T

∂u1

∂t
+

U2
1

L
u1

∂u1

∂x
+

U2
1

L
v1

∂u1

∂y
− (f0 + βy)U1v1

=
−g′H1

L

∂h1

∂x
− P

L

∂p2

∂x
+

U2
1

L2
ν1

∂2u1

∂x2
, (2.44)

U1

T

∂v1

∂t
+

U2
1

L
u1

∂v1

∂x
+

U2
1

L
v1

∂v1

∂y
+ (f0 + βy)U1u1

=
−g′H1

L

∂h1

∂y
− P

L

∂p2

∂y
+

U2
1

L2
ν1

∂2v1

∂y2
, (2.45)

H1

T

∂h1

∂t
+

H1U1

L

(
∂h1u1

∂x
+

∂h1u1

∂y

)
= −Wτ0w1,e, (2.46)

U2

T

∂u2

∂t
+

U2
2

L
u2

∂u2

∂x
+

U2
2

L
v2

∂u2

∂y
− (f0 + βy)U2v2

= −P

L

∂p2

∂x
− U2r2u2 +

U2
2

L2
ν2

∂2u2

∂x2
, (2.47)

U2

T

∂v2

∂t
+

U2
2

L
u2

∂v2

∂x
+

U2
2

L
v2

∂v2

∂y
+ (f0 + βy)U2u2

= −P

L

∂p2

∂y
− U2r2v2 +

U2
2

L2
ν2

∂2v2

∂y2
, (2.48)

H2

T

∂h2

∂t
+

H2U2

L

(
∂h2u2

∂x
+

∂h2u2

∂y

)
= −Wτ0w2,e. (2.49)

Also, we note that

H1h1 + H2h2 = H, (2.50)

with H the total depth. We now divide (2.44) and (2.45) by U1|f0|, and (2.46) by

H1|f0|, noting that because we are dealing with a flow in the southern hemisphere,

θ0 < 0, and hence f0 < 0:
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1

T |f0|
∂u1

∂t
+

U1

L|f0|
u1

∂u1

∂x
+

U1

L|f0|
v1

∂u1

∂y
− (f0 + βy)

|f0|
v1

=
−g′H1

L|f0|U1

∂h1

∂x
− P

L|f0|U1

∂p2

∂x
− r2

|f0|
u1 +

U1

|f0|L2
ν2

∂2u1

∂x2
, (2.51)

1

T |f0|
∂v1

∂t
+

U1

L|f0|
u1

∂v1

∂x
+

U1

L|f0|
v1

∂v1

∂y
+

(f0 + βy)

|f0|
u1

=
−g′H1

L|f0|U1

∂h1

∂y
− P

L|f0|U1

∂p2

∂y
,− r2

|f0|
v1 +

U1

|f0|L2
ν2

∂2v1

∂y2
(2.52)

1

T |f0|
∂h1

∂t
+

U1

L|f0|

(
∂h1u1

∂x
+

∂h1u1

∂y

)
= − W

|f0|H1

τ0w1,e. (2.53)

Similarly, we divide (2.47) and (2.48) by U2|f0| and (2.49) by H2|f0| to obtain

1

T |f0|
∂u2

∂t
+

U2

L|f0|
u2

∂u2

∂x
+

U2

L|f0|
v2

∂u2

∂y
− (f0 + βy)

|f0|
v2

= − P

L|f0|U2

∂p2

∂x
− 1

|f0|
r2u2 +

U2

|f0|L2
ν2

∂2u2

∂x2
, (2.54)

1

T |f0|
∂v2

∂t
+

U2

L|f0|
u2

∂v2

∂x
+

U2

L|f0|
v2

∂v2

∂y
+

(f0 + βy)

|f0|
u2

= − P

L|f0|U2

∂p2

∂y
− 1

|f0|
r2v2 +

U2

|f0|L2
ν2

∂2v2

∂y2
, (2.55)

1

T |f0|
∂h2

∂t
+

U2

L|f0|

(
∂h2u2

∂x
+

∂h2u2

∂y

)
=

−W

|f0|H2

τ0w2,e. (2.56)

We now seek to determine the relative sizes of the non-dimensionalized variables.

For this we define the Rossby number, ε, as the ratio of the nonlinear acceleration to

the Coriolis force. The Rossby number has magnitude

ε :=
U2

1 /L

|f0|U1

=
U1

|f0|L
. (2.57)

A small Rossby number; i.e., ε � 1 (calculations are preformed in Chapter 3) implies

a geostrophic balance in our model.
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From (2.4) and (2.6), and noting that L < R, it is clear that at mid-latitudinal

θ0 values, βy � f0. Then the coefficient of the Coriolis term in (2.51) and (2.52)

satisfies
(f0 + βy)

|f0|
= O(1).

Furthermore, geostrophic flow in the upper layer implies that both the Coriolis terms

and pressure gradient terms in (2.51) and (2.52) are leading-order terms. Then it

follows that the pressure gradient terms in (2.51) and (2.52) are also O(1), and we

thus set
−g′H1

L|f0|U1

= 1, (2.58)

and
P

L|f0|U1

= 1, (2.59)

because these are the coefficients of the expanded normalized pressure p̃1(x, y, t) given

by (2.32). At this point, we make a number of assumptions in the scaling of our

variables. Depending on the chosen scaling, there are a number of models which can

be derived; these are described in detail in [15]. Our scaling choice corresponds to the

weak-β, thin-layer (WT) model from [15]. Continuing with this scaling, we assume

the flow in the lower layer is an order of ε smaller than the upper layer; i.e.,

U2 = εU1 = ε2|f0|L. (2.60)

We assume as well that the time scale is given by the advective scale in the lower

layer; i.e.,

T =
L

U2

=
1

ε2|f0|
. (2.61)

Also, we assume a thin upper layer; i.e.,

H1 = µε2H2, (2.62)

and

H2 = H. (2.63)

We include the additional parameter µ in (2.62) to more accurately compare the layer

depths. In our model of the ACC, µ has a value of 1.21 (see Section 3.3). We choose
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an upper-layer wind forcing of order O(ε2); i.e.,

W

|f0|H1

= ε2. (2.64)

From (2.62) and (2.64), we can determine the lower-layer wind forcing scale:

W

|f0|H2

= µε2 W

|f0|H1

= µε4. (2.65)

With the assumptions (2.58)–(2.65), we can rewrite (2.51)–(2.56) in terms of the

original variables and ε, except for the following: the Coriolis term,

1

|f0|
βy

in (2.51), (2.52), (2.54), and (2.55), the upper-layer Laplacian friction term

U1

|f0|L2
ν1∇2

Hu1,H

in (2.51) and (2.52), and the lower-layer friction terms

r2

|f0|
u2,H and

U2

|f0|L2
ν2∇2

Hu2,H

in (2.54)–(2.55). Because each of these terms involve one of the model parameters

β, r2, ν1 or ν2, we can redefine these parameters such that we eliminate scaling factors,

while also associating the aforementioned Coriolis term and friction terms with a more

representative order of magnitude of ε. Thus, we write

1

|f0|
βy := ε2β′y,

U1

|f0|L2
ν1 := εν ′1 = ε2ν ′2, (2.66)

1

|f0|
r2 := ε2r′2,

where β′, r′2, ν
′
1, and ν ′2 are suitably scaled parameters. Also, from (2.66) and (2.60),

we have that

U2

|f0|L2
ν2∇2

Hu2,H = ε2ν ′2∇2
Hu2,H .
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We now divide (2.50) by H,
H1

H
h1 +

H2

H
h2 = 1,

and using (2.62) and (2.63), we can then express h2 in terms of h1:

h2 := 1− µε2h1. (2.67)

By applying (2.58)–(2.67) to (2.51)–(2.56) and simplifying, we arrive at the non-

dimensional two-layer shallow-water equations :

ε2∂u1,H

∂t
+ ε (u1,H · ∇Hu1,H) + (−1 + ε2β′y)k̂× u1,H

= −∇Hh1 − ε
(
∇Hp + ν ′1∇2

Hu1,H

)
, (2.68)

ε
∂h1

∂t
+∇H · (h1u1,H) = −ετ0w1,e, (2.69)

ε2∂u2,H

∂t
+ ε2(u2,H · ∇H)u2,H + (−1 + ε2β′y)k̂× u2,H

= −∇Hp− ε2
(
r′2u2,H − ν ′2∇2

Hu2,H

)
, (2.70)

−µε2∂h1

∂t
+∇H ·

(
(1− ε2µh1)u2,H

)
= −ε2µτ0w2,e, (2.71)

where we have suppressed arguments of variables for notational ease. Henceforth,

we also suppress the subscript 1 on h. We now rewrite the upper-layer momentum

equation (2.68) as

k̂× u1,H = ∇Hh + ε
(
∇Hp + (u1,H · ∇H)u1,H − ν ′1∇2

Hu1,H

)
+ O(ε2). (2.72)

We then take k̂ × (2.72) and drop O(ε2) terms to obtain

k̂×
(
k̂× u1,H

)
= k̂×

[
∇Hh + ε

(
∇Hp + (u1,H · ∇H)u1,H − ν ′1∇2

Hu1,H

)]
.

This allows us to use the vector identity

k̂× (k̂× v) = −v (2.73)

to solve implicitly for u1,H :

u1,H = −k̂×
[
∇Hh + ε

(
∇Hp + (u1,H · ∇H)u1,H − ν ′1∇2

Hu1,H

)]
. (2.74)
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We expand

u1,H = u
(0)
1,H + εu

(1)
1,H + · · · .

It is clear from (2.74) that

u
(0)
1,H = −k̂×∇Hh. (2.75)

We can use u
(0)
1,H as an approximation for u1,H to simplify the right-hand side of (2.74),

giving

u1,H =

−k̂×
[
∇Hh + ε

(
∇Hp + ((k̂×∇Hh) · ∇H)(k̂×∇Hh) + ν ′1∇2

H(k̂×∇Hh
)]

. (2.76)

We simplify this expression by noting that

−k̂×
[
((k̂×∇Hh) · ∇H)(k̂×∇Hh)

]
= −k̂×

 −hy

hx

 ·
 ∂

∂x

∂
∂y

 −hy

hx


= −k̂×

(
−hy

∂

∂x
+ hx

∂

∂y

) −hy

hx


= −k̂×

 hyhyx − hxhyy

−hyhxx + hxhxy


=

 hx

hy


x

hy − hx

 hx

hy


y

:= J(∇Hh, h),

where J(A, B) := AxBy−AyBx denotes the Jacobian in the determinant sense. Then

we can write (2.76) as

u1,H = −k̂×∇Hh− ε
[
k̂×∇Hp + J(∇Hh, h)− ν ′1∇2

H∇h
]
. (2.77)

From (2.77),

u
(1)
1,H = −k̂×∇Hp− J(∇Hh, h) + ν ′1∇2

H∇h.

Substituting (2.77) into (2.69) and noting that the geostrophic velocity cannot

advect the upper-layer depth [12], i.e.,

∇H · (u(0)
1,Hh) = 0,
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at order ε we get
∂h

∂t
+∇H ·

(
hu

(1)
1,H

)
= τ0w1,e. (2.78)

We similarly rearrange the lower-layer momentum equation (2.70) to get

−k̂× u2,H = −∇Hp + O(ε)

and again using (2.73), solve for u2,H , giving

u2,H = −k̂×∇Hp + O(ε). (2.79)

Expanding u2,H as

u2,H = u
(0)
2,H + εu

(1)
2,H + · · · ,

we note from (2.79) that the lower-layer geostrophic velocity is

u
(0)
2,H = −k̂×∇Hp. (2.80)

We continue by applying the identity (2.29) to the momentum equation (2.70),

giving

k̂ ·
(
∇H ×

[
ε2∂u2,H

∂t
+ ε2((u2,H · ∇H)u2,H) + (−1 + ε2β′y)k̂× u2,H

])

= k̂ ·
(
∇H × [−∇Hp− ε2(r′2u2,H − ν ′2∇2

Hu2,H)]
)
,

or

ε2∂k̂ · (∇H × u2,H)

∂t
+ε2k̂·(∇H × ((u2,H · ∇H)u2,H))+k̂·

(
∇H × [(−1 + ε2β′y)k̂× u2,H ]

)
= k̂ ·

(
∇H × [−∇Hp− ε2(r′2u2,H − ν ′2∇2

Hu2,H)]
)
. (2.81)

But, noting that

k̂ ·
(
∇H ×

[
(−1 + ε2β′y)k̂× u2,H

])
= ∇H ·

(
(−1 + ε2β′y)u2,H

)
, (2.82)

and also that

∇H ×∇Hp = 0,
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we can simplify (2.81) to

ε2∂k̂ · (∇H × u2,H)

∂t
+ ε2k̂ · (∇H × ((u2,H · ∇H)u2,H)) +∇H ·

(
(−1 + ε2β′y)u2,H

)
= −ε2

(
r′2k̂ · (∇H × u2,H)− ν ′2k̂ ·

(
∇2

H∇H × u2,H

))
, (2.83)

which we call the vorticity equation [12]. Noting that

k̂ · (∇H × [(u2,H · ∇H)u2,H ]) = ∇H ·
([

k̂ · (∇H × u2,H)
]
u2,H

)
,

we can rewrite (2.83) as

ε2∂ζ

∂t
+∇H ·

((
ε2ζ − 1 + ε2β′y

)
u2,H

)
= −ε2

(
r′2ζ − ν ′2∇2

Hζ
)
, (2.84)

where ζ = k̂ · (∇H × u2,H) is the relative vorticity [17].

We now rewrite (2.84) as follows:

∇H · u2,H = ε2

(
∂ζ

∂t
+∇H · [(ζ + β′y)u2,H ] + r′2ζ − ν ′2∇2

Hζ

)
. (2.85)

We approximate u2,H on the right-hand side of (2.85) with the geostrophic velocity

in the lower layer u
(0)
2,H , and use (2.80) to approximate ζ by

ζ(0) = k̂ ·
(
∇H × u

(0)
2,H

)
= −∇2

Hp,

to get

∇H · u2,H = −ε2

(
∂∇2

Hp

∂t
+∇H ·

[
(∇2

Hp− β′y)u
(0)
2,H

]
+ r′2∇2

Hp− ν ′2∇4
Hp

)
. (2.86)

We now consider the lower-layer depth equation (2.71). Expanding and using (2.86),

we rewrite (2.71) as

−µε2∂h

∂t
− ε2

(
∂∇2

Hp

∂t
+∇H ·

[
(∇2

Hp− β′y)u
(0)
2,H

]
+ r′2∇2

Hp− ν ′2∇4
Hp

)

−ε2∇H · ((µh)u2,H) = −ε2µτ0w2,e. (2.87)

We approximate u2,H in (2.87) by u
(0)
2,H and divide by −ε2 to get

∂q

∂t
+∇H ·

(
qu

(0)
2,H

)
= µτ0w2,e − r′2∇2

Hp + ν ′2∇4
Hp (2.88)
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where

q := ∇2
Hp + µh− β′y. (2.89)

Equation (2.88) is called the potential vorticity equation, where q, defined in (2.89),

is the potential vorticity. This expression for potential vorticity can be independently

derived by reduction of the shallow-water analogue of potential vorticity (see [19]).

Combining (2.78) and (2.88), we have the advective form of the two-layer FG

model equations,

∂h

∂t
+∇H ·

(
hu

(1)
1,H

)
= −τ0w1,e, (2.90)

∂q

∂t
+∇H ·

(
qu

(0)
2,H

)
= µτ0w2,e − r′2∇2

Hp + ν ′2∇4
Hp (2.91)

where

u
(1)
1,H = −k̂×∇Hp− J(∇Hh, h) + ν ′1∇2

H∇h, (2.92)

u
(0)
2,H = −k̂×∇Hp, (2.93)

and

q = ∇2
Hp + µh− β′y. (2.94)

2.3 Spatial Domain, and Boundary Conditions

The ACC flows continuously eastward around the globe. Because the meridional

spread and the depth scale of the ACC are sufficiently small, we can approximate the

spatial domain of the ACC by a geometrically simple channel with periodic boundary

conditions in the direction of flow (see Figure 2.9). We investigate a number of

different channels with our model. We are interested in the effect of the presence of

land masses on the flow, and so we run our model first in a simple channel with no

land masses and then include a land barrier in our domain, such that we can compare

the nature of the flow in each case.
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Figure 2.9: The true shape of the domain of the ACC is approximated by a simple
periodic rectangular domain.

2.3.1 Simple Channel

In the simplest domain, we approximate the domain of the ACC by a rectangular

region. With x oriented east-west and y oriented north-south, we express the nondi-

mensionalized domain as

xL ≤ x ≤ xR,

0 ≤ y ≤ D,

where xL, xR, and D are suitably chosen real numbers. Because the mean oceanic

flow is oriented east to west, we impose periodic boundary conditions in x; i.e.,

h(xL, y, t) = h(xR, y, t), p(xL, y, t) = p(xR, y, t). (2.95)

From (2.94), q(x, y, t) is dependent only on p(x, y, t), h(x, y, t), and y. Then the

periodicity in h(x, y, t) and p(x, y, t) implies periodicity in q(x, y, t) as well. For the

boundary conditions in y, we impose no-normal flow conditions on the upper and

lower boundaries; i.e.,

v1 = v2 = 0 on y = 0, D.
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Recalling (2.75) and (2.80), the leading-order velocities in the upper and lower layer

respectively are

u0
1,H = −k̂×∇Hh =

 hy

−hx

 , (2.96)

u0
2,H = −k̂×∇Hp =

 py

−px

 . (2.97)

Letting v1 = v2 = 0 in (2.96) and (2.97), we get that

hx = 0 on y = 0, D. (2.98)

px = 0 on y = 0, D. (2.99)

These boundary conditions alone would create an ill-posed problem, however, because

we cannot specify tangential derivatives on the boundary. At next order, we examine

the upper-layer velocity,

u
(1)
1,H = −k̂×∇Hp− J(∇Hh, h) =

 py − hxxhy + hxyhx

−px − hxyhy + hyyhx

 .

Imposing v1 = 0 implies that

−px − hyxhy − hyyhx = 0.

Using (2.98) and (2.99) we can rewrite this boundary condition as

(h2
y)x = 0 on y = 0, D. (2.100)

We can now conclude that hy is (at most) only a function of time on y = 0, D. Due to

the aforementioned ill-posedness of our derived boundary conditions for h(x, y, t) and

p(x, y, t), we must modify these conditions somewhat. We proceed with two methods

of implementing a viable boundary condition on h(x, y, t), with a short discussion of

the effects of each implementation.

Boundary Method I for h(x, y, t)

We can enforce the condition on h(x, y, t) from (2.98) and (2.100) by letting h(x, y, t)

be defined as only a function of time on y = 0, D. We implement this by defining a
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Dirichlet condition for h(x, y, t),

h(x, y, t) = havg,0 on y = 0,

h(x, y, t) = havg,D on y = D.

Here, havg,0 is an average of ‘nearby’ values of h(x, y, t̂) for some time t̂; i.e.,

havg,0 =
1

area(R0)

∫∫
R0

h(x, y, t̂)dxdy, (2.101)

where R0 is a region near the boundary y = 0. Similarly, havg,D is defined as

havg,D =
1

area(RD)

∫∫
RD

h(x, y, t̂)dxdy, (2.102)

where RD is a region near the boundary y = D. With the above definition, h(x, y, t)

takes on a spatially constant, but time-dependent value on y = 0, D. In addition, the

normal derivative of h(x, y, t) at y = 0, D is bounded by the deviation of h(x, y, t)

from the mean value (i.e., havg,0 or havg,D) along the boundary. In this sense, (2.101)

and (2.102) approximate a Neumann condition for h(x, y, t), i.e.,

n · ∇Hh(x, y, t) ' 0, on y = 0, D. (2.103)

Because the upper-layer geostrophic velocity is along streamlines of h(x, y, t), (2.103)

is an approximation to a no-slip condition in the upper layer. Note that (2.103) also

implies that (2.100) is approximately satisfied.

Boundary Method II for h(x, y, t)

Alternatively, we can directly impose

n · ∇h = 0, on y = 0, D,

such that we exactly impose a no-slip condition in the upper layer. However, this

condition allows normal flow into the boundary; i.e., the tangential derivative of

h(x, y, t) along y = 0, D is not constrained to 0. Therefore, we must modify our

boundary condition to force h to be constant along y = 0, D, that is, to impose

v1 = 0 at each of these boundaries. We can accomplish this by using a sponge layer,
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a technique used in a variety of atmospheric and oceanic models (see, e.g., [21]). A

sponge layer is a region around a boundary in which velocities are artificially damped

so that problematic or ill-posed boundary conditions may be satisfied. In our case,

the sponge layer takes the form of two regions,

R0,sponge = {(x, y)|y ∈ [0, δ], δ > 0},

and

RD,sponge = {(x, y)|y ∈ [D − δ,D], δ > 0},

where the parameter δ controls the width of the sponge layer. In this layer, Ekman

(i.e., linear) friction is increased via a large friction coefficient applied only on the

regions R0,sponge and RD,sponge. As the friction coefficient increases, the fluid in these

two regions is artificially made more viscous. The viscosity in the regions can be

raised sufficiently via the friction coefficient so that all velocities are damped; then all

along the boundary regions R0,sponge and RD,sponge, and thus all along the boundaries,

the solution of h(x, y, t) will ‘settle’ on a representative value for each boundary. This

value is constant along each boundary at a given time step, but it can evolve through

time.

Boundary Conditions for p

In determining the boundary condition for p(x, y, t) on y = 0, D, we have some

freedom. Equation (2.94) determines p(x, y, t) only up to an additive constant. We

are then free to choose the value of p(x, y, t) somewhere on the domain. Because

(2.99) implies that p(x, y, t) is constant on y = 0, D, we can choose to set

p(x, D, t) = 0. (2.104)

For the boundary y = 0, we impose a Neumann condition on p(x, y, t),

n · ∇p(x, y, t) = 0 on y = 0. (2.105)

This condition allows ‘natural’ values of p(x, y, t) to evolve on the lower boundary;

this is useful for calculating quantities (e.g., lower-layer transport) in the analysis of

numerical simulations. Imposing (2.105) does not strictly enforce (2.99) for p(x, y, t),



35

although the variation in p(x, y, t) along the y = 0 boundary is small in numerical

simulations.

Remaining Boundary Issues

We must choose between the two boundary implementation methods for h(x, y, t), and

we must also impose a boundary condition on q(x, y, t). Boundary method I assigns a

constant value along each of the boundaries y = 0 and y = D via an integral average of

nearby values. In deriving the shallow-water equations, the conservation of mass was a

fundamental physical principle used. Indeed, for our reduced equations (2.90)–(2.94),

it can be shown that mass is exactly conserved (see Section 4.2 for details). However,

when using boundary method I, the representative boundary value arrived at via the

integral average does not necessarily conserve mass. Instead, the boundary values

of h(x, y, t) that are imposed act as sources or sinks of mass. Although these mass

changes are small at each time step, they accumulate over time and become significant

over long-time integration. As the boundaries become more complex, this source/sink

effect is heightened, and great mass changes can be seen. Through experimentation

with the parameters defining the integral average regions R0 and RD, an attempt was

made to try to minimize the mass drift. However, parameters were very sensitive

to a host of factors, including τ0, the geometry, and friction, and thus a given set

of parameters minimizing mass change in one case did not necessarily minimize this

change in another simulation. This property of mass drift is a violation of physical

principles at the most fundamental level, and thus, we cannot use boundary method

I for h(x, y, t).

Boundary method II, however, does not artificially impose a value at the bound-

aries y = 0, D. Instead, through the high-viscosity sponge layer, the system itself

determines an appropriate boundary value. This boundary method does allow for

the conservation of mass, up to numerical error. This error arises because of the spa-

tial discretization. The Ekman forcing function must integrate to 0 over the domain

in order to conserve mass, but the use of a function which analytically integrates to 0

on the discretized domain can only approximate this zero-integration. The difference
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accumulates at each time step, and leads to a small drift in mass. However, the rela-

tive mass drift is on the order of 1e−7 for our chosen resolution, whereas the relative

mass drift using Boundary Method I can be on the order of 1; i.e., the change in mass

can be as large as the initial total mass. This error predictably decreases as spatial

resolution is increased. Although other issues arise from using these sponge layers

(e.g., spikes in higher order derivatives near the δ-interfaces of R0,sponge and RD,sponge)

these issues do not invalidate the model.

For our model variable q(x, y, t), we can determine its boundary condition accord-

ing to its definition (2.94). We assume that

∇2
Hp = 0

on the boundary, and thus, in a Dirichlet sense, we define q on the boundaries y = 0, D

to be

q = µh− β′y. (2.106)

But here again we must determine a proper boundary value for h(x, y, t). Using

boundary method I to determine h(x, y, t) in (2.106) does not affect conservation

properties, and so it is used here. Thus we set

q(x, y, t) = µhavg,0 − β′y on y = 0,

and

q(x, y, t) = µhavg,D − β′y on y = D.

2.3.2 Channel with Passage

The ACC flows around the earth largely uninhibited by land barriers. However, be-

tween the southern tip of South America and the Antarctic Peninsula lies a relatively

narrow oceanic region called the Drake Passage (see Figure 2.10). In this region, the

meridional spread of the ACC is constrained between the land barriers. In addition

to providing a convenient station for measuring the transport of the ACC, the Drake

Passage also influences the path of the flow. Because of these flow implications, we

want to incorporate this geography into our model domain. The upper and lower
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Figure 2.10: The Drake Passage (adapted from [8]).

Figure 2.11: The model domain representing the ACC domain constrained by the
Drake Passage.
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boundaries of the simple channel are modified to include this constriction by drawing

the two boundaries together on a small part of the domain (see Figure 2.11).

Although we have modified the boundaries of our domain, the conditions imposed

remain largely the same. As in the simple channel, we impose the periodic conditions

in x for both h(x, y, t) and p(x, y, t) (i.e., (2.95)). As in Section 2.3.1, this implies

periodicity in q(x, y, t) as well. The remaining boundaries are grouped as ‘north’ and

‘south’ as in Figure 2.11. This is done because the boundary conditions imposed

are the same for all boundaries within the ‘north’ group. Similarly, the boundary

conditions imposed are the same for all boundaries within the ‘south’ group. This

designation simplifies our discussion. As in the simple channel, we impose no-flow

conditions normal to the boundaries in both the upper and lower layers. Also, as in the

simple channel, the ill-posedness of these conditions forces us to modify the conditions

to imposing a spatially constant, but time-dependent boundary condition for h(x, y, t)

on the ‘north’ and ‘south’ boundaries. We impose the analogue of Boundary Method

II for this domain by defining Rsouth,sponge and Rnorth,sponge to be suitable regions near

the south and north boundaries respectively. Then in addition to the no-slip condition

at the boundaries, the high viscosity along each boundary forces the solution to be

constant along each boundary, and this imposes no-normal flow, as in the simple

channel.

For p(x, y, t) on the ‘north’ and ‘south’ boundaries, we apply the analysis from

the simple channel, and thus impose p(x, y, t) = 0 along the ‘north’ boundary, and

apply the analogue of (2.105) along the ‘south’ boundary,

n · ∇p(x, y, t) = 0. (2.107)

Again, we have not forced p(x, y, t) to be constant along the ‘south’ boundary, but

the variation along the boundary as a result of imposing (2.107) is small.

2.4 Initial Conditions and Time Integration

The evolution of the two-layer frontal geostrophic model can be likened to taking an

unforced oceanic domain and ‘turning on’ the forcing, specifically the Ekman pumping
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force caused by winds. The evolution has two distinct phases: the non-turbulent front-

building interval and the turbulent phase. In the first phase, the Ekman pumping

force acts upon the initially constant h(x, y, t). This force creates a gradient, or

front, in the solution of h(x, y, t). The Ekman pumping force continually increases

the magnitude of the gradient, until the buildup of potential energy in the front is

released. This release occurs in the second phase. The gradient in h(x, y, t) breaks

into a turbulent profile, and the system eventually reaches a balance between the

momentum imparted by the winds and the momentum dissipated by the turbulence

and friction.

As the solution of h(x, y, t) evolves and becomes turbulent, we want to analyze the

‘steady state’ solution that prevails as a result of the momentum balance. However,

we do not seek a steady state in the typical sense of h(x, y, t) and p(x, y, t) remaining

unchanged for all t > T for some T > 0. Instead, we seek a steady state such that

the time-averaged, zonally averaged profile of h(x, y, t) and p(x, y, t) over some time

interval Tb < t < Tc in the turbulent regime is unchanging (within some tolerance)

compared to the same profile in a previous turbulent interval, Ta < t < Tb. We refer

to this state as a quasi-steady state.

The model is evolved until a quasi-steady state is established in the solution of

h(x, y, t) and p(x, y, t). The strength of the Ekman pumping force determines the

length of time required for the first phase. The length of time of the second phase

is determined by the time needed to establish steady state, and the desired amount

of turbulent data needed to construct meaningful time-averages. In our model runs,

we typically evolve our model to t = 30000 (corresponding to roughly 33 years),

in which time the front is created, turbulence is established, and a quantitatively

verifiable steady state is observed. For weak-forcing models and other models that

take longer to establish a quasi-steady state, we evolve the model for longer, typically

to t = 60000. In [33], in which similar experiments are performed, their model is

evolved to 30 years.

Because the initial state of the model is a flat, unforced oceanic domain, both layers

are flat; i.e., h(x, y, t) is constant for all (x, y). Thus, we set h(x, y, 0) to a constant

value throughout the domain. Similarly, the pressure is initially constant throughout
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the domain, and so we set p(x, y, 0) equal to a constant (we choose p(x, y, 0) = 0 to

satisfy boundary conditions). Because q(x, y, t) is determined by the h(x, y, t) and

p(x, y, t), we set

q(x, y, 0) = ∇2
Hp(x, y, 0) + µh(x, y, 0)− βy = µh(x, y, 0)− βy. (2.108)



Chapter 3

FEMLAB Implementation

3.1 Introduction

To numerically solve the model, we turn to the finite element method. The finite

element method is a discretization method that easily allows for irregular domains.

This is important in adapting our model to realistic domains. Because the flow of

the ACC is affected by the presence of land barriers in the region of flow (e.g., the

Drake Passage), representation of these land barriers is important for the validity of

the model. We implement the model in the software package FEMLAB. FEMLAB

is an interactive environment for solving a system of partial differential equations

via the finite element method, and includes routines for spatial discretization (i.e.,

meshing), solving, and analysis of the solution. FEMLAB is most widely used for

its application modes which contain predefined equations for a variety of physical

phenomena, but the inclusion of general PDE forms allows the modelling of our FG

model equations. In the following, we suppress arguments of variables, unless their

inclusion aids clarity.

3.2 Solution of the Model Equations in FEMLAB

Adapting our model equations to the required FEMLAB input requires some manip-

ulation. We use the time-dependent, general-form partial-differential-equation mode,

which requires model equations in the form

da
∂u

∂t
+∇H · Γ = F, (3.1)

where da is the mass coefficient, and u is the model variable. From (2.92) and (2.93),

it is clear that both u
(1)
1,H and u

(0)
2,H depend only on spatial derivatives of h and p.

Thus, we can explicitly substitute for u
(1)
1,H and u

(0)
2,H in terms of h and p. This leaves

us with 3 independent model variables, h, p, and q.

41
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An additional restriction on solving our model equations with FEMLAB is that

the Γ and F terms in (3.1) can contain only the dependent and independent variables

and first partial derivatives. Thus, higher-order derivatives must be converted to

lower order as a system of equations. To this end, we define a helper variable c as

c := ∇2
Hh, (3.2)

which we can write in the form of (3.1) as

0
∂c

∂t
+∇H ·

 hx

hy

 = c. (3.3)

With the 4 model variables h, p, q, and c we transform our model equations (2.90)–

(2.94) into a system of 4 equations of the form of (3.1).

We use this helper variable in writing equation (2.90) in an acceptable FEMLAB

form. Though already in the form of (3.1), we must convert the second-order deriva-

tives of h in u
(1)
1,H to first-order via c. In addition, we wish to do this conversion using

as few extra variables (and thus, equations) as possible. The size of the linear system

used in the solution of the model equations at each time step is directly related to

the number of model variables, which motivates using a minimal number of extra

variables. We can limit ourselves to just the one extra equation (3.3) by using the

following identity:

−∇H · [hJ(∇Hh, h)] = ∇H ·

hc +
hxhx + hyhy

2

 −hy

hx

 . (3.4)

We show this identity by expansion of the left- and right-hand sides of the equation.

On the left, we have

−∇H · [hJ(∇Hh, h)] = −∇H ·

h

 hxxhy + hxyhx

hyxhy + hyyhx



= −∇H · h

 hhxxhy + hhxyhx

hhyxhy + hhyyhx


= − (hhxxhy)x − (hhyxhy)y + (hhxyhx)x + (hhyyhx)y

= − ((hhxx)xhy + hhxxhyx)− ((hhyx)yhy + hhyxhyy)
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+ ((hhxy)xhx + hhxyhxx) + ((hhyy)xhx + hhyyhxy)

= −hxhxxhy − hhxxxhy − hhxxhyx− hyhyxhy − hhyxyhy − hhyxhyy

+hxhxyhx + hhxyxhx + hhxyhxx + hyhyyhx + hhyyyhx + hhyyhxy. (3.5)

Assuming sufficient continuity in h, we can interchange the order of the partial deriva-

tives, cancel terms, and simplify the left-hand side (3.5) to

−hxhxxhy − hhxxxhy − hyhyxhy − hhyxyhy + hxhxyhx + hhxyxhx + hyhyyhx + hhyyyhx.

(3.6)

We now expand the right-hand side of (3.4):

∇H ·

hc +
hxhx + hyhy

2

 −hy

hx

 = ∇H ·

 −hhxxhy − hhyyhy − hxhx

2
hy − hyhy

2
hy

−hhxxhx + hhyyhx + hxhx

2
hx + hyhy

2
hx


= −hxhxxhy − hhxxxhy − hhxxhyx − hxhyyhy − hhyyxhy

−hhyyhyx − hyhxhxx − hyhyhyx −
hxhx + hyhy

2
hyx

+hyhxxhx + hhxxyhx + hhxxhyy + hyhyyhx + hhyyyhx

+hhyyhxy + hxhxhxy + hxhyhyy +
hxhx + hyhy

2
hyx. (3.7)

Similarly, we can simplify the right-hand side (3.7) to

−hhxxxhy−hhyyxhy−hyhxhxx−h−y hyhyx +hhxxyhx +hhxhyyy +hxhxhxy +hxhyhyy.

(3.8)

It is easily verified by inspection that (3.6) is equal to (3.8), and we have thus verified

(3.4).

We now expand (2.90):

∂h

∂t
+∇H ·

(
h
(
−k̂×∇Hp− J(∇Hh, h) + ν ′1∇2

H∇Hh
))

= −τ0w1,e;

i.e.,

∂h

∂t
+∇H ·

 hpy

−hpx

−∇H · (hJ(∇Hh, h))

−∇H ·
(
ν ′1h∇2

H∇Hh
)

= −τ0w1,e.
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Then, using (3.4) and (3.2), we get

∂h

∂t
+∇H ·

 hpy + ν ′1hcx

−hpx + ν ′1hcy

+

hc +
hxhx + hyhy

2

 −hy

hx

 = −τ0w1,e. (3.9)

Now (2.90) is written in the form of (3.1) using only the model variables and first

partial derivatives in the Γ and F terms. We can input this equation into FEMLAB.

Now expanding (2.91)

∂q

∂t
+∇H ·

q

 py

−px

 = µτ0w2,e − r′2∇2
Hp + ν ′2∇4

Hp

we rewrite it in the form of (3.1) as

∂q

∂t
+∇H ·

q

 py

−px

+ r′2

 px

py

 = µτ0w2,e + ν ′2∇4
Hp. (3.10)

To eliminate the high-order derivatives in the friction term

ν ′2∇4
Hp,

we rewrite in terms of q. First, we expand

∇2
Hq = ∇2

H(∇2
Hp + µh− β′y)

= ∇4
Hp + µ∇2

Hh. (3.11)

Thus,

ν ′2∇4
Hp = ν ′2

(
∇2

Hq − µ∇2
Hh
)
. (3.12)

We can use (3.12) to rewrite (3.10) as

∂q

∂t
+∇H ·

q

 py

−px

+ r′2

 px

py

− ν ′2

 qx

qy

+ ν ′2µ

 hx

hy

 = µτ0w2,e. (3.13)

Now (3.13) is also expressed in the form of (3.1), using only the model variables and

first partial derivatives in the Γ and F terms.
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We now rewrite the expression q = ∇2
Hp + µh− β′y in the form of (3.1):

0
∂q

∂t
+∇H ·

 px

py

 = q − µh + β′y. (3.14)

Combining (3.3), (3.9), (3.13), and (3.14), we have our model equations as a system

of 4 PDEs in the required form (3.1):

∂h

∂t
+∇H ·

 hpy + ν ′1cx

−hpx + ν ′1cy

+

hc +
hxhx + hyhy

2

 −hy

hx

 = −τ0w1,e, (3.15)

∂q

∂t
+∇H ·

q

 py

−px

+ r′2

 px

py

− ν ′2

 qx

qy

+ ν ′2µ

 hx

hy

 = µτ0w2,e, (3.16)

0
∂q

∂t
+∇H ·

 px

py

 = q − µh + β′y, (3.17)

0
∂c

∂t
+∇H ·

 hx

hy

 = c. (3.18)

3.3 Parameters

After implementing the model equations in the FEMLAB environment, we specify

parameter values for our model. Model parameters will fall into two categories: fixed

parameters, which remain constant throughout all experiments, and variable param-

eters, which vary in a range of values in our experiments.

We base our numerical experiments on the work of Tansley and Marshall [33],

wherein numerical experiments were conducted using a balanced geostrophic vorticity

model. Like the equations of the frontal geostrophic model, the geostrophic vorticity

equations are asymptotic reductions of the shallow-water equations [33]. Because we

are basing our experiments on [33], we derive our parameter values from there. The

geostrophic vorticity model is dimensional ; i.e., it has not been non-dimensionalized.

Therefore, we non-dimensionalize the parameter values in [33] following Section 2.2.

However, in our determination of the non-dimensional horizontal turbulent viscosity
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Table 3.1: Dimensional model parameters from [33]
parameter symbol value

Longitudinal extent 3LH 5760 km
Latitudinal extent LH 1920 km

Upper-layer height scale H1 1200 m
Total Depth H 4000 m

Coriolis parameter f0 −1.3× 10−4 s−1

Beta parameter β0 1.5× 10−11 m−1s−1

Surface wind-stress τ̂0 0.01 - 0.25 Nm−2

Reduced gravity g′ 0.02 ms−2

Reference density ρ0 1035 kg m−3

Bottom linear friction coefficient R2 1× 10−7 s−1

friction parameters, ν ′1 and ν ′2, we cannot use the parameter values in [33], because

the geostrophic vorticity model does not include this type of friction. The geostrophic

vorticity model instead uses a higher-order friction called hyperviscosity. To obtain

a value for ν ′1 and ν ′2, these parameter spaces were explored. From (2.66), we can

deduce that

ν ′2 =
1

ε
ν ′1,

and thus, we need only explore one parameter space. With ν ′1 = 0, the solver is

prematurely halted due to a failure in convergence of the modified Newton iteration

(see Section 4.6 for details of the solver), caused by the growth of small-scale noise.

A relatively large value of ν ′1 can affect the balances established (see Chapter 4). We

choose a value of ν ′1 = 1.93e-3, which implies a value of ν ′2 = 3.86e-3. This choice cor-

responds to a dimensional horizontal turbulent viscosity of 400 m2s−1, considerably

smaller than 2000 m2s−1 used in [4] for a three-dimensional primitive equation model

of the ACC, but in the (fairly wide) range of 102 m2s−1 to 104 m2s−1 given in [17].

The chosen value for ν ′1 adequately smooths the solution via damping of high-order

derivatives, while leaving the established layer balances largely unaffected. Table 3.1

shows the dimensional model parameters used in [33].

We calculate the value of the eddy Rossby number using (2.57) along with the
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parameter values from Table 3.1:

ε =
g′H1

(|f0|Leddy)2
= 0.50, (3.19)

where Leddy = 60km is a characteristic eddy length scale. Geostrophy requires ε � 1;

here ε is small enough to imply geostrophy [12], though this value lies in the limits of

applicability.

There is some difference in implementation of the forcing term between the geostrophic

vorticity model and our model. The former uses a surface wind stress given by

τs = τ̂0 cos
(

πy

L

)
, −L

2
≤ y ≤ L

2
. (3.20)

The Ekman pumping force used in our model implementation is given by the non-

dimensionalized curl of the wind stress [12]:

τ0we = ∇H ×
τs

|f0|ρ0

=
d

dy

τs

|f0|ρ0

=
τ̂0π

ρ0|f0|L
sin(

πy

L
), −L

2
≤ y ≤ L

2
.

Additionally, we model over the latitudinal domain y = [0, D], where D is the non-

dimensionalized analogue of L, and so we translate the forcing term into our domain,

obtaining

τ0we =
τ̂0π

ρ0|f0|L
cos

(
πy

D

)
, 0 ≤ y ≤ D. (3.21)

Then from (3.21) we can obtain the coefficient of the Ekman pumping force, τ0, as

τ0 =
τ̂0π

ρ0|f0|L
.

From Table 3.1, τ̂0 ranges from 0.01 – 0.25 Nm−2; the corresponding range for τ0 is

3.961 × 10−6 − 9.905 × 10−5. Next, we calculate β′, the nondimensional analogue of

β0, as

β′ =
β0

|f0|Lε2
= 0.03.

We also calculate µ from (2.62) and (2.63):

µ =
H1/H

ε2
= 1.21.

Next, we calculate our non-dimensional frictional parameters. However, we deviate

somewhat from the values given in Table 3.1. The value of R2 in [33] is given for
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Table 3.2: Non-dimensional model parameters
Non-dimensional parameter symbol value

Longitudinal extent 3D 96
Latitudinal extent D 32
Beta parameter β′ 0.03

Relative layer depth parameter µ 1.21
Surface wind-stress τ0 3.961× 10−6 − 9.905× 10−5

Bottom linear friction coefficient r2 0.04
Upper-layer horizontal turbulent viscosity ν1 1.93× 10−3

Lower-layer horizontal turbulent viscosity ν2 3.86× 10−3

a typical channel with bottom topography. However, without the dissipative role of

bottom topography, artificially large transports occur that are an order of magnitude

larger; these transports do not interest us. In our simple channel without bottom to-

pography, we increase the amount of bottom friction to compensate for the artificially

smooth bottom. We thus use a dimensional bottom friction coefficient of

R2 = 1.0× 10−6s−1.

We proceed to calculate the non-dimensional friction parameters:

r2 =
R2/|f0|

ε2
= 0.04,

ν1 =
Ah/L

2|f0|
ε

= 1.93× 10−3, ν2 =
Ah/L

2|f0|
ε2

= 3.86× 10−3.

We also obtain our domain parameter, D = L/Leddy = 32. We summarize our non-

dimensional model parameters in Table 3.2.

3.4 Domain and Bottom Topography

We have thus far avoided any mention of the bottom topography of the ocean, except

for a short justification of altering the bottom linear friction coefficient. Indeed the

ocean bottom in the region of the ACC contains a widely varying topography that

has profound effects on the nature and course of the flow of the ACC. Fortunately,
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the inclusion of bottom topography in our model is fairly simple. Because we are

modelling in a two-dimensional regime, we do not alter our domain. Instead, we

rewrite (2.67) as

h2 := 1− µε2h1 − µBε2hB(x, y),

where µB is a bottom topography parameter, and hB(x, y) is a function which de-

scribes the topography of the ocean bottom. When this additional term is carried

through the derivation, it results only in a modification of equation (2.94) defining q,

to

q = ∇2
Hp + µh + µBhB(x, y)− β′y.

We can easily modify the FEMLAB implementation of this equation accordingly by

replacing the right-hand side of (3.17) with

q − µh− µBhB(x, y) + β′y.

For simulations without bottom topography, we set µB = 0. The variations of domain

and topography provide the basis for our experiments with the model, following the

experiments of [33].

3.4.1 Simple Channel

Our simplest experiment involves a latitudinally re-entrant (i.e., periodic in x), flat-

bottom (i.e., hB(x, y) = 0) rectangular domain, Ω = {[0, 3D] × [0, D]} = {[0, 96] ×
[0, 32]}. See Figure 3.1.a.

3.4.2 Simple Channel with Topographic Ridge

We modify our simple channel to include a simple ridge in the bottom topography.

We thus define

hB(x, y) = exp

(
−
(

x− 17

3

)2
)

, (3.22)

i.e., hB(x, y) defines a ridge of maximal height 1, centered at x = 17, and independent

of y. We retain the domain of the simple channel run; i.e., Ω = {[0, 3D] × [0, D]} =

{[0, 96]× [0, 32]}. See Figure 3.1.b.
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Figure 3.1: a: Simple channel domain. b: Simple channel domain with contoured
topographic ridge. c. Channel with passage domain and contoured topographic ridge.
These experiments are based on [33].
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3.4.3 Channel with Passage and Topographic Ridge

We further modify our simple channel to include a passage as described in Section

2.3.2. We begin with the simple channel geometry, using a base domain of Ω =

{[0, 3D]× [0, D]} = {[0, 96]× [0, 32]}. Following [33], two rectangular regions of width

6 centered at x = 17 are subtracted from this domain, leaving a restricted passage for

the flow centered approximately at D/4. However, the construction of the domain

using rectangles leads to sharp corners, or singularities [1] in the modelling domain.

Singularities can cause errors in meshing and in the solution; however they can be

avoided by filleting [1] any singularities in the modelling geometry. Filleting is a

process by which sharp corners are rounded by a given radius. In our geometry, the

passage created by subtracting the two rectangular domains is filleted at the corners,

rounding the land barriers. This is not unphysical; the use of rectangular sections to

construct our original domain is idealized. Indeed, rounded land barriers are more in

keeping with observed coastlines. The bottom topography in (3.22) is included. Taken

together, the topography and ridge geometry are a simplification of the topography

of the Drake Passage, as illustrated in Figure 3.2. See Figure 3.1.c. for the idealized

domain.

3.5 Implementation of Boundary Conditions, Initial Conditions

FEMLAB implements boundary conditions via the system of equations

−n · Γi = Gi + Σn
j=1

∂Rj

∂υi

αj, i = 1 . . . n, (3.23)

Ri = 0, i = 1 . . . n, (3.24)

where n is the outward unit normal vector, Γi is the ith component of Γ from (3.1), Gi

and Ri are fields specified by the user, αj is a Lagrange multiplier [1], υi is the ith model

variable, and n is the number of model variables. Additionally, the user specifies the

boundary as either Neumann or Dirichlet. The combination of this specification and

the system (3.23)–(3.24) allows for 3 boundary definition possibilities. First, when

specifying a boundary as Neumann, FEMLAB imposes

Ri = 0, i = 1 . . . n,
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Figure 3.2: The topography of the Drake Passage, from WORLDBATH:ETOPO5
U.S. Navy data. The bottom topography through the Drake Passage is much higher
than the surrounding ocean, which motivates our topographic ridge in the geometry
of Figure 3.1.c.

and (3.24) reduces to

−n · Γi = Gi, i = 1 . . . n.

Alternatively, by specifying a boundary as Dirichlet but having non-zero entries for

Gi for all i = 1 . . . n, the Lagrange multipliers are chosen so as to render (3.23)

redundant; i.e., the left-hand side of (3.23) is made equal to the right-hand side, such

that nothing is imposed. This redundnacy leaves just the condition (3.24). Lastly,

one can impose a combination of Dirichlet and Neumann conditions on a boundary

by specifying the boundary as Dirichlet, but setting some (but not all) entries of

Ri equal to 0. For illustration, we consider the boundary conditions for our model

variables on the y = 0 (or, equivalently, ’south’) boundary.
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Specifying the boundary as Dirichlet, both (3.23) and (3.24) apply. We set

R =



0

q − µhavg,0 − µBhB + β′y

0

0

 ,

where R = [R1 R2 R3 R4]
T , and havg,0 is given by (2.101). We also set

G =



0

0

0

0

 ,

where G = [G1 G2 G3 G4]
T . Additionally, define the vector of dependent variables

by Υ = [υ1 υ2 υ3 υ4]
T = [h q p c]T . With these definitions, (3.23) gives the system of

equations

−n · Γ1 = 0, (3.25)

−n · Γ2 = α2, (3.26)

−n · Γ3 = 0, (3.27)

−n · Γ4 = 0. (3.28)

Now (3.26) is solved for the Lagrange multiplier α2 so as to render the equation

redundant. (3.27) and (3.28) are obtained by noting that all of the derivative terms

in the summation in (3.23) vanish, and we are left with two homogeneous Neumann

conditions. From (3.17) and (3.18), we deduce that

Γ3 =

 px

py

 ,

and

Γ4 =

 hx

hy

 ,

which implies that (3.27) and (3.28) give the Neumann conditions

−n · ∇Hp = 0,
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Table 3.3: Boundary Condition Implementation
boundary i Gi Ri Resultant Boundary Condition

y = 0, ‘south’ 1 0 0 −n · ∇H (hu1,H) = 0
2 0 q − µhavg,0 − µBhB + β′y q = µhavg,0 + µBhB − β′y
3 0 0 −n · ∇Hp = 0
4 0 0 −n · ∇Hh = 0

y = D, ‘north’ 1 0 0 −n · ∇H (hu1,H) = 0
2 0 q − µhavg,D − µBhB + β′y q = µhavg,D + µBhB − β′y
3 0 p p = 0
4 0 0 −n · ∇Hh = 0

−n · ∇Hh = 0.

In this sense, boundaries can contain both Dirichlet and Neumann conditions. There

is a separate procedure for defining periodic boundaries; these are implemented as

extrusion coupling variables [1]. An extrusion coupling variable is defined by a non-

local expression in a source domain that is mapped to a destination domain while

maintaining some orientation. The implementation is straightforward in the FEM-

LAB GUI. We summarize our implementation of the boundary conditions discussed

in Section 2.3 in Table 3.3. We include both the simple channel domain and the pas-

sage domain in the same table because the boundary conditions are identical except

for the shape of the boundary.

Initial conditions must be specified for all model variables in FEMLAB. As we have

non-dimensionalized h(x, y, t) with respect to a characteristic upper-layer depth, we

set h(x, y, 0) = 1. Next, we set p(x, y, 0) = 0, which we note is consistent with

the boundary conditions imposed upon p(x, y, t). We set c(x, y, 0) = 0 because all

spatial derivatives of h(x, y, 0) are initially 0. Lastly, using (3.4) in (2.108), the initial

condition q(x, y, 0) is determined in terms of p(x, y, 0) and h(x, y, 0); i.e.,

q(x, y, 0) = ∇2
Hp(x, y, 0) + µh(x, y, 0) + µBhB(x, y)− β′y = µ + µBhB(x, y)− β′y.



Chapter 4

Results

4.1 Introduction

Numerical simulations of our FEMLAB model were performed to correspond to the

various domain and bottom topography cases - namely, the simple channel, the simple

channel with bottom topography, the channel with a passage, and the channel with a

passage and bottom topography. In addition to examining the effects of domain and

topography, we explore a number of parameter spaces. The relatively short compu-

tational times needed to perform a full simulation allow this parameter investigation;

this investigation is not feasible with the more complex, higher-resolution models

(e.g., OCCAM [35]), or with models using the full shallow-water equations (e.g., HIM

[9]). In addition to the parameter investigations that are described here, a number of

parameter values in the model were obtained by systematically experimenting with

a range of values and choosing the optimal one. This process was primarily used in

determining the boundary parameters, specifically the width of the sponge layer, the

sponge layer linear friction coefficient, and the region width corresponding to bound-

ary method I (see Section 2.3.1). These values were chosen so as to have minimal

impact on the nature of the solution while still achieving the intended purpose of

obtaining well-posed and physical boundary conditions.

Included in this section is an investigation of the effects of wind forcing on the

characteristics of the flow. We study the effects (primarily on the transport of the

flow) of changing the strength of winds via the parameter τ0 and also the effects of

varying the structure of the wind. In the latter, we study both balanced and unbal-

anced winds (having zero and non-zero integrals over the domain, respectively) that

have important effects on conserved quantities. Because our model represents wind

forcing by the resultant Ekman pumping forcing, variations in wind are manifested

in variations in the Ekman pumping forcing. We also study the effects of varying

55
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initial upper-layer depth. In using relatively shallow initial upper-layer depths, our

model allows for the study of outcroppings, that is, locations where the upper layer

vanishes, and the lower layer outcrops; i.e., the lower layer reaches the surface. This

is an advantage that our model has over other similar models of the ACC (e.g.,

quasi-geostrophic models (e.g., [37]) and semi-geostrophic models (e.g., [32])) that do

not permit outcroppings and consequently either use relatively deep upper layers, or

artificially maintain a thin upper layer.

In this section, we also discuss a number of numerical issues involved with the

model. These include an investigation of the effects on the model of varying the

timestepping parameters; this has implications in various physical quantities associ-

ated with the model. As well, we discuss the effects of mesh resolution.

In the model simulations, we are concerned with the momentum balance that oc-

curs between the wind forcing and dissipation via turbulence, as described in Chapter

2. This balance is discussed in the context of our model results.

4.2 Physical Quantities of the Model

The two-layer FG model is derived from the two-layer shallow-water equations. These

equations are based on two fundamental physical principles for fluid flow: the conser-

vation of mass and the conservation of momentum. These quantities are conserved

locally, however; in this section we concern ourselves with quantities that are globally

conserved. Naturally, these globally conserved quantities are related to the locally

conserved quantities.

The non-dimensional mass of the fluid in our model is given by

Mnd =
∫∫

Ω
hρ1 + (1− µε2h)ρ2 dxdy, (4.1)

where Ω is the non-dimensional model domain. Because ρ1, ρ2, µ, and ε are all con-

stants, Mnd is a linear function of the quantity

M =
∫∫

Ω
h dxdy, (4.2)

and thus we use this quantity as representative of the mass of the fluid in our model.
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Consider the time variation of M ,

∂

∂t

∫∫
Ω

h dxdy,

which we can write as ∫∫
Ω

∂h

∂t
dxdy. (4.3)

Using equation (2.90), we rewrite (4.3) as

∫∫
Ω

τ0w1,edxdy −
∫∫

Ω
∇H ·

(
hu

(1)
1,H

)
dxdy. (4.4)

Writing ∫∫
Ω
∇H ·

(
hu

(1)
1,H

)
dxdy (4.5)

from (4.4) as ∫∫
Ω

(
hu

(1)
1,H

)
x
dxdy +

∫∫
Ω

(
hv

(1)
1,H

)
y
dxdy, (4.6)

where u
(1)
1,H and v

(1)
1,H are the components of u

(1)
1,H , we can further simplify by noting

that

∫∫
Ω

(
hu

(1)
1,H

)
x
dxdy =

∫ y=D

y=0

(
hu

(1)
1,H

)∣∣∣x=xR

x=xL

dy

=
∫ y=D

y=0
0 dy

= 0,

by the periodicity of h.

Additionally, we exchange the order of integration on

∫∫
Ω

(
hv

(1)
1,H

)
y
dxdy

from (4.6), which we can then write as

∫ x=xR

x=xL

(
hv

(1)
1,H

)∣∣∣y=D

y=0
dx =

∫ x=xR

x=xL

0 dx

= 0,

where we have used that

v
(1)
1,H = 0 on y = 0, D,
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due to the imposition of no-normal flow at the boundaries. Then we have that (4.5)

vanishes, and therefore, from (4.3) and (4.4),∫∫
Ω

∂h

∂t
dxdy =

∫∫
Ω

τ0w1,edxdy. (4.7)

If we apply an Ekman forcing function w1,e to the upper layer such that∫∫
Ω

w1,edxdy = 0, (4.8)

we have from (4.7) that
∂

∂t

∫∫
Ω

h dxdy = 0; (4.9)

i.e., that mass is invariant through time. We denote an Ekman forcing function

satisfying (4.8) as balanced. Accordingly, if∫∫
Ω

w1,edxdy 6= 0,

we denote the Ekman forcing function as unbalanced.

There are a number of quantities that remain invariant under the evolution of

the two-layer shallow-water equations (2.68)–(2.71) in the absence of Ekman forcing,

(i.e., τ0 = 0). Our model loses this exact conservation in two ways; first by neglecting

higher-order terms in the derivation of the FG model equations, and second, by using

Ekman forcing terms. Unforced models (e.g., [28], [29]) prescribe an initial gradient

in h(x, y, t) with sufficient magnitude such that turbulence develops, whereas the

implementation in this thesis prescribes an initially constant upper-layer depth, with

the gradient in h(x, y, t) growing through time as a result of the forcing.

The first such quantity we consider is the total energy. The total energy for the

unforced two-layer shallow-water equations is given by

Esw =
1

2

∫∫
Ω

(
g′h2

1 + h1u1,H · u1,H + h2u2,H · u2,H

)
dxdy, (4.10)

where all variables are as in (2.68)–(2.71) [11]. The first term in (4.10) represents the

potential energy, while the second and third terms represent the kinetic energy in the

upper and lower layer, respectively. We replace u1,H and u2,H by their leading-order

terms, and according to the convention of Chapter 2, we let h(x, y, t) := h1(x, y, t).

We then approximate the lower-layer (non-dimensional) height using (2.67) as

h2(x, y, t) = 1− µε2h(x, y, t) ≈ 1.
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After an appropriate scaling, the FG analogue of (4.10) becomes

∫∫
Ω

(
h2 + εh

(
h2

x + h2
y

)
+ ε

(
p2

x + p2
y

))
dxdy.

We then define the non-dimensional FG potential energy as

∫∫
Ω

h2dxdy (4.11)

and the non-dimensional kinetic energy as

∫∫
Ω

(
εh
(
h2

x + h2
y

)
+
(
p2

x + p2
y

))
dxdy. (4.12)

In the unforced FG model equations, the quantity in (4.11) is exactly conserved. In

our forced FG model implementation however, potential energy is not conserved; it

changes as a result of forcing and turbulence. Kinetic energy (4.12) is not conserved in

either the forced or unforced FG model, although it is a useful quantity for discussing

the evolution of the solution.

Next, we consider the lower-layer momentum. The two-layer zonal momentum

invariant for the two-layer unforced shallow-water equations is given by

Nsw =
∫∫

Ω
h1u1 + (H − h)u2 −H

(
f0y +

1

2
βy2

)
,

where all variables are as in (2.68)–(2.71) [11]. A similar process of leading-order

approximations and appropriate scaling yields the non-dimensional FG lower-layer

momentum

N =
∫∫

Ω
y∇2

Hpdxdy (4.13)

(see [11] for details). In the unforced FG model equations, (4.13) is exactly conserved;

the presence of forcing in our implementation destroys this conservation property.

In addition to facilitating a discussion of the evolution of the solution, the un-

conserved quantities associated with the model (potential energy, kinetic energy, mo-

mentum) provide an indication of the establishment of a quasi-steady state. These

quantities (and indeed, any physical measure based on the model variables) will os-

cillate about a mean constant value at the quasi-steady state.
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4.3 The Meridional Balance of the ACC

As discussed in Chapter 2, a process of meridional overturning occurs in the ACC

that is called the Deacon cell. This process of overturning maintains the isopycnal

slope and thus maintains the leading-order velocities. In this section, we examine this

balance more closely. Because the flow in which we are interested is turbulent, we

are concerned with mean quantities, both in time and in the x-direction, to quantify

the properties of the model. We introduce a number of definitions for evaluating our

system in a mean sense. We use the quantity h(x, y, t) for our definitions, although

they are applicable to all quantities in our model.

We define a zonal average of a quantity h(x, y, t) as

h(y, t) =
1

xR − xL

∫ xR

xL

h(x, y, t)dx,

where xL and xR are the x domain limits. With this definition, we can decompose a

model variable, h, into its mean and zonally varying components as

h(x, y, t) = h(y, t) + h′(x, y, t).

It is clear that the zonal average of the non-averaged term is zero; i.e.,

h′(y, t) = 0. (4.14)

In addition to zonally averaging, we also average quantities in time. Because we

are investigating the turbulent quasi-steady state that occurs in the time evolution

of our system, averaging in time eliminates the local effects of the turbulence and

facilitates an analysis on a true steady state from our time-dependent quasi-steady

state. We do not alter our notation to denote the time-mean, but instead henceforth

assume that all quantities are time-averaged unless otherwise denoted. The time-

averages are calculated over a period in which the system has reached a quasi-steady

state. As a result of this time-averaging, we let

∂h

∂t
= 0,

∂p

∂t
= 0,

∂q

∂t
= 0. (4.15)

We now return to our frontal geostrophic equations, (2.90)–(2.91), and formulate

the time-averaged, zonally averaged analogues. Applying (4.15) to (2.90)–(2.91) and
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dropping arguments gives

∇H ·
(
hu

(1)
1,H

)
= −τ0w1,e, (4.16)

and

∇H ·
(
qu

(0)
2,H

)
= µτ0w2,e − r′2∇2

Hp + ν ′2∇4
Hp. (4.17)

Considering (4.16), we replace all variables by their (zonal) mean and varying com-

ponents; i.e.,

∇H ·
((

h + h′
) (

u
(1)
1,H + u

(1)′

1,H

))
= −τ0w1,e. (4.18)

Noting that x-derivatives vanish, we have that

∂

∂y

((
h + h′

) (
v

(1)
1,H + v

(1)′

1,H

))
= −τ0w1,e, (4.19)

where v
(1)
1,H is the y-component of u

(1)
1,H . Recalling (4.14), we can expand and simplify

(4.19) to
∂

∂y

(
hv

(1)
1,H + h′v

(1)′

1,H

)
= −τ0w1,e;

i.e.,
∂

∂y

(
hv

(1)
1,H

)
+

∂

∂y

(
h′v

(1)′

1,H

)
= −τ0w1,e. (4.20)

From (4.20), we note that we have decomposed the zonally averaged total height flux

hv
(1)
1,H into the zonally averaged mean height flux hv

(1)
1,H and the zonally averaged eddy

height flux, h′v
(1)′

1,H ; i.e.,

hv
(1)
1,H = hv

(1)
1,H + h′v

(1)′

1,H . (4.21)

Using (4.21) in (4.20) we express the upper-layer, time-averaged, zonally averaged

equation as
∂

∂y

(
hv

(1)
1,H

)
= −τ0w1,e. (4.22)

We also note that by integrating both sides of (4.22),

hv
(1)
1,H + C = −τ0τ1(y), (4.23)

where τ1(y) is the wind stress applied to the upper layer and C is a constant of

integration.
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Now moving to (4.17), we replace all variables by their (zonal) mean and varying

components and drop arguments as in (4.16); i.e.,

∇H ·
(

(q + q′)
(
u

(0)
2,H + u

(0)′

2,H

))
= µτ0w2,e − r′2∇2

H

(
p + p′

)
+ ν ′2∇4

H

(
p + p′

)
, (4.24)

where we note that w2,e is independent of x. Noting that x-derivatives of the time

averaged, zonally averaged variables vanish (see Section 4.4.1 for a discussion), we

rewrite (4.24) as

∂

∂y

(
(q + q′)

(
v

(0)
2,H + v

(0)′

2,H

))
= µτ0w2,e − r′2

∂2

∂y2

(
p + p′

)
+ ν ′2

∂4

∂y4

(
p + p′

)
, (4.25)

where v
(0)
2,H is the y-component of u

(0)
2,H . As above, with (4.14), we expand and simplify

(4.25) to
∂

∂y

(
qv

(0)
2,H + q′v

(0)′

2,H

)
= µτ0w2,e − r′2

∂2

∂y2
p + ν ′2

∂4

∂y4
p;

i.e.,
∂

∂y

(
qv

(0)
2,H

)
+

∂

∂y

(
q′v

(0)′

2,H

)
= µτ0w2,e − r′2

∂2

∂y2
p + ν ′2

∂4

∂y4
p. (4.26)

Using the property (4.21) for q and v
(0)
2,H , we can simplify the left-hand side of (4.26)

to get the lower-layer, time-averaged, zonally averaged equation as

∂

∂y

(
qv

(0)
2,H

)
= µτ0w2,e − r′2

∂2

∂y2
p + ν ′2

∂4

∂y4
p. (4.27)

Integrating in y, we have the alternate equation

qv
(0)
2,H + C = µτ0τ2(x, y, t)− r′2

∂

∂y
p + ν ′2

∂3

∂y3
p, (4.28)

where τ2(x, y, t) is the zonal-mean wind stress in the lower layer, and C is a constant

of integration.

Combining (4.22) with (4.27), we have the time-averaged, zonally averaged ana-

logues of the FG model equations.

In (4.22), hv
(1)
1,H is the mass transport in the upper layer. At quasi-steady state,

time-averaged leading-order streamlines are essentially zonally invariant (see Section

4.4.1) and thus there is essentially no net meridional transport. Equation (4.22)

suggests that this zero net transport is achieved by the balancing of the Ekman
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pumping forcing by a mass transport in the upper layer. Similarly, (4.27) suggests that

the potential vorticity flux qv
(0)
2,H is balanced by a combination of lower-layer friction

and Ekman forcing on the lower layer (via outcroppings). To more precisely analyze

the balance in the upper layer, we decompose upper-layer meridional transport as

hv
(1)
1,H = −hpx + hJ(∇Hh, h) + hν ′1hyyy

:= Tgeostrophic + Tnonlinear + Tfriction, (4.29)

where we have expanded hv
(1)
1,H using the y-component of (2.92). The lower-layer

terms are already suitably decomposed into potential vorticity flux, lower-layer Ek-

man pumping, and friction terms.

4.4 Simple Channel

In equation (4.21), we separated hv
(1)
1,H into mean and eddy components. However,

the time-averaged zonally averaged meridional velocity v
(1)
1,H is typically very small in

the simple channel; i.e.,

v
(1)
1,H ≈ 0.

With this assumption, we note from (4.21) that

hv
(1)
1,H ≈ h′v

(1)′

1,H . (4.30)

Thus, Tgeostrophic represents the second-order geostrophic eddy height flux, noting that

the flux associated with the leading-order geostrophic velocity is 0 (see Section 2.2).

By a similar argument, we define q′v
(0)′

2,H :≈ qv
(0)
2,H to be the eddy potential vorticity

flux.

The simulations that were performed in the simple channel geometry are sum-

marized in Table 4.1. In this table, we assign a name to each simulation performed

for easy referencing (i.e., (SC-1)–(SC-16)). Each simulation is described by 4 aspects

of the model that is varied. The second column lists the initial upper-layer height

used, and the third column list the type of Ekman pumping force used. The term

‘balanced’ is used to refer to an Ekman pumping force we(x, y, t) satisfying (4.8). For

the simple channel,

Ω = {[0, 96]× [0, 32]},
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Table 4.1: Simple Channel Simulations
simulation h(x, y, 0) forcing type τ0 bottom topography

SC-1 1.00 balanced 1.981e-5 no
SC-2 1.00 balanced 3.961e-5 no
SC-3 1.00 balanced 5.942e-5 no
SC-4 1.00 balanced 7.922e-5 no
SC-5 0.25 balanced 1.981e-5 no
SC-6 0.25 balanced 3.961e-5 no
SC-7 0.25 balanced 5.942e-5 no
SC-8 0.25 balanced 7.922e-5 no
SC-9 0.25 unbalanced 1.981e-5 no
SC-10 0.25 unbalanced 3.961e-5 no
SC-11 0.25 unbalanced 5.942e-5 no
SC-12 0.25 unbalanced 7.922e-5 no
SC-13 1 balanced 1.981e-5 yes
SC-14 1 balanced 3.961e-5 yes
SC-15 1 balanced 5.942e-5 yes
SC-16 1 balanced 7.922e-5 yes

and the Ekman pumping force as given in (3.21) is balanced in this domain. For an

unbalanced wind, we use an alternate forcing function

we(y) = χ(y<8) + χ(y>8) cos

(
π(8− y)

24

)
, (4.31)

where χ is the characteristic function over the given domain. Because

∫ xR

xL

∫ y=32

y=8
cos

(
π(8− y)

24

)
dxdy = 0,

it is clear that ∫∫
Ω

we(y)dxdy > 0, (4.32)

where we(y) is as in (4.31). Noting the negative sign on the right-hand side of (2.90),

(4.32) implies a net upward Ekman pumping force, which destroys upper-layer mass.

We discuss the implications in Section 4.4.3. The fourth column lists the Ekman

pumping strength and the last column indicates whether a topographic ridge (yes) or

a flat bottom (no) has been used in the simulation.
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4.4.1 SC-1 – SC-4

We first consider the simulations SC-1 to SC-4. This is a basic set of simulations in

which the lower layer will not outcrop due to the sufficiently large initial upper-layer

depth and balanced Ekman forcing.

In the presence of a balanced wind, we showed in Section 4.2 that mass should be

conserved; i.e., (4.9) holds. The model clearly displays conservation of M (4.2), and

thus conservation of total mass. For SC-4, relative error in the conservation of M

over the entire integration period is on the order of 1e-7, in the realm of numerical

error as discussed in Section 2.3.1.

Figure 4.2 shows the evolution of FG potential energy (4.11) for SC-4. As the front

builds (see Figure 4.1.a), potential energy increases. At the onset of turbulence (see

Figure 4.1.b), the potential energy decreases due to the release of potential energy

stored in the front into kinetic energy (4.12) via eddy formation. We see a rapid

corresponding increase in kinetic energy at the onset of turbulence; see Figure 4.3.

At the establishment of a quasi-steady state (see Figure 4.1.c), both potential energy

and kinetic energy oscillate about a mean constant value. Figure 4.4 shows lower-

layer FG momentum (4.13), which also indicates a quasi-steady state by oscillating

about a mean constant value. Thus, while the conservation of mass lends credence

to the validity of the numerical solution, the oscillation about a mean of the energies

and momentum support the notion that a quasi-steady state has been established.

The leading-order, geostrophic flow in the upper and lower layers respectively is

given by (2.75) and (2.80). From these equations, we can deduce that the upper

and lower-layer velocities are oriented perpendicular to the gradient of h(x, y, t) and

p(x, y, t) respectively. Therefore, we can easily construct streamlines of the leading-

order flow in the upper layer via contours of h(x, y, t), and in the lower layer via

contours of p(x, y, t). In the absence of any topography or land barriers as in the

simple channel case, the time-mean flow should be invariant in x. The time-averaged

leading-order streamlines in both layers are shown in Figure 4.5. These streamlines

imply that since the leading-order flow is primary directed zonally, time-averaged

meridional velocities are very small.

Figure 4.6 shows the zonally averaged geostrophic leading-order velocity in each
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Figure 4.1: a): A snapshot in time of h(x, y, t) before turbulence, t = 4180, b): a
snapshot in time of h(x, y, t) at the initial onset of turbulence, t = 5190, c): a snapshot
in time of h(x, y, t) at quasi-steady state, t = 12360. (SC-4)
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Figure 4.2: Time series of nondimensional FG potential energy (4.11). (SC-4)

Figure 4.3: Time series of nondimensional FG kinetic energy (4.12). (SC-4)
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Figure 4.4: Time series of nondimensional FG lower-layer momentum N (4.13). (SC-
4)

Figure 4.5: Streamlines of geostrophic flow in each layer for a strong wind, τ0 =7.922e-
5. (SC-4)
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Figure 4.6: Upper- and lower-layer time-averaged, zonally averaged velocity for τ0 =
1.981e-5 – 7.922e-5. As τ0 increases, the magnitude of velocity in each layer increases.
Note that these are nondimensional velocity values. (SC-1 – SC-4)

layer for 4 Ekman pumping strengths. In the upper layer, the flow is organized into

zonal jets, in keeping with the results of [33]. As the Ekman pumping strength in-

creases, the velocity required to balance the forcing also must increase to achieve a

quasi-steady state. Thus, the zonal velocity increases in magnitude through succes-

sively larger values of τ0, as indicated in Figure 4.6. For τ0 = 5.942e-5, results from

the geostrophic vorticity model [33] show a single jet predominating; this is not the

case for this FG model implementation nor the HIM model [12]. The single jet is

caused by low values of lower-layer Ekman friction, allowing an unphysically large

transport as discussed in Section 3.3.

We now examine the upper-layer zonally averaged mass balance in the context

of our model results. As discussed in Section 4.3, we can analyze the upper-layer
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balance via either (4.22) or (4.23). However, numerical results for (4.22) require a

fair amount of smoothing to clearly observe the signals present in the balance due

to the non-smooth high-order y-derivatives and relatively small signals in the time-

mean. Thus, we mainly show results using (4.23), and show results for (4.22) only

where necessary.

Figures 4.7 and 4.8 show upper-layer mass balances using (4.23) for 2 values of

τ0 corresponding to SC-1 and SC-4. Because we must have an essentially zero net

meriodional transport of h(x, y, t) at a quasi-steady state, we must have a balance of

the transport terms, and thus, the constant of integration C in (4.23) is 0. This is

evident in Figures 4.7 and 4.8. We can deduce from these plots that the leading-order

balance occurs between the transport driven by the geostrophic eddy height flux,

Tgeostrophic, and the transport driven by the Ekman pumping force, defined as TEkman

(supporting the use of a geostrophic model). Although the nonlinear component

of transport, Tnonlinear, is small, these terms are important for the development of

eddies, and hence they are not negligible [15]. The nonlinear component also plays a

role in the acceleration of zonal jet as evidenced by the correspondence between the

position of the upper-layer jets in Figure 4.6 and the nonlinear component in Figure

4.8. Additionally, although the frictional component of transport, Tfriction, is small,

the presence of friction is important for the stability and smoothness of solutions,

as well as the feasibility of our boundary conditions. The composition of the upper-

layer mass balance remains similar as τ0 increases. However, the leading-order balance

terms, Tgeostrophic and TEkman increase in magnitude with τ0 relative to the frictional

and nonlinear terms. Thus, as τ0 increases, the leading-order balance becomes even

more dominant.

We also include a plot indicating the same balance as shown in Figure 4.8, but

instead using Equation (4.22). The data in Figure 4.8 are rather noisy, and this effect

is magnified upon calculating the derivative. As a result, a 5-point moving aver-

age smoothing calculation was performed to reduce the noise. This moving average

computes a point xi using an average of the 5 previous points; i.e.,

xi =
1

5

5∑
j=1

xi−j.
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Figure 4.7: Time-averaged zonal-mean balance in upper layer for a weak wind,
τ0 =1.981e-5, from (4.23). Transport terms are defined by (4.29). (SC-1)

Figure 4.8: Time-averaged zonal-mean balance in upper layer, τ0 =7.922e-5, from
(4.23). (SC-4)
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Figure 4.9: Time-averaged zonal-mean balance in upper layer, τ0 = 7.922e-5, from
(4.22). (SC-4)

Nevertheless, the balance between components of (4.22) shown in Figure 4.9 is clear.

The presence of this balance is conclusive evidence that a quasi-steady state has been

reached in the upper layer.

We now consider the lower-layer zonally averaged balances using the model results

from SC-1 – SC-4. We note that because n · ∇Hp and n · ∇Hq are not necessarily

zero at the boundary y = 32 (where instead we have applied a Dirichlet condition;

see (2.104)), the constant of integration in (4.28) is nonzero. However, it remains

constant in y, and thus (4.27) still holds. Figures 4.10 and 4.11 show the balance

established in the lower layer using (4.28) for 2 values of τ0. Additionally, we show

this balance via (4.27) for τ0 = 7.922e-5 in Figure 4.12. As in the upper layer, the

data are smoothed using a moving-average calculation due to the noisy derivative

terms. These figures clearly show that the leading-order balance is between the eddy

potential vorticity flux −q′p′x, and linear friction. As in the upper layer, the balances

remain largely similar as τ0 increases save for an increase in magnitude of potential

vorticity flux and linear friction terms. To further understand the lower-layer balance,
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Figure 4.10: Time-averaged zonal-mean balance in lower layer, τ0 = 1.981e-5, from
(4.28). (SC-1)

we decompose q′p′x by expanding q(x, y, t) from (2.94). Figure 4.13 plots the zonally

averaged decomposition of q′p′x into µh′p′x, βy′p′x, and ∇2
Hp′p′x. From this plot, it is

evident that q′p′x is essentially determined by µh′p′x, which is an eddy mass flux.

We now can formulate a balance mechanism based on the simulation results SC-1

– SC-4. Momentum is imparted at the surface by a wind stress, which is manifested

by a resultant Ekman pumping force in our model. This momentum is balanced in

the upper layer by an eddy height flux. In the lower layer, the eddy height flux is

balanced by the Ekman friction at the bottom. Thus the eddy height flux acts to

transfer momentum from the upper layer to the lower layer, where it is eventually

dissipated at the bottom. We note that the eddy height flux can be interpreted as

the eddy interfacial formstress, as discussed in Section 2.1 [12].

4.4.2 SC-5 – SC-8

The simulations SC-5 – SC-8 use a relatively shallow initial upper-layer depth with a

balanced Ekman pumping force. Then, as the front develops, outcropping will occur;
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Figure 4.11: Time-averaged zonal-mean balance in lower layer, τ0 = 7.922e-5, from
(4.28). (SC-4)

Figure 4.12: Time-averaged zonal-mean balance in lower layer, τ0 = 7.922e-5, from
(4.27). (SC-4)
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Figure 4.13: Decomposition of −q′p′x. (SC-4)

that is, a region of h(x, y, t) = 0 will form, such that the lower layer intersects the

surface. Recall the definition of the upper Ekman pumping force w1,e(x, y, t) defined

in (2.36):

w1,e(x, y, t) =

 we(x, y, t) if h(x, y, t) > 0,

0 if h(x, y, t) = 0,

where we(x, y, t) is the Ekman pumping velocity. Thus, on the region where h(x, y, t) =

0, there is no forcing applied to the upper layer. Then the Ekman pumping force is

no longer balanced, and mass is not conserved. Yet for a quasi-steady state to ex-

ist, the mass must be constant, as otherwise the frontal profile of h(x, y, t) would be

changing. The system still reaches a steady state, however. By advection of h(x, y, t),

the outcropping region (i.e., where h(x, y, t) = 0) becomes smaller in area until the

winds are once again balanced. In the case of a balanced wind, this can only oc-

cur when the outcropping region vanishes, at which point the system can achieve a

quasi-steady state. Figure 4.14 shows a time series of mass for SC-8. This process of

establishing a steady state via the vanishing of an outcropping is time consuming –

Figure 4.14 was run to 90 000 units, or 3 times the normal time-integration period.
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Figure 4.14: Time series of nondimensional upper-layer mass M . The mass remains
constant until an outcropping occurs, at which time the unbalanced winds create
a mass influx. This outcropping slowly disappears, at which point mass becomes
conserved again. (SC-8)

Data from simulations SC-5 – SC-7 are not shown because the weaker winds require

much longer integration times to achieve a steady state, and these data are of no

particular interest.

For SC-8, we plot the upper- and lower-layer balances in Figures 4.15 and 4.16 to

validate the existence of a quasi-steady state. Because the outcropping region disap-

pears at quasi-steady state, the balances are qualitatively the same as for simulations

SC-1 – SC-4.

Figure 4.17 shows a time series of upper-layer mass for SC-8 with a variety of

initial values for h(x, y, t). These results suggest that for simulations that exhibit

outcropping, the upper-layer depth at quasi-steady state is independent of the initial

upper-layer depth. Outcropping will occur when the initial value of h(x, y, t) is less

than the mean value of h(x, y, t) at quasi-steady state. From Figure 4.17 we note that

the upper-layer mass at quasi-steady state for SC-8 is given by approximately 1507.5.
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Figure 4.15: Time-averaged zonal-mean balance (4.22) in upper layer. (SC-8)

Figure 4.16: Time-averaged zonal-mean balance (4.27) in lower layer. (SC-8)
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Figure 4.17: Time series of upper-layer mass M for 3 different initial values for
h(x, y, t). In each run, an upper-layer mass of approximately 1507.5 prevails at the
quasi-steady state. (SC-8)

Thus, we find a mean value of h(x, y, t) at quasi-steady state of 1507.5/(32 · 96) =

0.4907.

4.4.3 SC-9 – SC-12

Runs SC-5 – SC-8 are characterized by an outcropping of the lower layer that vanishes

at quasi-steady state. However, it is possible to have an outcropping at the quasi-

steady state. If an unbalanced Ekman forcing term is used, the system evolves to

form an outcropping. This outcropping increases in area until the Ekman forcing

term is balanced on the remaining upper layer. Thus, the effect of the lower-layer

outcropping is to redefine the upper-layer domain such that the forcing is balanced

on this new domain, and thus a quasi-steady state solution can be established.

Runs SC-9 – SC-12 use an unbalanced Ekman forcing function as defined in (4.31).

Here, we have defined we(y) such that on χ(y>8), we(y) is balanced. Then we expect
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Figure 4.18: Time-averaged zonal-mean profile of h, the upper-layer depth, from SC-
12. The y-axis has been negated to intuitively display h as a depth. The outcropping
(where h=0) covers the predicted region y ≈ [0, 8].

the outcropping to cover the area {[0, 96] × [0, 8]}. Figure 4.18 shows the zonal-

mean upper layer depth from SC-12. Clearly, the outcropping interface occurs in the

predicted region of y = 8. Notice in Figure 4.18 that our FEMLAB implementation

smooths discontinuities in the solution of h(x, y, t), and thus we get small, but non-

physical negative values near the outcropping interface.

Associated balances for the runs are similar (except for the specific values of

the magnitudes) for the various values of τ0, and thus, we show upper- and lower-

layer balances for just one value of τ0 in Figures 4.19 and 4.20. We proceed with

this convention of showing balances for only one value of τ0 for the remainder of the

chapter. In the region of lower-layer outcropping, the Ekman pumping force is applied

to the lower layer via w2,e(x, y, t) (see 2.43)). As a result, the prevailing lower-layer

balance on the outcropping region is between the Ekman pumping force and the linear

friction dissipation, as shown in Figure 4.20. There is some error in the balance in

the region of the outcropping interface. This is likely due to small negative values of

h(x, y, t) that cannot be forced to 0 after each timestep. Negative values of h(x, y, t)
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Figure 4.19: Nondimensional zonal-mean upper-layer balance (4.22). (SC-12)

cause significant problems in the finite-difference FG implementation [29], requiring a

modified timestepping scheme that eliminates negative values at each time step [12].

However, the presence of negative values does not affect the stability of the finite

element implementation in this thesis, although unphysical values of h(x, y, t) < 0

are present.

The final state of h(x, y, t) in these simulations is independent of the initial value,

h(x, y, 0). Figure 4.21 shows upper-layer mass for a variety of initial values in sim-

ulation SC-12. For each initial value, the upper-layer mass converges to a value of

approximately 836.3.

4.4.4 SC-13 – SC-16

Simulations SC-13 – SC-16 are characterized by the inclusion of a topographic ridge

defined by (3.22). The inclusion of bottom topography significantly affects the flow

profile in the simulations. Figure 4.22 shows the time-averaged flow in the upper

and lower layers for a weak wind, τ0 = 1.981e-5. The flow in the upper layer is

deflected northward along the topographic ridge. The zonal transport is significantly
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Figure 4.20: Nondimensional zonal-mean lower-layer balance (4.27). (SC-12)

Figure 4.21: Time series of upper-layer mass for varying values of h(x, y, 0). Also
shown in the dashed line is the mass value to which the system converges. (SC-12)
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Figure 4.22: Time-averaged streamlines in the upper and lower layers. (SC-13)

reduced, and recirculating gyres appear on both sides of the ridge. In the lower

layer, the topographic ridge effectively eliminates any zonal transport, although an

unrealistically strong flow appears above the topographic ridge, which is a known

problem in a number of other idealized models [12]. Figure 4.23 shows the time-

averaged flow in the upper and lower layers for a strong wind, τ0 = 7.922e-5. The

profile is similar to Figure 4.22, although in the upper layer, the recirculating gyres

are smaller, allowing a larger zonal transport.

In contrast to the simple channel simulations with no bottom topography, simula-

tions with bottom topography do not have a zonally invariant mean flow. Therefore,

there is the possibility of meridional mean mass fluxes and eddy mass fluxes, as in

(4.21). However, in Figures 4.22 and 4.23, there is a northward flow west of the

topography, and an southward flow to the east of the topography. Upon zonally av-

eraging meridional flow, these two flows essentially cancel out, leaving a very small

net meridional mean flow. The decomposition of hpx is shown in Figure 4.24.

Figures 4.25 shows the upper-layer balance for a strong wind, τ0 =7.922e-5. As

in the simple channel simulations with no topography, the leading-order upper-layer
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Figure 4.23: Time-averaged streamlines in the upper and lower layers. (SC-16)

Figure 4.24: Decomposition of hpx into mean (hpx) and eddy (h′p′x) components.
(SC-16)
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Figure 4.25: Time-averaged zonal-mean balance (4.22) in upper layer. (SC-16)

balance is established between the eddy-flux transport and the Ekman transport. In

the lower layer, as in simulations SC-1 – SC-4 the potential vorticity flux is balanced

by bottom friction. However, the implication of this balance is different due to the

inclusion of bottom topography. In these simulations, q(x, y, t) includes the additional

term µBhb(x, y) representing bottom topography. With this additional term, q′p′x is

no longer essentially determined just by µh′p′x, but instead it is the addition of this

term and µBhB(x, y)px that essentially determines q′p′x. The lower-layer balance is

shown in Figure 4.26. In this figure, potential vorticity flux is decomposed into µh′p′x

and µBhB(x, y)px.

From Figure 4.26, we deduce an altered balance mechanism in the presence of

bottom topography. As is the case with no topography, momentum imparted at

the surface by a wind stress is balanced in the upper layer by an eddy height flux

(i.e., interfacial formstress) that transfers momentum to the lower layer. However, in

the lower layer, now a combination of bottom friction and bottom topography (i.e.,

bottom formstress) act in concert to dissipate the momentum and achieve a balanced

state. As bottom friction is reduced, the bottom formstress dominates the balance.
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Figure 4.26: Time-averaged zonal-mean balance (4.27) in lower layer. PV total flux
has been smoothed by a 5-point moving average. (SC-16)

We now compare the upper-layer depth and lower-layer pressure profiles for the

three simple channel simulation types. Figure 4.27 shows profiles of h(x, y, t) for SC-

4, SC-8, and SC-12. To display slope differences, profiles for SC-8 and SC-12 have

been translated to agree with SC-4 at y = 0. Figure 4.27 suggests that the occurrence

of outcropping in SC-8, although transient, enables a steeper gradient in h(x, y, t) at

quasi-steady state, implying a stronger upper-layer flow. For SC-12, in which the

outcropping prevails at quasi-steady state, the gradient in h(x, y, t) is very similar to

that of SC-8, except on the region of outcropping, where the gradient is essentially

flat. The total change in h(x, y, t) in SC-4 and SC-12 is almost equal, as the stronger

gradient in SC-12 is counterbalanced by the outcropping region of essentially zero

slope.

Figure 4.28 shows profiles of p(x, y, t) for SC-4, SC-8, and SC-12. The gradient is

smallest with no outcropping (SC-4); it is considerably stronger for the outcropping

simulations (SC-8 and SC-12). There is a tailing off effect in p(x, y, t) for SC-12 due

to the outcropping region.
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Figure 4.27: Upper-layer depth profiles, h(x, y, t). (SC-4, SC-8, SC-12)

Figure 4.28: Lower-layer pressure profiles, p(x, y, t). (SC-4, SC-8, SC-12)
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Table 4.2: Channel with Passage Runs
run h(x, y, 0) forcing type τ0 bottom topography

DP-1 1.00 balanced 1.981e-5 no
DP-2 1.00 balanced 3.961e-5 no
DP-3 1.00 balanced 5.942e-5 no
DP-4 1.00 balanced 7.922e-5 no
DP-5 1.00 balanced 1.981e-5 yes
DP-6 1.00 balanced 3.961e-5 yes
DP-7 1.00 balanced 5.942e-5 yes
DP-8 1.00 balanced 7.922e-5 yes

4.5 Channel with Passage

The runs that were performed in the channel with passage geometry are summarized

in Table 4.2. In this table, ‘topography’ indicates a value of µB defined by (3.22),

while ‘no topography’ indicates µB = 0. ‘Balanced’ and ‘unbalanced’ forcing types

are as in Table 4.1.

4.5.1 DP-1 – DP-4

In simulations DP-1 – DP-4, we consider simulations in the passage domain as de-

scribed in Section 3.4.3, with no bottom topography. The presence of the land barriers

in this geometry restricts the circumpolar flow to the gap between the land barriers.

Figure 4.29 shows the time-averaged streamlines for both layers in the presence of

a weak Ekman forcing (τ0 = 1.981e-5) while Figure 4.30 shows the time-averaged

streamlines for a strong Ekman forcing (τ0 = 7.922e-5). In both cases, part of the

flow enters into a recirculating gyre in the northern part of the domain, while the

remaining flow passes through the passage, with a northward deflection after exiting

the passage. In the lower layer, flow is similar to the upper-layer flow in both wind

cases, admitting a combination of recirculating and circumpolar flow. Whereas the

upper-layer velocity is not affected greatly by varying the Ekman pumping strength,

the lower-layer velocity increases almost linearly with the Ekman pumping strength,

as shown in Figure 4.31. As in simulations SC-13 – SC-16, mean meridional flow

is possible. However, a similar cancelling of meridional flows is seen after zonally

averaging, as in simulations SC-13 – SC-16, leading to a very small mean meridional
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Figure 4.29: Time-averaged streamlines in the upper and lower layer. (DP-1)

eddy height flux (see Figure 4.32).

The balance in the upper layer for DP-4 is shown in Figure 4.33. Whereas the

simple channel has a clear leading-order balance between eddy flux and Ekman forc-

ing, the Ekman forcing in the upper layer for DP-4 is balanced by a combination of

eddy flux and upper-layer friction. Friction becomes important in this balance as a

result of the highly viscous region along the land barriers. This viscous boundary

region allows a meridional transport via a mean flux along the peninsula [12]. The

contribution of friction to the upper-layer momentum balance can be likened to the

effect of a horizontal friction (i.e., the effect of the current rubbing against continents).

See [20] for a detailed explanation of this effect.

The balance in the lower layer for DP-4 is shown in Figure 4.34. A clear leading-

order balance is established between the potential vorticity flux and linear friction.

4.5.2 DP-5 – DP-8

We consider the runs DP-5 – DP-8 that are characterized by the passage domain

as described in Section 3.4.3, and also include a topographic ridge at the passage
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Figure 4.30: Time-averaged streamlines in the upper and lower layer. (DP-4)

as in Figure 3.1.c. Figure 4.35 shows the time-averaged streamlines for both layers

in the presence of a weak Ekman forcing (τ0 = 1.981e-5), while Figure 4.36 shows

the time-averaged streamlines for a strong Ekman forcing (τ0 = 7.922e-5). In both

cases, the upper-layer velocity is deflected northward as the flow moves through the

passage. As the wind increases, this deflection becomes somewhat more pronounced.

In both cases, the presence of the land barriers creates closed contours indicating a

recirculation of flow that reduces the overall zonal transport. In the lower layer, the

presence of the topographic ridge effectively shuts off lower-layer transport, blocking

all circumpolar contours and instead creating two recirculating gyres as found in [33].

Figure 4.37 shows the zonal-mean geostrophic velocity in each layer for 4 Ekman

pumping strengths. As in simulations DP-1 – DP-4, there is a weak dependence on τ0

in the upper layer velocity, while increasing τ0 almost linearly increases the strength

of the gyre flow in the lower layer.

Upper- and lower-layer balances are shown in Figures 4.38 and 4.39 for DP-8,

where the potential vorticity flux has been decomposed as in Section 4.4.4 and 4.5.1.

The upper-layer balance is very similar to the DP-4 simulation, exhibiting friction
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Figure 4.31: Upper- and lower-layer time-averaged zonally averaged velocity for
τ0 =1.981e-5 – 7.922e-5. There is a stronger dependence on τ0 for the lower-layer
velocity as compared to the upper-layer velocity. (DP-1 – DP-4)
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Figure 4.32: Decomposition of hpx into mean (hpx) and eddy (h′p′x) components.
(DP-4)

Figure 4.33: Nondimensional zonal-mean upper-layer balance (4.22). (DP-4)
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Figure 4.34: Nondimensional zonal-mean lower-layer balance (4.27). (DP-4)

and potential vorticity flux balancing the Ekman forcing. The lower-layer balance is

less clear. Although noisy, there is a balance established through the passage, and

another balance established in the meridional region of the land barrier, although

there is a slight upward drift in y. By decomposing potential vorticity flux, we can

deduce that the bottom formstress is predictably most prevalent in the gap between

the land barriers, which is the only region that the flow interacts with the topography.

4.6 Transport

There is some debate concerning what determines the circumpolar transport of the

ACC (see [33] for a review of theories). A number of numerical studies have been

performed, including [33], in which the authors conclude that the zonal transport

is determined by a ‘complex interplay between wind forcing, eddy fluxes, and topo-

graphic effects.’ In this section, we study the relationship between transport and

Ekman pumping magnitude for the various experiments that were conducted with

our implementation of the FG model. Because we wish to compare our numerical

results with those of other models, we dimensionalize our quantities in this section



93

Figure 4.35: Time-averaged streamlines in the upper and lower layer. (DP-5)

Figure 4.36: Time-averaged streamlines in the upper and lower layer. (DP-8)
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Figure 4.37: Upper- and lower-layer time-averaged zonally averaged velocity for
τ0 =1.981e-5 – 7.922e-5. (DP-5 – DP-8)
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Figure 4.38: Nondimensional zonal-mean upper-layer balance (4.22). (DP-8)

Figure 4.39: Nondimensional zonal-mean lower-layer balance (4.27). (DP-8)
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by multiplying variables by their scale factors from Section 2.2.

We first define a number of terms to distinguish components of zonal transport.

A (dimensional) barotropic transport is defined by

Tbarotropic =
∫ D

0
LHHU2u

(0)
2,Hdy, (4.33)

where u
(0)
2,H is the x-component of u

(0)
2,H , U2 is the lower-layer velocity scale factor, LH

is the dimensional domain width, and H is the total depth. The term ‘barotropic’

refers to a flow in which motions are uniform over the depth of the ocean.

A (dimensional) baroclinic transport is defined by

Tbaroclinic =
∫ D

0
LHH1h

(
U1u

(0)
1,H − U2u

(0)
2,H

)
dy, (4.34)

where H1 is the upper-layer depth scale factor, U1 the characteristic upper-layer

velocity scale factor, u
(0)
1,H is the x-component of u

(0)
1,H , and all other quantities are

as in (4.33). The term ‘baroclinic’ refers to the depth-dependent flows as a result

of sloped isopycnals. There are alternative definitions for baroclinic and barotropic

transport for a two-layer model (see, e.g., [11]), but we choose the definitions used in

[33]. Units of transport are m3s−1; we express quantities in Sverdrups (Sv), where 1

Sv = 106 m3s−1.

We also define upper-layer transport as

Tupper−layer =
∫ D

0
LHH1h1U1u

(0)
1,Hdy,

and lower-layer transport as

Tlower−layer =
∫ D

0
LH(H −H1h1)U2u

(0)
2,Hdy,

where all quantities are as in (4.33) and (4.34).

Figure 4.40 shows upper-layer transport for a range of Ekman pumping values.

The graphs include data for the simple channel, the simple channel with topography,

the channel with passage, and the passage and topography simulations. As we ex-

pect, upper-layer transport is largest in the simple channel, as there is no land or

topographic effects to reduce the overall zonal flow via recirculating gyre flows and

horizontal frictional dissipation. There is little difference in upper-layer transport for
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Table 4.3: Scaling Exponents for Baroclinic Transport vs. τ0

simulation exponent
simple channel 0.21

channel with passage 0.31
channel with passage and topography 0.39

simple channel with topography 1.06

the cases of the passage and the passage with topography. We can reasonably con-

clude that in this case the land barriers are the primary determinant in the upper-layer

transport, as the northward deflection seen in the simple channel with topography is

blocked by the land barriers and thus there is little effect by the topographic ridge in

the presence of land barriers.

The lower-layer transport is shown in Figure 4.41 for a range of τ0 values for

the 4 cases as listed above. The transport increases linearly with τ0 for the two

cases (the simple channel and the passage) that allow a lower-layer circumpolar flow.

In the two cases with the topographic ridge (passage with topography, and simple

channel with topography) the lower-layer circumpolar flow is blocked by the ridge,

and circumpolar flow is 0. As in the upper layer, the total lower-layer transport is

reduced by the presence of land barriers in the passage case, due to the recirculating

gyre flows that occur as a result of the land barriers, and that do not contribute to

circumpolar transport. Lower-layer transport is essentially the same as barotropic

transport, except for a different scale factor.

Figure 4.42 shows baroclinic transport. Because this transport is a measure of the

transport driven by the density gradient, it provides a good indicator of transport for

our model. Johnson and Bryden [10] deduced that the baroclinic transport should

scale with the square root of wind stress magnitude, whereas Visbeck et. al. [34]

predict that the baroclinic transport scales with the cube root of wind stress. Table

4.3 shows the scaling exponent with wind-stress for baroclinic transport for each

case. Values were obtained by the slope of the line of best fit through log-log data of

transport vs τ0.

In our simple channel runs, we found that

Tbaroclinic ∝ τ 0.21
0 ,
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Figure 4.40: Upper-layer zonal transport vs. τ0 for the simple channel (SC-1 – SC-4),
the simple channel with topography (SC-13 – SC-16), the channel with passage (DP-1
– DP–4), and the channel with passage and topography (DP-5 – DP-8).
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Figure 4.41: Lower-layer zonal transport vs. τ0 for the simple channel (SC-1 – SC-4),
the simple channel with topography (SC-13 – SC-16), the channel with passage (DP-1
– DP–4), and the channel with passage and topography (DP-5 – DP-8).
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Figure 4.42: Baroclinic zonal transport vs. τ0 for the simple channel (SC-1 – SC-4),
the simple channel with topography (SC-13 – SC-16), the channel with passage (DP-1
– DP–4), and the channel with passage and topography (DP-5 – DP-8).
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whereas in [33], baroclinic transport was proportional to approximately τ
1/2
0 . For

the channel with passage and the passage and topography simulations, the scaling

exponent is very close to that predicted by [34]. This contrasts with [33], who find

that baroclinic transport in these cases is essentially independent of τ0. In the case

of the topographic ridge in the simple channel, there is an essentially linear growth

in baroclinic transport as τ0 is increased. This is in sharp contrast to [33], where

it is reported that baroclinic transport increases approximately with τ
1/13
0 . In our

simulations, we found the presence of recirculating gyre flow on both sides of the

topographic ridge in the upper layer. As wind increases, this gyre flow reduces,

increasing the overall transport, contributing to the large exponent.

To investigate the role of bottom Ekman friction, r2 was reduced by a factor of

10 in both the simple channel (SC-2) and the passage and topography case (DP-

6). In the simple channel, the reduction in r2 by a factor of 10 increased barotropic

transport by nearly a factor of 10, from 73.5 Sv to 656.1 Sv. A similar scaling was

seen in [33]. The baroclinic transport decreased from 101.98 Sv to 14.96 Sv with the

reduction of r2 by a factor of 10 because the upper-layer transport scaled more weakly

(124.09 Sv to 212.41 Sv) than the lower-layer transport (51.43 Sv to 458.67 Sv). In

the case of the passage and topography, a much different response to varying bottom

friction occurs. Barotropic transport is unchanged at 0 Sv, as lower-layer transport is

blocked by the topographic ridge. Upper-layer transport (which is equal to baroclinic

transport in the absence of lower-layer transport) increased by only a small amount

from 66.9 Sv to 71.21 Sv in the presence of a decrease in r2 by a factor of 10.

4.7 Resolution Analysis

In a finite element discretization, the resolution is determined by the number of nodes

in the domain. In FEMLAB, this is controlled by setting a maximum element size.

A valid resolution choice should satisfy a number of requirements. First, the resul-

tant mesh should resolve eddies; that is, it should have a sufficiently dense spacing

of nodes such that an eddy is represented by n solution points, where n is chosen

based on mean eddy size and some measure of clarity of resolution. Second, refine-

ment of the mesh should not result in finer-scale turbulence, only smoothing of the
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observed turbulence. Finally, the mesh should lie in a reasonable region of conver-

gence for quantities associated with the model, with these quantities depending on

the particular use of the model.

Figure 4.43 shows a typical upper layer turbulence field given by h(x, y, t) for three

resolutions; a very coarse mesh of 2516 elements, the mesh used for the model runs

(e.g., SC-1 – SC-12) containing 12228 elements, and a fine mesh of 60124 elements.

Clearly, the coarse mesh does not properly resolve the turbulence field, whereas there

is little qualitative difference in the turbulence between our chosen resolution and the

high resolution.

Figure 4.44 shows a comparison of some basic quantities associated with the model

under three resolutions. The coarse 2516-element mesh yields quantities that are

certainly on the same order as higher-resolution quantities, although the error is

large enough to warrant a finer resolution. The resolution chosen for our runs (e.g.,

SC-1 – SC-12) is 12288 elements, so as to correspond to the 192 × 64 finite difference

mesh used in [33]. The relatively small difference in the 12288-element and 60124-

element cases implies that the resolution chosen for our model runs is valid. In

Figure 4.44.a, the upper-layer depth has a somewhat sharper gradient for the coarse

resolution. There is little change in the 12288-element and 60124-element cases. In

Figure 4.44.b, the zonal-mean profile of p shows a considerable difference in coarse

resolution, whereas the difference is negligible in the 12288-element and 60124-element

cases. In Figure 4.44.c, the upper-layer zonal-mean velocity structure is not well-

resolved with the coarse resolution. The structure and magnitude are similar in the

12288-element and 60124-element cases, although mesh refinement from 12288 to

60124 seems to slightly translate the zonal jets. In Figure 4.44.d, the lower-layer

zonal-mean velocity is noticeably weaker with a coarse resolution, whereas the profile

is similar in the 12288-element and 60124-element cases, although again there is a

slight translation of zonal jets under mesh refinement from 12288 to 60124. We note

that varying the mesh invariably leads to small differences in the final state of the

model.

Figure 4.45 shows a comparison of upper-layer and lower-layer transport for a

series of resolutions. For coarse resolutions, lower-layer transport is widely variant;



103

Figure 4.43: A mesh comparison for solutions with meshes containing [a] 2516 ele-
ments, [b] 12288 elements, and [c] 60124 elements. Each picture shows upper-layer
depth, h(x, y, t), at t = 30000. (SC-4)
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Figure 4.44: A comparison of quantities for 2516, 12288, and 60124 elements. (SC-4)
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Figure 4.45: A comparison of upper-layer and lower-layer transports for a series of
mesh resolutions. (SC-4)

at the 10174-element resolution, a clear convergence prevails. In the upper-layer,

there is little change in transport after the 20128-element resolution, although the

overall difference in upper-layer transport for all meshes is small.

4.8 Time-stepping

FEMLAB has a built-in time-stepping algorithm, FLDASPK for differential-algebraic

equations (DAE) up to index-2. This is a modification of DASPK [5] for the FEMLAB

environment. DASPK is itself an extension of DASSL [27]. DASPK expanded the

linear system solution options to include Krylov iterative methods, whereas DASSL

was limited to direct methods. FLDASPK is a variable-order, variable-step backward

differentiation formula (BDF) method. The BDF class of methods is a linear multi-

step method, which we describe here applied to a scalar ODE for notational ease.

Consider the first-order scalar ODE

y′ = f(t, y).
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A BDF method is derived by differentiating the polynomial that interpolates past

values of y, and setting the derivative at tn to f(tn, yn) [3]. The result is a k-step

BDF of order p = k, defined by

k∑
i=1

1

i
∇iyn = hf(tn, yn),

where h is the step size, and ∇ is the backward difference operator given by

∇0fl = fl,

∇ifl = ∇i−1fl −∇ifl−1.

We note that BDF methods are stable only for k < 7; k = 6 is also typically avoided

because of a lack of robustness. BDF methods are implicit and require the solution

of a nonlinear system at each time-step. FLDASPK uses a modified Newton iteration

to solve the nonlinear algebraic equations at each time step. This is a variant of

Newton’s method, defined by

yn = yn−1 − c

(
α

∂F

∂y′
+

∂F

∂y

)−1

G (t, yn−1, αyn−1 + β) ,

where F (t, y, αy + β) is the nonlinear equation to be solved at each time step, α is

a constant that depends on step size, β is a vector that depends on the solution at

past times, and G is a function of known values [2]. In a system of equations, the

iteration matrix, α∂F/∂y′ + ∂F/∂y is rewritten via an LU decomposition and then

solved. FLDASPK offers a number of solvers at this stage; we choose a direct method

called UMFPACK [7] which we find to be the most efficient of the available methods.

UMFPACK is an un-symmetric multi-frontal method for direct LU factorization. This

software is able to take advantage of the sparse matrices that prevail in the finite

element method. Despite being somewhat more memory intensive than iterative

methods (e.g., GMRES [30]), the high efficiency of the method coupled with its

inherent stability as a direct method makes it the optimal choice. In the finite element

discretization, a test function at a node is a function of only its neighboring nodes;

hence the finite element discretization results in a sparse matrix to be solved [1]. As we

increase the resolution, the number of nodes, and thus the number of test functions,

increases. However, the number of non-zero matrix entries introduced with each new
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equation is constant, depending only on the order of the element. Therefore, using a

highly efficient solver like UMFPACK allows for an almost-linear scaling in the time

requirement as resolution is increased.

In addition to choosing the linear solver, FEMLAB allows the user a number of

time-stepping options. The user may enter a list of times for which the solution is

stored. Then, the user chooses between a free, intermediate, or strict time step. With

a strict step, the solver is forced to take a time step at each user-defined time, and may

take time steps in between as needed. With an intermediate step, the solver is forced

to take at least one step in each interval between the user-defined times. With a free

step, there is no user restriction on the timestepping; the time-stepping is determined

by local error restrictions in the solver. The user can also enter a maximum time-step

value as an alternative to modifying output times via the strict setting. DASPK

starts with an initial time step (which the user can set). Typically the time step is

successively increased (but at most doubled each step) until a local error calculation

exceeds the user-defined tolerance [2]. In our FEMLAB model, before the onset

of turbulence the solution is very simple and as a result, the successive time-step

increases resulted in very large steps (O(1000 units)). This large step is unable to

properly resolve the onset of turbulence. Figure 4.46 shows a comparison of some

exact and approximate model invariants under a free time-step setting and with a

maximum time-step of 5 time units. The free time-step setting results in a marked

delay of the onset of turbulence. When the solution does become turbulent, there

is a jump in upper-layer mass causing the failure of mass conservation, as well as

unphysical ‘spikes’ in lower-layer momentum and kinetic energy. These spikes occur

as a result of noisy data that create large spatial derivatives of model variables. Using

a maximum time-step setting prevents the spikes and the mass jump, while having

little effect on the overall time, as the typical turbulent time step is less than 5 units.

As is shown in Figure 4.47, there is no advantage in greatly restricting the time-

step, whereas there is a clear disadvantage in solution time as a result of the added

unnecessary time steps. Interestingly, from Figure 4.46 we note that the energy and

momentum quantities from the free time-step setting approximately converge through

time to the restricted time-step setting, whereas the upper-layer mass is conserved
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Figure 4.46: Exact and approximate model invariants compared against a free time
step and a time step restricted by a maximum of 5 time units. [a] Potential energy,
[b] mass, [c] lower-layer momentum, [d] kinetic energy. (SC-4)

following the jump at the onset of turbulence.

As mentioned earlier in this section, the computational time required to solve

the finite-element implementation of the FG model can ideally scale almost linearly

with the number of nodes in the spatial discretization. In Table 4.4, we show the

performance of our model for the test case SC-4 run to t = 30000, using a maximum

time step of 5 time units. We also show performances for two shallow-water equation

models, HIM [9] and MITgcm [23], and the finite-difference implementation of the

FG model. Computational times for HIM, MITgcm and the finite-difference FG

model were provided in [12] and were run on a single AMD64 Opteron 250 processor.

The finite-element FG model was run on a combination of Intel Xeon 3.06 Ghz and

Opteron 250 processors. We note that the MITgcm is a six-layer model, whereas the
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Figure 4.47: Exact and approximate model invariants compared against maximum
time-step settings of 0.05 and 5 time units. [a] Potential energy, [b] mass, [c] lower-
layer momentum, [d] kinetic energy. (SC-4)
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Table 4.4: Performance of ocean models for SC-4
model resolution computational time

finite element FG model
2516 nodes 4140.48 s = 1.15 hrs
5016 nodes 9143.76 s = 2.54 hrs
10174 nodes 20990.342 s = 5.83 hrs
20228 nodes 45576.33 s = 12.66 hrs
40220 nodes 100543.13 s = 27.92 hrs
60124 nodes 213812.45 s = 59.39 hrs

finite diff. FG model
192× 64 = 12288 pts 2.2 hrs
384× 128 = 49152 pts 52.9 hrs
768× 256 = 196608 pts approx. 1700 hrs = 71 days

HIM
192× 64 = 12288 pts 19.9 hrs
384× 128 = 49152 pts 201 hrs = 8.37 days
768× 256 = 196608 pts 1620 hrs = 67.5 days

MITgcm
192× 64 = 12288 pts 36 hrs

others are two-layer models.

Although the finite difference implementation of the FG model is roughly twice

as fast as our finite element model for a 192 × 64 resolution, performance drops off

quickly, and after doubling the resolution (i.e., increasing the number of nodes by

a factor of 4), the finite element implementation outperforms the finite difference

implementation, almost by a factor of 2. This exponential growth in computational

time is due to the explicit nature of the timestepping in the finite difference code.

As resolution is increased, a stability restriction requires a corresponding decrease in

the time step, increasing the computational requirement. However, the finite element

implementation is implicit, and thus no spatially dependent stability restriction exists

for this method. Regardless of resolution, FEMLAB maintains essentially the same

time step (from 2516 nodes to 60124 nodes, there was only a 0.3% change in the

time step size). The HIM model also exhibits a reduction in time step with increased

resolution (proportional to the change in ∆x). The MITgcm data were included to

emphasize the relative computational time scales for our reduced model versus the

more complex primitive-equation MITgcm model.
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Conclusion

In this thesis, a two-layer frontal geostrophic model for wind-driven flow was simulated

with the finite element method via the software package FEMLAB. The use of the fi-

nite element method facilitated the extension of the model to irregular domains. This

implementation is most notably efficient for higher resolutions, due to the favorable,

almost-linear scaling of computation time with resolution. The implementation is also

stable, improving on the finite-difference implementation that failed under negative

values of h(x, y, t) or relatively large values of h(x, y, t) (e.g., h(x, y, t) = 1.5) [12].

However, the boundary conditions in this implementation were fairly problematic; the

decision to use a sponge layer around boundaries very likely strongly affects model

results and makes comparisons with similar models more difficult. As the geometry

is extended to irregular domains, these boundary issues become more important, and

the specification of the sponge layer becomes difficult. The natural extension of this

model into realistic domains (see Figure 5.1) is possible, although the specification of

sponge layers becomes difficult in FEMLAB. Our efforts to extend the model to real-

istic domains was limited to using Boundary Method I, which loses the fundamental

conservation of mass property of the model. This implementation was designed for

studying an idealization of the Antarctic Circumpolar Current.

This implementation does develop a verifiable quasi-steady state in a host of do-

main and parameter regimes, allowing for an investigation into the meridional balance

suggested by the model results. In the simple channel, the model results support the

theory of momentum balance wherein momentum imparted by wind stress at the sur-

face is transferred from the upper layer to the lower layer via interfacial form stress,

and then dissipated in the lower layer by bottom friction. In the presence of bottom

topography, this lower-layer dissipation is achieved jointly by bottom friction and bot-

tom form stress, and as the lower-layer friction is reduced, primarily by bottom form

111
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Figure 5.1: Solution of model equations using FEMLAB in a more realistic domain,
using idealized land masses in the Southern Ocean. Valid boundary conditions are
the main concern in this extension.
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stress. The implementation allows for outcroppings, both transient (disappearing

at quasi-steady state) and permanent (prevailing at quasi-steady state). The onset

of outcropping establishes a larger gradient in both h(x, y, t) and p(x, y, t) at quasi-

steady state, which implies stronger upper- and lower-layer leading-order velocities.

We also found that in the presence of outcropping (both transient and permanent),

the mass of the system at quasi-steady state is independent of initial upper-layer

depth; instead it is determined by the balance struck between winds and frictional

dissipation.

When the geometry is altered to include land barriers representative of the Drake

Passage, the highly viscous region around the barriers dissipates momentum in con-

cert with the eddy interfacial form stress transferring momentum to the lower layer.

Thus, our choice and implementation of boundary conditions in this geometry have

a strong impact on the prevailing momentum balance at quasi-steady state. When

a topographic ridge is added to the passage geometry, upper-layer transport is not

strongly affected, suggesting that the land barriers essentially determine the upper-

layer transport through the passage. The topographic ridge does essentially eliminate

lower-layer transport, however.

Baroclinic transport was calculated for the four domain/topography regimes. In

the simple channel, our results indicate a relatively weak growth in transport in

relation to wind strength. This contrasts with results in [33], although that model

uses different boundary conditions, a very low bottom friction, and a slightly different

set of model equations. We found the passage domain transport results to agree

strongly with [34], both in the presence of a topographic ridge and with no bottom

topography. In the case of bottom topography in the simple channel, we found a very

strong growth in baroclinic transport with wind strength, in sharp contrast with [33].

These results again are likely due to the viscous boundary region. Low wind strengths

create a larger northward deflection of flow, thus increasing dissipation of velocity as

more streamlines enter the viscous region. As wind strength increases, there is less

northward deflection, and this viscous layer dissipation is reduced.

When bottom friction is reduced by a factor of 10 in the simple channel, barotropic

transport increases approximately by a factor of 10. However, in the case of the
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passage with topography, barotropic transport remains unchanged (because lower-

layer transport is blocked by the ridge), and baroclinic transport changes only slightly

with a similar reduction in bottom friction.

The resolution chosen for our simulations sufficiently resolves the turbulence in the

solution of h(x, y, t) and p(x, y, t). The resolution also lies in a reasonable region of

convergence for the model variables h(x, y, t) and p(x, y, t), and for various quantities

associated with the model (velocities, transport). The solution validity was dependent

upon time step restriction. With no user-defined restriction (i.e., allowing the time-

stepping algorithm determine the time step-size), the onset of turbulence is delayed,

the solution is very noisy at the onset of turbulence leading to spikes in energy and

momentum quantities, and mass conservation is lost. This effect can be eliminated

by limiting the maximum step-size to 5 units, while having little effect on the overall

computational requirements.

There are several aspects of this work that remain to be explored. The investiga-

tion of other domains is possible with this finite element implementation of the model,

provided that boundary conditions can be imposed for arbitrary domain shapes. The

solution of the model in a more realistic domain as discussed above provides an ex-

ample of this possible work, as well as the difficulties that must be overcome. In

addition, the numerical integration of the model equations could be investigated with

a variety of different integrators. Structure-preserving integrators (e.g., symplectic

methods) hold interest for the ability to conserve certain model invariants. Also,

using this implementation, a more detailed exploration of parameters (e.g., bottom

topography, sponge layer properties, friction) may yield more information about the

dynamical balance that occurs in the ACC.
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