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Abstract

Software testing has been an integral part of software development process in order to

ensure software quality. We conduct testing in the software verification process to iden-

tify and remove faults and bugs in the software under development. For software quality

assurance (QA) these tests have to be good and effective. Therefore, a notion to evaluate

the tests themselves is necessary. This paper discusses the evaluation of test quality in

the process of software verification. Here I discuss different structural and functional test

coverage criteria, as well as fault based techniques, which may be applied to measure the

completeness and effectiveness of the test cases.
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1 Introduction

To improve software quality, different types and approaches of software testing are applied.
The major goal of testing is to find faults in the software under development. Therefore,
the tests themselves have to be powerful enough to detect faults in the software. So, the
evaluation of the test quality demands much importance. We typically test software with
two distinct goals. Assessing the degree to which a software system actually fulfills its
requirements, in the sense of meeting the user’s real needs, is validation [7]. And software
verification is checking the consistency of an implementation with a specification [7].

This paper focuses on the evaluation of tests in the process of software verification.
Common approaches for software verification include black-box testing, glass-box testing,
and broken-box testing. Random functional testing falls into black-box testing and all
structural tests are glass-box tests. Partitioned functional testing and mutation testing
may be categorized as broken-box testing. In this paper I discuss all of these tests keeping
focus on adequacy criteria. Section 2 includes a brief introduction to adequacy criteria,
which provides a way to evaluate how thorough our tests are. Different adequacy criteria
concerned with structural testing is discussed in section 3. Section 4 includes discussion on
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functional test criteria. Section 5 discusses fault based testing, and in section 6, I discuss
test case prioritization technique to optimize test suites for regression testing. Finally I
conclude the paper making some concluding remarks in section 7.

2 Test Adequacy Criteria

M. Ohba of IBM, Japan in his paper [8] described software quality as the Cartesian product
of test accuracy and test adequacy, as shown below.

Software Quality = Test Accuracy × Test Adequacy

Test accuracy refers to the correctness of the tests. To ensure test accuracy, we must
not do mistakes while executing the test cases, and analyzing the results. Test adequacy

or test coverage criterion is a predicate that is true (satisfied) or false (not satisfied) of
a program, test suite pair. Usually a test adequacy criterion is expressed in the form of
a rule for deriving a set of test obligations from another artifact, such as a program or
specification. The adequacy criterion is then satisfied if every test obligation is satisfied by
at least one test case in the suite. We often treat the adequacy criterion as a heuristic for
test case selection or generation [7]. According to Shmuel Ur, IBM Research Lab in Haifa,
“Coverage is any metric of completeness with respect to a test selection criterion” [11].

3 Structural Test Coverage

The general term for testing based on program structure is structural testing, although the
term white-box testing or glass-box testing is sometimes used. Test specifications drawn
from program source code require coverage of particular elements in the source code or
some model derived from it. In the following subsections I discuss different structural test
coverage criteria.

3.1 Statement Coverage

It can be reasonably assumed that faults are arbitrarily distributed over the source code.
So, if we can test every statement of the program, we are likely to find the existing faults.
Statement coverage criterion requires each statement in the program is executed at least
once by the test cases on a test suite.

Statement coverage is measured by the following expression [7].

statement coverage =
number of statements executed

total number of statements in program
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Statement coverage criterion has a number of limitations. It does not report whether
loops reached their termination condition. Moreover, since do-while loops always execute at
least once, statement coverage considers them the same rank as non-branching statements.

Statement coverage is completely insensitive to the logical operators (|| and &&), and it
cannot distinguish consecutive switch labels [12]. Another limitation of statement coverage
is that a test suite can achieve complete statement coverage without executing all the
possible branches in a program. For example, let us consider the code snippet in Listing 1.
A test case requiring the if condition at line 2 to be satisfied will also satisfy statement
coverage criterion, but it would not detect the fault in the program that line 4 would
generate a null pointer exception whenever the if-condition at line 2 is evaluated false.

Listing 1: Null Pointer Exception

1 MyClass obj = null;
2 if(condition)
3 obj = new MyClass ();
4 obj.aMethod ();

Listing 2: Missing Statement

1 String msg = "default";
2 if(condition)
3 msg = "true";
4 else
5 msg = "false";
6 return msg;

Similarly, say, the lines 4 and 5 are mistakenly removed from the code snippet in
Listing 2. Any test case requiring the if-condition at line 2 to be true will satisfy statement
coverage without detecting that some code is missing.

3.2 Branch Coverage

The limitations of statement coverage imply that each branch (both true and false) of a
control (boolean) statement has to be exercised. Branch coverage (also known as decision
coverage) criterion forces this requirement, that is, each branch of the program to be
executed at least once by at least one test case. Branch coverage metric is measured using
the following expression [7].

branch coverage =
number of branches exercised

total number of branches in program

The entire boolean expression is considered one true-or-false predicate regardless of
whether it contains logical-and or logical-or operators. Additionally, this metric includes
coverage of switch-statement cases, exception handlers, and interrupt handlers [12].

Now, if we consider the code snippets of Listing 1 and 2, test suites satisfying branch
coverage criterion would detect the null pointer exception problem and missing code prob-
lem as stated in section 3.1.
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Listing 3: Short Circuit Operator

if(condition1 &&
(condition2 ||
aMethod ()))

statement1;
else

statement2;

Listing 4: Basic Condition Coverage
without Branch Coverage

1 boolean f(boolean b) {
2 return false;
3 }
4 if(f(a && b)) ...
5 if((a && b)?false:false )..

The limitation of branch coverage is that it ignores branches within boolean expressions
which occur due to short-circuit operators. Consider the source code shown in Listing 3.
Test suites may satisfy branch coverage criterion without a call to the method “aMethod()”.
Further, in case of loops, like statement coverage, branch coverage cannot report how many
times the loop iterated, or whether it reached the terminating condition.

3.3 Basic Condition Coverage

Basic condition coverage criterion overcomes the limitation of branch coverage with the
short circuit operators. Basic condition coverage requires that all different combinations
of the outcomes of each basic condition in the control expression have to be exercised. For
example, the control expression

(condition1 || condition2)

with two basic conditions would produce four different combinations of their outcome,
as shown in Table 1. Therefore, we need four test cases assuming that each test case
exercises a single combination.

Test Cases condition1 condition2
c1 false false
c2 false true
c3 true false
c4 true true

Table 1: Combinations of Outcomes of
Two Basic Conditions

Basic condition coverage is measured using the following expression [7].

basic condition coverage =
number of basic conditions exercised

2× total number of basic conditions in program
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Test Cases a b c d e
c1 true true true true true
c2 true true true true false
c3 true true true false –
c4 true true false – –
c5 true false – – –
c6 false – – – –

Table 2: Test Cases for Expression (a && b && c && d && e) [7]

A control expression having N basic conditions produces 2N distinct combinations
of outcomes, and so 2N test cases are needed to satisfy basic condition coverage. This
exponential growth of required test cases is a major limitation of basic condition coverage.
Besides, exercise of loops still remains a concern. Moreover, basic condition coverage can be
satisfied without satisfying branch coverage [12]. For example, the if-conditions in lines 4
and 5 of Listing 4 will always be evaluated false.

3.4 Multiple Condition Coverage

Multiple condition coverage (also known as compound condition coverage) tries to control
the exponential growth of the number of required test cases imposed by basic condition cov-
erage, by taking into account the order or logical and short circuit operators. In traditional
programming languages like C++ and Java, a control expression is evaluated encountering
the basic conditions from left to write. In many cases, branching decision is made from
the evaluation of a small subset of the basic conditions without examining the conditions
to the right side. For instance, multiple condition coverage for the expression

(a && b && c && d && e)

would require only 6 test cases (as opposed to 26 test cases required for basic condition
coverage) as shown in Table 2.

A limitation of multiple condition coverage is the number of test cases required is
dependent on the logical operators and their order. So the number of required test cases
can still be exponential in the worst case. For example, having the same number of basic
conditions and operators as shown in Table 2, the expression

(((a || b) && c) || d) && e)

requires 13 test cases as presented in Table 3. Moreover, loops still remain a concern
in both basic and multiple condition coverage.
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Test Cases a b c d e
c1 true – true – true
c2 false true true – true
c3 true – false true true
c4 false true false true true
c5 false false – true true
c6 true – true – false
c7 false true true – false
c8 true – false true false
c9 false true false true false
c10 false false – true false
c11 true – false false –
c12 false true false false –
c13 false false – false –

Table 3: Test Cases for Expression (((a || b) && c) || d) && e) [7]

3.5 Path Coverage

Sometimes, a fault is revealed only through exercise of some sequence of decisions (i.e., a
particular path through the program). Path coverage (also called Predicate Coverage) is
concerned with this issue, requiring that each path between the entry and exit points of a
program has to be exercised. Path coverage is measured using the following expression [7].

path coverage =
number of path exercised

total number of path in program

A program with N control statements has 2N distinct paths. For instance, path coverage
for the code snippet in Listing 5 having 3 if-statements requires the resulting 23 = 8 paths
to be exercised. This exponential growth of paths with the increase of the number of
control statements is a serious limitation of path coverage criterion. Moreover, the number
of paths in a program with loops is unbounded.

3.6 Data Flow Coverage

Data flow coverage refines the path coverage by reducing the number of required path to
be exercised. Data flow coverage is based on DU-pairs (Definition-use pairs) of variables.

Definition refers to data or variable declaration, creation, or initialization.

Use refers to use of the data in computations or predicates.
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Listing 5: Paths in Program

if(a)
statement1;

statement2;
if(b)

statement3;
statement4;
if(c)

statement5;
statement6;

Total Path = 2N = 23 = 8

Consider the variable ‘result’ in the program shown in Listing 6, where definitions of
‘result’ found in lines 2, 15, 17, 19, and its use found in lines 6, 20, 21.

All DU-Pair coverage requires that each definition-use pair must be exercised at least
once. But this is not enough as there may be multiple path between a single DU-pair.
So, all DU-path coverage imposes that each path in each DU-pair of each variable must be
exercised at least once. Data flow coverage still has its limitation with loops since programs
with loops have unbounded number of paths. There are variations of data flow coverage,
which may be found in [5].

3.7 Loop Coverage

Adequacy criteria discussed in the earlier sections indicate that loops need special treat-
ment. Loop coverage requires that for each loop,

• the loop body is executed at least once (more than once for do-while loops),

• loop terminating condition is exercised at least once,

• each jump statement (break, continue, etc.) in the loop body is exercised at least
once.

3.8 Procedure Entry/Exit Coverage

If unit testing has been effective, then faults that remain to be found in integration testing
will be primarily interface faults, and testing effort should focus on interfaces between
units rather than their internal details. Sometimes faults are caused in subsequent calls of
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Listing 6: A Method to Classify Triangles

1 String classify(int sideA , int sideB , int sideC ){
2 String result = "Not a triangle";
3 if (!(( sideA+sideB) > sideC) &&
4 ((sideB+sideC) > sideA) &&
5 ((sideA+sideC) > sideB))
6 return result;
7 int match = 0;
8 if (sideA == sideB)
9 match = match + 1;

10 if (sideB == sideC)
11 match = match + 1;
12 if (sideA == sideC)
13 match = match + 1;
14 if (match == 0)
15 result = "Scalene";
16 else if (match == 1)
17 result = "Isosceles";
18 else
19 result = "Equilateral";
20 if (result.Equals("Isosceles")) aMethod ();
21 return result;
22 }
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Tool Coverage Major Features Language

EclEmma Statement, method Eclipse plug-in, Ant integration Java

Coverlipse Statement, data Flow Eclipse plug-in Java

Cobertura Statement, branch Ant integration Java

Jester Mutation analysis complimentary to code coverage Java

GCT Branch, multiple-condition, loop for Unix platform C

CoverMeter Statement, condition, branch for Unix and Windows C++

Pester Mutation analysis complimentary to code coverage Python

Nester Mutation analysis complimentary to code coverage C#

Table 4: Code Coverage Tools

methods. Procedure entry/exit coverage requires that each path between every entry-exit
pair in a procedure has to be exercised at least once. Probable sources of faults include

• variables that persist values over multiple calls,

• variables that use/modify global or class variables,

• recursive calls of method.

3.9 Code Coverage Tools

To dates many commercial and freeware tools are available for measuring code coverage.
Most of the tools are implemented applying one of the two instrumentation techniques:
class instrumentation and source instrumentation. Class instrumentation injects the re-
porting code directly into compiled .class files while source instrumentation creates an inter-
mediary version of the sources which are then compiled into the final, source-instrumented
.class files [6].

In a typical implementation of a code coverage tool the following features are common.

• Integration with build tools like Ant or Maven.

• Reporting of coverage statistics in HTML, PDF, Plain Text, or XML format.

• Source code encoding by highlighting covered and uncovered code with different col-
ors.

Table 4 lists some free code coverage tools along with their prominent features.
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4 Functional Test Criteria

Functional test case design is an indispensable base of a good test suite, complemented but
never replaced by structural and fault-based testing, because there are classes of faults that
only functional testing effectively detects. Omission of a feature, for example, is unlikely
to be revealed by techniques that refer only to the code structure.

Complete functional test is usually impossible for nontrivial programs. Even a simple
function whose input arguments are two 32-bit integers has 264 legal inputs! Therefore, we
produce sample inputs using two commonly used approaches: random testing and partition
testing.

In random testing, we randomly produce legal sample inputs. Advantages of random
testing include,

• avoids accidental bias, that could be fed by the testers,

• it is an inexpensive way to produce a large number of test cases,

• useful when we lack knowledge on the sensitivity of inputs.

But the major shortcoming of random testing is, it cannot guaranty coverage of special
cases and boundary values. For instance, consider a method “getMax()”, which take a
list of integers and returns the maximum value1. Here, random testing does not ensure
coverage of situations with empty list, negative and positive values in the list, and so on.

Partition testing overcomes this limitation. In partition testing we analyze properties
of input, semantically categorize them, and then pick representative samples from each of
the categories. For the “getMax()” method mention above, we might classify the input
domain based on different properties as shown below.

Size of list: 0, 1, 2, 3, .

Magnitude of values: all negative, all positive, mixture of positive and negative, big
positive number, big negative number, ..

Duplicate values: all duplicate, some duplicate, multiple maximum, ..

Ordering of values: ascending, descending, not ordered.

Position of maximum: beginning, end, somewhat in the middle.

Given a fixed budget, the optimum may not lie in only partition testing or only random
testing, but in some mix that makes use of available knowledge [7].

1this example is taken from [2]
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Operator Description Constraint

Operand Modifications

Constant for constant replacement replace constant C1 with constant C2 C1 �= C2

Scalar for constant replacement replace constant C with scalar variable X C �= X
Array for constant replacement replace constant C with array reference A[I] C �= A[I]

Expressions Modifications

Absolute value insertion replace e by abs(e) e < 0

Arithmetic operator replacement replace arithmetic operator φ with ψ e1φe2 �= e1ψe2

Logical connector replacement replace logical connector φ with ψ e1φe2 �= e1ψe2

Relational operator replacement replace relational operator φ with ψ e1φe2 �= e1ψe2

Statement Modification

Statement deletion delete a statement

Switch case replacement replace the label of one case with another

End block shift move } one statement earlier and later

Table 5: Examples of Mutation Operators [7]

5 Mutation Analysis

Mutation (also known as fault injection) analysis evaluates the degree of effectiveness/-
completeness of test cases, and gives hint to enhance test suites. The basic idea is to create
mutants by making small changes in the program under test , and let the test suite identify
(kill) the mutant.

A mutant is a program that differs from the original program for one syntactic element
(e.g., a statement, a condition, a variable, a label) [7]. The mutant which is syntactically
correct (not rejected by the compiler), is a valid mutant. Typically, mutants are created by
applying mutation operators to the programs. Mutation operators are syntactic patterns
defined relative to particular programming languages [7]. Table 5 lists some examples of
mutation operators for Java or C++.

Mutation testing involves three basic steps:

1. Select mutation operators,

2. Generate mutants applying mutation operators,

3. Execute test, to see if test cases can detect (kill) the mutants.

For example, replacement of the constant 1 by 0 at line 7 of the code in Listing 6 would
generate a valid mutant. Mutation analysis discussed so far refers to strong mutation,
where each mutant has exactly one fault, and the mutant is killed based on the result found
after test execution completes. Strong mutation causes much compilation and execution
overhead, as each mutant needs to be separately compiled and tested.

In weak mutation a single mutant owns more than one faults. Such a mutant is called
meta-mutant. A “meta-mutant” program is divided into segments containing original and
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Test case Faults
1 2 3 4 5 6 7 8 9 10

A x x
B x x x x
C x x x x x x x
D x
E x x x

Table 6: Faults Found by Test Cases

mutated source code, with a mechanism to select which segments to execute. Two copies
of the meta-mutant are executed in tandem, one with only original program code selected
and the other with a set of live mutants selected. Execution is paused after each segment
to compare the program state of the two versions. If the state is equivalent, execution
resumes with the next segment of original and mutated code. If the state differs, the
mutant is marked as dead, and execution of original and mutated code is restarted with
a new selection of live mutants. Hence, weak mutation being more complex reduces the
overhead of separately compiling and running a large number of strong mutants.

6 Prioritization in Regression Testing

With limited time and money, during regression testing prioritization and clustering of
test cases help optimize test suites [10]. For example, consider a program with a test suite
of five test cases, A through E, such that the program contains ten faults, 1 through 10,
detected by those test cases, as shown in Table 6.

Figure 1 Figure 2
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Consider two orders of these test cases, order T1: A–B–C–D–E, and order T2: C–E–B–
A–D. Figures 1 and Figure 2 show the percentages of faults detected versus the fraction of
the test suite used, for these two orders2. Moreover, we see that a test suite with test case
C and E would suffice to find all the faults.

7 Concluding Remarks

The main goal of software testing (verification) is make the software bug free as much as
possible. To achieve this goal the test needs to be good. One test case is better than
another if it detects more faults than the other does. But a test suite with more test cases
may or may not be better than a test suite with less test cases [7]. Rather the completeness
of tests demands importance. Code coverage criteria help to determine the thoroughness
of tests. Therefore, choice of coverage criteria and coverage tool is important. Branch/de-
cision Coverage subsumes (includes) statement coverage. Path coverage subsumes branch
coverage. Data flow coverage enhances path coverage. So, if we choose data flow coverage,
choosing statement coverage or path coverage would be redundant. Moreover, coverage
criteria should not be the basis of test designs. Rather we should use it as heuristic to de-
termine what additional tests required. However, test suites satisfying structural Coverage
criteria could fail in revealing faults that can be caught with functional criteria [7]. So, both
white-box and black-box tests should be applied. Testing should start at the beginning of
the development process and continue as we write production code. Then what should we
test? Anything that we feel may go wrong should be tested. With the progress of software
process as the software gradually gains maturity, mutation testing may be used if deemed
feasible to determine the effectiveness of the test cases we have got so far. Prioritization
of test cases would be helpful to optimize test suites for regression testing. Finally, we
should always keep the motivation to do more testing without ever thinking that testing is
complete, because, “program testing can show the presence of bugs, never their absence.
(Edsger W. Dijkstra)”.
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