
The University of Saskatchewan
Department of Computer Science

Technical Report #2013-02



Adaptive Bug Classification for CVE List using
Bayesian Probabilistic Approach

Mohammad Masudur Rahman, Shamima Yeasmin
Computer Science, University of Saskatchewan, Canada

{mor543, shy942}@mail.usask.ca

Abstract—Software bug classification is a precondition for bug
fixation and it plays a vital role in software maintenance. It is
found that bug fixation often takes long due to the distribution
of misclassified or non-classified bugs by the triager among
the developers. In this paper, we propose an adaptive bug
classification approach on CVE dataset that involves two Bayesian
classifiers such as Naive Bayes and Bayes net, and takes adaptive
decision for classification. Naive Bayes is a classification algorithm
which adopts a naive approach regarding class conditional
distribution during classification and assumes that all the features
of a sample are conditionally independent given the class label.
Bayes net is a graphical representation of a set of random
variables and their conditional dependencies via a directed acyclic
graph. It can be used for knowledge representation as well as
classification. Exploiting the domain knowledge about the bug
class, we conduct the experiments from two different view points
- group-based approach and general approach. In case of group-
based approach, both classifiers are learned using the bug group-
specific samples and selected features from five groups. In case
of general approach, 28,266 bug samples and 64 bug features are
considered. Experiments show that Bayes net classifier has more
potential than Naive Bayes for classification with CVE dataset
and therefore it is preferable. However, it is also found that Naive
Bayes classifier performs fairly well in CVE bug classification due
to its simplistic concept and less number of parameters.

Index Terms—Software bug classification; Bayes net; CVE;
Conditional independence; ExTax.

I. INTRODUCTION

Software bug classification is a precondition for bug fixation
and it plays a vital role in software maintenance. Once a bug
is reported, the triager 1 tries to assign it to the available and
interested developer for fixation. However, it is found that bug
fixation often takes long specially when the bug assignment
is not appropriate for the developer. Each developer has own
set of skills. So, when the triager assigns a bug that requires
skills beyond the skill matrix of the developer for fixation,
then the bug either gets an improper fixation or a delayed
fixation by the developer. This often results into a reopening of
the bug which is a costly operation for software maintenance
(Fig. 1: Software Bug fixation cycle). This is the case when
triager distributes misclassified or non-classified bugs. So, bug
classification is an essential task and it can help the triager
to correctly assign the bugs to the appropriate developers
according to their expertise and interests, and thus, it can
reduce the bug fixation time and cost.

Most of the existing approaches for software bug classifi-
cation are necessarily subjective, manual or semi-automated

1The person who assigns bug to the developers

[7]. Billah and Roy [8] propose a framework, ExTax, for
extensible bug classification on CVE [4] dataset which is
a collection of common security and vulnerability issues of
different security tools, software repositories and databases
from all over the world. They propose 22 bug classes under
5 groups considering 64 bug features. They extract features
manually and classify 25,357 bugs in a semi-automated way;
however, they do not apply any machine learning technique
in their approach. Actually, to the best of our knowledge,
no machine learning technique is used against CVE dataset
for bug classification which motivated us to investigate the
performance of a machine learning technique such as Bayesian
Probabilistic approach for bug classification in this dataset.

In this paper, we propose an adaptive bug classification
approach on CVE dataset that involves two Bayesian classifiers
(e.g., Naive Bayes, Bayes net) and takes adaptive decision for
classification. We also conduct a comparative study between
those two classifiers. While Naive Bayes assumes conditional
independence among the bug features, Bayes net exploits the
dependency relationships among them for bug classification.
They also help us to perform insightful analysis of the char-
acteristics of dataset and to explore significant facts about
the problem domain . Throughout this research, we try to
answer three research questions related to bug features and
their implications, the effectiveness of our approach etc. They
are- (1) Are the bug features conditionally independent of each
other given the bug classes? If not, what are those depen-
dencies and how are they influencing in the classification?
(2) In case of our dataset, the bug features are manually
extracted and it contains missing feature values for most of
the samples; however, we can not discard those samples for
obvious reasons. So, which expected values of those features
do maximize the bug classification accuracy? (3) How much
effective is the Bayesian probabilistic approach for CVE bug
classification?

We reuse the proposed classification scheme and the bug
features extracted by Billah and Roy [8] in our experiment.
We conduct the experiments from two different view points. In
the first case, the proposed approach uses domain knowledge
for feature selection for each group and applies both Naive
Bayes and Bayes net for classification. It learns the Bayes net
structure using different local score based search algorithms,
and estimates the parameters for each group individually. In
this case, we got 81.38% and 78.15% average classification
accuracy for each group for Naive Bayes and Bayes net clas-



Fig. 1. Software Bug fixation cycle

sifier respectively. In the second case, our approach considers
all 64 features associated with different groups and learns
a single model for Naive Bayes classifier. It also learns a
single Bayes net comprising 65 nodes. The idea is to disregard
the feature selection concept, and explore and exploit the
hidden dependency relationships among all the features for bug
classification. In this case, we got 80.64% and 81.50% classi-
fication accuracy for Naive Bayes and Bayes net respectively.
Moreover, we delved deeper and found that the assumption of
conditional independence among the bug features for Naive
Bayes classifier works fairly well against it low cost training,
and the feature selection concepts can significantly improve
the classification accuracy through imposing a few constraints
on the features. We also noted that the learned Bayes nets
provide better classification accuracy than naive Bayes for
increased number of samples with a compromise in training
cost; moreover, they also help us to explore and reason about
different facts related to the bug features and the classes.

The rest of the paper is structured as follows. Section II
focuses on the brief literature review, Section III describes
details of the dataset we used and Section IV discusses about
our proposed bug classification approach. Section V elicits
the experimental results and Section VI concentrates on the
overall results and the implications of our findings. Section
VII discusses about our future plans with this work and finally,
Section VIII summarizes the whole paper.

II. BACKGROUND

Existing studies on bug classification can be divided into
two broad categories - subjective approach which relies on
human discretion or judgement and objective approach which
emphasizes on methodology generalization through some fixed
rules. Seaman et al. [14] aggregate historical data to model
defect taxonomy and propose a subjective and extensible
approach for bug classification. However, the approach is
completely manual.

Nakamura et al. [12] present a methodology of defect
analysis that involves investigating the defects in the source

code level. Knuth [11] proposes an approach for TEX error
classification. However, both of the approaches are highly
subjective and require expert knowledge about defect analysis.

Another subjective taxonomy is Unix Security Taxonomy
by Aslam [6]. He enlists the defects leading to security prob-
lems in UNIX operating system in a hierarchical manner. In
hierarchical taxonomy, defect classes are organized in several
levels and any class generalizes a set of classes from the level
below it.

To characterize software defect types, Chillarege et al.
[9] propose a defect classification scheme called Orthogonal
Defect Classification(ODC) which captures semantic informa-
tion from defect description. The scheme assigns attributes
to a defect and represents the defect in a n-axis Cartesian
coordinate system where each attribute refers to an axis.
ExTax framework by Billah and Roy [8] exploits the ODC
idea of objective interpretation and defect representation as
a point in n-dimensional system. It also borrows the idea
of hierarchical representation of bug taxonomies [6] and
extensible bug taxonomy [14] which make it a framework
considering both subjective and objective aspects during bug
classification. Our research is influenced by this framework as
we reuse its subjective interpretation of bug groups, classes
and attributes. However, our approach contrasts with ExTax
by applying machine learning approach for classification. It
also considers two view points for classification (e.g., group-
based and general) exploiting the domain knowledge about
bug classes and features.

In a recent study, Neelofar et al. [13] use multinomial Naive
Bayes classifier on 29,000 BugZilla samples from Eclipse and
Mozilla and extract features using Chi Square and TFIDF
algorithms. Their approach shows an average classification
accuracy of 83%. In our research, we use both Naive Bayes
and Bayes net for bug classification on a different dataset
and more importantly we manipulate the causal or dependence
relationships among the bug features for better classification
and insightful analysis of the dataset.

III. DATASET

In our research, we use CVE List [4] as the dataset which
is a collection of 61,894 reported incidents about security vul-
nerabilities and exposures of different security tools, software
repository, database etc from all over the world. However, we
use a subset of 25,350 defects for the experiment which are
manually classified by Billah and Roy [8]. It needs to be
mentioned that they classify several samples under multiple
classes. Let us consider that a sample is classified under class
C1 and C2. We consider it two separate samples under class
C1 and C2 and thus, we get a set of 28,266 samples. The
idea is to investigate the applicability and the performance of
the machine learning approach such as Bayesian probabilistic
approach on the same dataset for bug classification. In the fol-
lowing sections, we discuss different important characteristics
of our dataset.



TABLE I
BUG GROUPS AND CLASSES

Group (Level 1) #Class Class (Level 2)

Computation (C) 3 Value Representation Defect (C.1) Value Offset Defect (C.2)
Undefined Outcome (C.3)

Logic (L) 8 Improper Checks (L.1) Improper Terminal Conditions (L.2)
Wrong Operation (L.3) Flaws in Algorithm (L.4)
Performance Issues (L.5) Improper Exception Handling (L.6)
Control Flow Error (L.7) Design Non-conformance (L.8)

Memory (M) 4 Invalid Memory Reference(M.1) Improper Deallocation (M.2)
Memory Leaks (M.3) Over/Underflow (M.4)

Data, Interface and Input/Output (D 5 Interface Mismatch (D.1) Data Mismatch (D.2)
Improper Input Validation (D.3) Missing or Extra Input (D.4)
Improper Abstraction (D.5)

Synchronization (S) 2 Prohibitive States (S.1) Improper Sequencing (S.2)

A. Bug Classes and Class hierarchy

Billah and Roy [8] propose two level classification for CVE
dataset where level one ensures the subjectivity2 and level two
ensures objectivity3 of the bug classification simultaneously. In
our research, we also consider two level classification where
level one class (group) information for a bug comes in the
form of domain knowledge (a.k.a., subjective interpretation
of the bug) and level two class information comes from
machine learning classifiers. Our dataset has five groups or
level one classes- Computation (C), Logic (L), Data interface
and Input/Output (D), Memory (M) and Synchronization (S).
Each bug group contains several bug classes which interpret
the group from objective point of view. The dataset contains
22 classes in total under five groups. Table I shows the bug
groups and their corresponding bug classes of our dataset. For
example, Logic (L) is a bug group, and Flaws in Algorithm
(L.4) is a bug class under the group and it is interpreted by
some fixed rules.

B. Bug Features

Each bug class of the dataset is characterized by several
bug features and we consider 64 features in total for 22 bug
classes. Table VI in Appendix shows the bug features. From
Table VI, we can see that each bug group contains fixed
number of features under its classes. The classes under Logic
(L) and Synchronization (S) groups contain the maximum and
minimum number of features respectively. We also note that a
bug can be classified under multiple bug classes, but not under
multiple groups; that means, during classification, bug groups
(level one) are mutually exclusive, but, bug classes (level two)
are not.

Generally, bug description is written in natural language
text and bug feature extraction is a non-trivial task which is
often done manually taking help from domain experts. In this
research, we use the extracted features by Billah and Roy [8],
and each feature value represents the boolean response of a
particular incident related to the bug. For example, the classes
under Logic (L) group contain a bug feature -Missed to save a
value which has a value of yes(1) or no(0). Thus, all the feature
values for our dataset are drawn from binary distribution.

2subjective interpretation of bug
3a set of formal rules to characterize the bug

TABLE II
BUG SAMPLES STATISTICS

Bug Group #TS1 # SCFV2 #SCMV3 PSCMV4

Computation (C) 89 3 86 96.62%
Logic (L) 3,499 217 3,282 93.80%
Memory (M) 4,704 831 3873 82.33%
Data, Interface & I/O (D) 18,292 6,722 11,570 63.25%
Synchronization (S) 1,682 185 1497 89.00%
All Groups 28,266 7,958 20,308 71.84%
1 Total samples
2 Samples containing all feature values
3 Sample containing missing feature values
4 Percentage of samples containing missing feature values

C. Bug Sample Statistics

Table II shows detailed statistics about the bug samples,
missing feature values etc from different bug groups. From
Table II, we can see that the dataset contains 18,292 samples
from Data, Interface and I/O (D) group whereas only 89
samples from Computation (C) group. So, there is quite
an unequal distribution of samples. As the bug features are
manually extracted, a major portion of the samples contain
missing values. We find that about 71.84% of the total samples
have one or more features containing missing values. We try
to analyze a few bug sample descriptions against the missing
feature values in the dataset and find that it is a non-trivial
task to populate all feature values from the bug report. Thus,
missing feature value is a common issue for manual feature
selection. However, we deal with it satisfactorily which we
discuss in Section IV-E.

IV. ADAPTIVE BUG CLASSIFICATION FOR CVE LIST
USING BAYESIAN PROBABILISTIC APPROACH

Our proposed approach can take adaptive decision for classi-
fication based on available information about the bug samples.
Here, we use two Bayesian classifiers- Naive Bayes and Bayes
net and consider two view points for classification- group
based approach and general approach. Fig 2 shows different
steps and modules involved into our proposed approach. In the
next few sections, we describe them in detail.

A. Naive Bayes Classifier

Naive Bayes classifier is a classification algorithm which
adopts a naive approach regarding class conditional distribu-
tion during classification and it assumes that all the features
of a bug sample are conditionally independent given the class



Fig. 2. Schematic Diagram of Proposed Approach for Bug Classification

label. However, if the assumption is not correct, it still works
well. Because it has a limited number of parameters to estimate
which make it immune to overfitting. There are two steps in
the classification with Naive Bayes classifier-model fitting and
using the model for posterior prediction.

1) Model Fitting: The first step with Naive Bayes classi-
fication is to develop the model for the classifier. It involves
estimating certain parameters like maximum likelihood (ML)
or maximum aposteriori (MAP). If we consider a training set
containing C classes with D features, then the log-likelihood
of the training data given the parameters θ can be calculated
using the following equation.

log p(Data|θ) =
C∑

c=1

Nc log πc+

D∑
j=1

C∑
c=1

∑
i:yi=c

p(xij |θjc) (1)

Here, the expression can be decomposed into a series of terms
concerning π, the class prior and DC terms containing the
θjc’s, the likelihood of class features. Thus, we can estimate
the maximum likelihood of class prior, π̂c, as the following:

π̂c =
Nc

N
(2)

where, Nc =
∑

i I(yi = c) is the number of samples in class
c. We also can estimate the ML of likelihood for each feature
considering a distribution; in our case, all features are binary
and therefore we assume xj |y = c ∼ Ber(θjc). Thus, we get
the MLE for likelihood of each feature using the following
equation.

θ̂jc =
Njc

Nc
(3)

Calculation of MLE parameters for class prior and like-
lihood of data (features) are quite simplistic and involves
empirical counting. However, the model comprises of MLEs
is often prone to overfitting and may perform badly when
it observes the testing samples that are unlikely. Therefore,
we need to perform smoothing operation on the empirical
counts. To perform smoothing and make the model immune
to overfitting, we consider a conjugate Dir(α) prior for π
and a conjugate Beta(β0, β1) prior for θjc. They add pseudo

parameters to the empirical counts due to their conjugacy
attributes. Thus, we can estimate the MAP parameters using
the following equations.

π̂c =
Nc + αc

N + α0
(4)

θ̂jc =
Njc + β1

N + β0 + β1
(5)

Here, α0, αc, β0, β1 are pseudo parameters. As a simple guess,
we consider uniform priors for all classes and features and
therefore, α0 = αc = β0 = β1 = 1.

2) Prediction with the model: Once the model is developed,
we use it for posterior prediction using the following equation
where the point estimates such as MLE or MAP are plugged
in.

p(y = c|x,D) ∝ π̂c
D∏

j=1

(θ̂jc)
I(xj=1)(1− θ̂jc)I(xj=0) (6)

Here π̂c, θ̂jc are the point estimates and will be replaced
by MLE or MAP estimation for classification. Basically, we
determine the ĉMAP using Equation 9 to determine the class
of a bug sample.

B. Bayes Net Classifier

Bayes net is a graphical representation of a set of random
variables and their conditional dependencies via a directed
acyclic graph. Here, the random variables are denoted by nodes
and their conditional dependencies are denoted by connecting
edges. The edges can be directed or undirected. If there is no
edge between two nodes, that means they are conditionally
independent whereas if there is an edge, that means they
are conditionally dependent. For example, Fig. 3 shows a
Bayes net where the attributes (A1, A2, A3) are conditionally
dependent on class node C. Bayes net is often termed as belief
networks or causal networks.

As Bayes net structure encodes the important probabilistic
relationships among the random variables, its structure can be
learned and parameters can be estimated to use for inferencing
about a set of variables in the net when another set of variables



are given. Thus, it can be used for classification. Using Bayes
net as a classifier involves three steps - learning structure,
learning parameters and prediction (inference) with Bayes net.

1) Learning Bayes net structure: In our approach, we
consider Bayes net as a directed acyclic graph and we use
several local score-based search algorithms for learning the
structure such as K2, Hill-climbing, Tree-augmented Naive
Bayes (TAN), Simulated annealing etc. The idea behind the
multiple search algorithms is to determine which algorithm
provides the structure that best reflects the data characteristics.
Here, we describe those algorithms in brief.

a) K2: It is a greedy search algorithm used for learning
when the total ordering such as parents, children are known
in advance. These ordering can be used to reduce the search
space. The algorithm starts learning with a list of nodes that
have no parents. It then adds the parent nodes that increase
the total score of the network. When any parent addition does
not increase the total score, it stops adding the parent nodes
[2] and finalizes the structure.

b) Hill-climbing: It is a greedy algorithm that adds a
neighbour node to the structure that improves the total score
of the network. However, this greedy behaviour often leads to
several problems like local maxima, plateau, ridges etc and
the model results into a non-optimal model [2].

c) Simulated annealing: This algorithms solves the local
maxima problem of hill-climbing algorithm. It does not move
to the neighbour structure containing highest score always,
rather it follows a stochastic way for switching. It switches
to a neighbour structure containing the highest score with a
probability of p and performs a random walk to another node
with a probability of 1−p [3]. This stochastic behaviour helps
the model to escape the local maximum and find a global
maximum.

d) Tree augmented search (TAN): . The algorithm starts
searching with an initial Bayes net structure of Naive Bayes
classifier. It forms a maximum weighted spanning tree by
adding edges among the attribute nodes and the tree is formed
using Chow and Liu algorithm [10].

For all search algorithms, we use well known Bayes score
as the metric for scoring function. Thus, each algorithm selects
the best network, G, based on its posterior probability given
the training data as stated by the following equation.

p(Gk|D) = p(D,Gk)/p(D) (7)

Here, P (D) is the normalization constant which does not
depend on the Bayes net structure. So, the relative posterior
probability, p(D,Gk) = p(D|Gk)p(Gk) is often used for
model selection where p(D|Gk) is the marginal likelihood
of the network and p(Gk) is the prior assumption about the
network. We consider a uniform prior for all networks.

2) Estimating Bayes net parameters: Once the Bayes net
structure is learned and selected, we construct the conditional
probability table for each node in the graph. We manipulate
the graph structure for the computation. Bayes net follows
the Markov property; that means each node is conditionally
independent of its non-descendants given the parents. Thus the

Fig. 3. Bayes Net Example

joint probability distribution of the network can be obtained
using the following equation.

p(X1, X2, ...Xn) =
∏
i

p(Xi|pa(Xi)) (8)

Here, pa(Xi) represents the parent of node of Xi. We use the
point estimates such as MAP and ML following equation 5
and 4 to calculate the conditional probability for the nodes in
the graph.

3) Bayes net for classification: After the Bayes net is
selected and the network parameters are learned, it can be used
for classification. The idea is to exploit the joint probability
distribution of Bayes net (which can be found using Equation
8) to calculate the posterior prediction of a class for a given
sample using the following equation.

ĉMAP = argmax
c

[p(Data|θ)p(θ)] (9)

Here, θ represents the learned parameters from Bayes net
and Data represents the sample features. Thus, Bayes net is
basically a Bayesian classifier with reduced computation effort
and better support against overfitting.

C. Group Based Approach for Classification

Subjective interpretation of the bug is often helpful for bug
classification or bug fixation [8]. In our classification approach,
we are interested to manipulate it during classification. We
consider level one classes or groups as the subjective views
of the original bug classes. The idea is, if the group of a
bug sample can be predicted from its title or description text,
then it should be classified using group-based classification ap-
proach, otherwise it will be classified using general approach.
The triager will be responsible to derive the group related
information of a bug sample based on the bug sample content
and his/her domain expertise. In group based approach, we
consider five groups - Computation (C), Logic (L), Memory
(M), Data, Interface and I/O (D) and Synchronization (S), and
develop five group-based classifiers (Fig .2-(g)). Each group-
based classifier contains one naive Bayes and one Bayes net
classifier and we select a subset of 64 bug features for each
group. We analyze the complete dataset and perform attribute
selection based on our observation and the feedback of the
domain experts for each group.

Table III shows the detailed statistics about the bug classes,
features and parameters for the group-based classifiers. Here,
we can see that the Naive Bayes classifier for Memory (M)
group needs to learn 52 model parameters whereas a Bayes
net of the same group needs to learn 13 CPTs. Fig. 4 and
Fig. 5 show the learned Bayes nets for Computation (C) and



TABLE III
GROUP BASED CLASSIFICATION

Bug Group #BC1 # BF2 #PNB3 #CPTBN4

Computation (C) 3 7 24 8
Logic (L) 8 28 232 29
Memory (M) 4 12 52 13
Data, Interface & I/O (D) 5 12 65 13
Synchronization (S) 2 5 12 6
1 Bug classes under the group
2 Bug features selected for the group
3 Parameters to be learned for Naive Bayes classifier
4 CPTs to be calculated for selected Bayes net.

Fig. 4. Computation (C) Group Bayes net

Fig. 5. Synchronization (S) Group Bayes net

Synchronization (S) groups that are learned by TAN search
algorithms and we used for group-based bug classification.

D. General Approach for Classification

General approach for classification is used when the group
specific information about the bug sample is not available.
In case of general-approach classifier, we consider all 64 bug
features and 22 classes (level two) proposed by Billah and
Roy [8] and develop a naive Bayes classifier and a Bayes net
classifier (Fig. 2-(h)). For naive Bayes classifier, the model
learns 1430 model parameters whereas the Bayes net learns
65 conditional probability tables.

E. Handling Missing Values

The dataset has about 71.84% samples that contain one
or more missing feature values. We use Weka to perform
training and testing with our classifiers applying 10-fold cross
validation. Weka replaces the numerical missing values with
the global means; so, in both naive Bayes and Bayes net, the
missing feature values are replaced by the global means for
the training and classification purpose.

Fig. 6. Computation (C) Group Classification Accuracy

Fig. 7. Logic (L) Group Classification Accuracy

V. EXPERIMENTAL RESULTS

In this section, we discuss about the experimental results ob-
tained from the proposed classification approach (e.g., group-
based and general classification approach). Since the goal of
this research is to conduct a comparative analysis between
Naive Bayes and Bayes net classifiers for bug classification,
our attempt is successful in overall and we find that Bayes net
is preferable to Naive Bayes for our purpose. However, we
analyze the classifier performance in terms of the following
metrics.

• Classification accuracy (Recall)
• Cohen’s Kappa statistics
• Area under ROC curve (AUC)
• Sample size vs accuracy curve
• Misclassification cost
• Bayes net Knowledge Exploration

A. Classification Accuracy (Recall)

For both approaches of bug classification, we calculated
the classification accuracy for Naive Bayes and Bayes net
classifiers. For Bayes net, we used four search algorithms
for structure learning -K2, Hill Climbing (HC), Simulated
Annealing (SA) and Tree Augmented Naive Bayes (TAN). Fig.
6, 7, 8, 9 and 10 show the classification accuracy of Bayes nets
with different search algorithms and Naive Bayes classifiers
for group-based approach. Here, we can see that Naive Bayes
and Bayes net perform comparatively the same except Data,
Interface and I/O (D) group. Here, Naive Bayes outperforms
the Bayes net classifier. The maximum classification accuracy
is found for Logic (L) group whereas the lowest accuracy is
found for Computation (C) group.

Fig. 11 shows the classification accuracy for Naive Bayes
and Bayes net classifiers for general approach based bug



Fig. 8. Memory (M) Group Classification Accuracy

Fig. 9. Data, Interface, I/O (D) Group Classification Accuracy

Fig. 10. Synchronization (S) Group Classification Accuracy

Fig. 11. All Samples Classification Accuracy

classification. The approach considers all 28,266 samples dis-
regarding the group specific domain knowledge. Here, Bayes
net performs classification with 79.59%, 79.42% and 81.50%
accuracy with K2, Hill-climbing (HC) and Tree Augmented
Naive Bayes (TAN) search algorithms respectively and Naive
Bayes classifier has an accuracy of 80.64%. Obviously, this
is not a great improvement for Bayes net, but it shows that
Bayes net is likely to perform better for large sample set which
we observed also from another test involving different sample
sizes.

TABLE IV
KAPPA STATISTICS (GENERAL APPROACH)

Classifier (All samples) Kappa (κ)
Bayes net (K2) 0.7369
Bayes net (HC) 0.7349
Bayes net (TAN) 0.7592
Naive Bayes 0.7495

TABLE V
KAPPA STATISTICS (GROUP-BASED APPROACH)

Classifier Kappa (κ)(C) Kappa (κ)(L)
Bayes net (K2) -0.0103 0.0655
Bayes net (HC) 0.0000 0.0000
Bayes net (SA) 0.0000 0.0000
Bayes net (TAN) -0.0137 0.0663
Naive Bayes 0.0000 0.0672

B. Cohen’s Kappa Statistics

Cohen’s Kappa is an important statistical measurement that
represents how much the automated classification algorithm
agrees with the actual classes of the bug samples. This is
a value between 0 to 1 where 1 represents the complete
agreement and 0 represents the total disagreement [5]. Table
IV shows the Kappa statistic for Bayes net with different
search algorithms and Naive Bayes classifiers. Here, the κ
values are not significantly different and fall within the range
of 0.61 to 0.80, that means, they all agree with the original
bug classes strongly [5]. Table V shows the κ values for the
classifiers of two groups. For convenience, we consider two
extreme cases - Computation (C) and Logic (L).

From Table V, we can see that both Naive Bayes and Bayes
net classifiers have very low κ values, that means, they barely
agree with the original classes of the bug samples. Logic (L)
group has a maximum classification accuracy of 96.97%, but
has a κ value of 0.0672 which indicates poor agreement [5].
This may happen due to the limited number of bug samples
under classification in the group-based approach (e.g., C has
89, L has 3499 samples), because for another group, D, we
obtained κ = 0.5929.

C. ROC Curve Area

The Area under ROC curve (AUC) is also considered as
an important metric for classification performance [1]. We
calculated the area under ROC curve for each bug class
and plot against different classifiers. Fig.12 shows the AUC
plots for Bayes net and Naive Bayes classifiers from general
approach where 22 classes are considered. Here, we can see
that AUC values for the two classifiers are almost the same
except two classes - L8 with ID 11 and M2 with ID 13.
However, Bayes net has an average AUC value of 0.955 and
Naives Bayes has 0.947; that means, both of the classifiers
are excellent for testing, but Bayes net performs a little better
than Naive Bayes [1].

D. Sample Size vs Accuracy Curve

We considered seven different sample sizes under general
approach and calculated the classification accuracy measures



Fig. 12. ROC Area Statistics (All Samples)

Fig. 13. Sample Size vs Classification Accuracy Curve

for both Bayes net and Naive Bayes classifiers. We found that
with the addition of new samples, the classification accuracy
increases slowly. However, we noted a decrease in the accuracy
with 8000 and 12,000 sample sizes for both of the classifiers;
this may happen due to the unequal distribution of the bug
samples containing missing values in the dataset. Because,
the sample set with 4000 samples contains no missing values
and the set with 16000 samples contains 50% missing values.
On the other hand, the target sample sets (i.e., 8000, 12000)
contain about 42 (< 1%) and 4000 (33.68%) samples having
missing feature values respectively. However, with the increase
of sample size, this effect reduces for both classifiers. Fig 13
shows the classification accuracy against different sample sizes
for Naive Bayes and Bayes net classifiers.

From Fig. 13, we can see that the classification accuracy
for both classifiers increases with the addition of new bug
samples; however, it increases for Bayes net a bit faster than
Naive Bayes. Thus, the we got a final classification accuracy of
81.50% for Bayes net and 80.46% for Naive Bayes classifier.

E. Misclassification Cost

We calculated the cost of misclassification by the classifiers.
In this research, we considered two levels for classification
- groups (a.k.a subjective interpretation of bug class) and
original classes (level two). The motivation behind bug classi-
fication is to aid the triagers and the bug fixers with sufficient
information about the type or class of the bug samples.
However, the classifier may fail to return the correct class for
a sample; but, the costs of all misclassification errors are not
same. Let us consider the original class of a bug sample is C1,
but the classifier returns C3 which is another class within the
same bug group. We considered this type of misclassification
as a minor error; however, if it returns L4 which is a class from
another group, then the cost is significant and we considered
it as major error. Because, in the former case, bug assignment

Fig. 14. Sample Size vs Minor Misclassification Error

Fig. 15. Sample Size vs Major Misclassification Error

decision may not be affected much, but, the later case may
result into a potentially wrong assignment. These type of errors
occurred in case of general approach for classification and we
calculated those errors to contrast between Naive Bayes and
Bayes net classifiers in terms of error cost.

We found from the previous statistics about classifier per-
formances that Naive Bayes and Bayes net perform almost
equally. However, cost and type of misclassification can add
a new dimension to their evaluation metrics set. From Fig 14
and Fig. 15, we can see that Bayes net is relatively less prone
to major misclassification than Naive Bayes, which denotes
that Bayes net can be a good choice over Naive Bayes for
classification.

F. Bayes net Knowledge Exploration

Besides classification Bayes net is a useful tool for knowl-
edge representation and mining new information about the
class and attributes involved into it. For both approaches of bug
classification, we used Bayes net and learned the structure of
Bayes net using different search algorithms. We also explored
different information related to the bug features such as their
conditional dependence, priority, distribution etc. For example,
in the Bayes net structure involving 64 bug features, we
found three clusters centering around three bug attributes -
A6 (Expanded values), A8 (Specific offset of values) and A59
(Failed to provide access to a member). Fig. 16 shows a portion
of our learned Bayes net.

From Fig 16, we can see that the bug feature A8 is a parent
node to multiple feature nodes such as A28, A33, A34 etc,
that means, those nodes are conditionally dependent on the
parent node A8. However, according to the domain knowledge
(i.e., subjective interpretation of bug), there is a little chance
of having such conditional dependence, because A8 and A28,
A33 and A34 are from different bug groups. But, from the
training data set, the search algorithms developed that structure



Fig. 16. Bayes net Knowledge Exploration

with Bayes score and therefore with maximum posterior
probabilities. So, this new information is not ignorable and it
can be considered as a new piece of fact which can encourage
to rethink about the subjective interpretation of bugs classes.
Thus, Bayes net can help in exploring valuable information
that can be used for better classification and inferencing.

VI. RESULT DISCUSSIONS & IMPLICATIONS

In this section, we discuss about the overall results of our
proposed classification approach and the implications of the
findings.

A. Overall Classification Results

In the previous section, we discuss about different metrics
related to classifier performance. In case of group-based ap-
proach, Naive Bayes classifier performs better than or similar
to Bayes net classifier for all groups except Synchronization
(S). In our dataset, the bug samples are not equally distributed
and therefore different groups contain different number of
samples. For example, Computation (C) group contain only
89 bug samples out of 28,266 samples whereas Data, Interface
and I/O (D) group contains 18,292 samples. These sample
size and the existence of missing feature values influence the
classification performance of the classifiers. We noted different
classification accuracy for different groups. For example, both
classifiers associated to Computation (C) group have the
lowest accuracy whereas Logic (L) group classifiers have the
highest classification accuracy. One possible reason behind the
highest accuracy for Logic (L) group may be the largest feature
set which is 28, that means, classifier can detect a sample
efficiently with more features specified.

In case of general approach, when we disregard the subjec-
tive interpretation of bug classes and consider all 64 features
for every bug class, Bayes net performs slightly better (i.e.,
classification accuracy 81.50%) than Naive Bayes classifier
(i.e., classification accuracy 80.64%). That means, increased
number of features and samples help the Bayes net to capture
the bug feature dependencies more efficiently which results
into a structure that fits with the semantics of dataset more
accurately. However, it is interesting to note that the indepen-
dence assumption among bug features (i.e., Naive Bayes) also
works fairly well.

Besides classification accuracy, κ statistic is also an im-
portant metric for classifier performance [5]. For general

approach, both Naive Bayes and Bayes net show a strong
agreement with the original bug classes (i.e., κNBC = 0.7495
and κBNC = 0.7592). However, in case of group based
approach, we get poor agreement with the bug classes despite
of the higher classification accuracy. For example, Naive Bayes
classifier for Logic (L) group has a classification accuracy of
96.97%, but it has a κNBC = 0.0672 which indicates a poor
agreement. However, after performing more analysis, we find
that the number of bug samples is an important factor that
influences the κ values and if we can test with more samples,
κ value will be more meaningful.

ROC curve is a plot between True Positive Rate (TPR) and
False Negative Rate (FNR) of a classification system and a
system with higher AUC value is considered to be a better
classification system. According to Fig 12, both Naive Bayes
and Bayes net show almost similar values except two classes.
However, Bayes net has an average AUC value which is higher
than that of Naive Bayes classifier which indicates that Bayes
net is relatively better in predicting true classes of the bug
samples.

The next metric we consider for classifier performance is
sample size versus classification accuracy curve. From 13, we
can see that Bayes net’s performance increases relatively faster
compared to that of Naive Bayes classifier with the addition
of new samples. We test with 28,266 bug samples; however,
addition of more sample is likely to signify the performance
differences between the classifiers.

We also consider the cost of misclassification and find that
Bayes net is less prone of costly errors rather than Naive
Bayes. Bayes net considers and tries to explore the conditional
dependencies among the bug features that leads to a somehow
semantic representation of dataset and prevents from major
classification error. On the other hand, Naive Bayes classifier
considers a fixed structure of class and attribute which may not
reflect the data semantics and lead to major misclassification
errors.

Thus, considering all of the above metrics for performance
evaluation, we can conclude that, for CVE dataset, Bayes
net classifier is preferable and it has more potential than
Naive Bayes for classification with a little compromise in
training cost (e.g., additional step for structure learning), but
Naive Bayes is also a good choice for bug classification. We
consider two approaches for bug classification in this research
exploiting the domain knowledge about the bug class. From
the above analysis and discussion, we can also conclude that
if the domain knowledge is available about the bug class,
the group-based approach with selected bug features is an
appropriate solution, otherwise the general approach is always
a reliable choice for classification.

B. Implication of Results

In our research, we apply two Bayesian classifiers for CVE
dataset classification which is a novel idea. Our findings in
the research have several implications. This section focuses
on those implications.



1) Reduction of Effort: Although the feature extraction is
still manual, we propose a machine learning based automated
classification approach which can significantly reduce the hu-
man effort for classification task. The most interesting part of
this approach is scalability; whereas manual bug classification
is limited to the dataset size or availability of human experts,
our approach can be scaled to any sized dataset with suitable
feature extraction techniques.

2) Reduction of Cost: The proposed approach can signif-
icantly reduce the cost of misclassification in terms of time
and money. Our approach provides a classification accuracy of
81.50% for CVE dataset which can be compared to the existing
well-known result of 83% accuracy[13] for another dataset.
Thus, if adopted, our approach can greatly help the triagers
and the developers with accurate classification information.

3) Adaptive decision making: We propose an adaptive
decision making approach for bug classification. That means,
it is not restricted to only a fixed Naive Bayes classifier,
rather it takes adaptive decision based on the availability of
the domain knowledge about the bug class. If the triager can
predict the group (i.e., level one class) of the bug sample,
our algorithm can use the group-based approach for more
targeted classification with higher accuracy. However, if the
group information is not available (Fig 2-(i)), the proposed
algorithm can adopt the general approach for classification
considering all features. Thus, our proposed approach provides
flexibility during classification and adapts with different avail-
able information.

4) New knowledge exploration: In section V-F, we show
how Bayes net can be used to explore new knowledge about
bug class and its features. The learned structure of Bayes
net can be used to mine different hidden facts about the
conditional dependencies which can be used to update the
subjective interpretation of bug classes. For example, the
current domain knowledge does not consider a conditional
dependence relationship between A8,specific offset of values
and A28, Did not catch an exception as they are from different
bug groups; however, observing this fact would help the
domain experts to rethink about the subjective interpretation
of the bug classes.

VII. FUTURE WORKS

In this research, we propose an automated bug classifica-
tion approach for CVE dataset using Bayesian probabilistic
approach. We successfully determined the applicability of the
approach for the target dataset; however, we have some future
plans with the existing works. They are discussed below.

• Automated Bug Feature Extraction: In this research,
we use the extracted feature values by Billah and Roy
[8] and they are extracted manually. We are planning to
automate the feature extraction technique using some IR
methods such as TFIDF, Information gain (IG), Mutual
Information (MI) etc as well as sentiment analysis tech-
niques.

• Feature Values and Weights: In this research, we
consider binary values and uniform weights for all the
features. In future, we will investigate whether the multi-
nomial values and prioritized weights can better reflect
the feature importance or not.

• Reorganization of Bug features: The learned Bayes
nets in our experiments reveal certain important informa-
tion about the conditional dependencies among the bug
features. We will exploit that information and analyze
the dataset more deeply to update or reorganize the bug
features under the bug groups and classes.

• Real World User study: We also have a plan to conduct
a real world user study to determine the effectiveness of
our proposed approach for classification.

VIII. SUMMARY

To summarize, we propose a machine learning based bug
classification approach for CVE dataset with 28,266 bug
samples, 22 classes and 64 bug features. We use two Bayesian
classifiers such as Naive Bayes classifier and Bayes net clas-
sifier. In our approach, we conduct the experiments from two
different view points -group based approach (i.e., exploits the
subjective interpretation of bug class and considers selected
features) and general approach (i.e., considers all 64 features).
We analyze the experimental results and measure the perfor-
mance of both classifiers using several performance metrics
such as classification accuracy, κ statistic, AUC value, mis-
classification costs etc. From the analysis, we find that Bayes
net classifier is preferable to Naive Bayes for classification
with CVE dataset. We also find that group-based approach is
applicable for bug classification when the bug group is known,
otherwise general approach (i.e., considering all features) is a
suitable choice for classification.

REFERENCES
[1] Area Under an ROC Curve. URL http://gim.unmc.edu/dxtests/roc3.htm.
[2] Bayes net Learning. URL http://www.slideshare.net/gladysCJ/

slidesPhDthesisGCastillo.
[3] Bayes net Search Algorithms. URL http://www.bayesnets.com/.
[4] Mitre Corporation: Common Vulnerabilities and Exposures. URL http://cve.mitre.

org/data/downloads/index.html.
[5] Cohen Kappa Statistic. URL http://www.statstodo.com/CohenKappa Exp.php.
[6] T. Aslam. A Taxonomy of Security Faults in the Unix Operating System. Master’s

thesis.
[7] K. Billah. Detecting Dissimilar Classes of Source Code Defects. Master’s thesis,

University of Saskatchewan, Canada, 2013.
[8] K. Billah and C.K. Roy. ExTax: A User Driven Classification Framework for

Extensible Source Code Defect Taxonomies. Technical report, University of
Saskatchewan, Department of Computer Science, 2012.

[9] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray,
and M.-Y. Wong. Orthogonal Defect Classification-A Concept for In-Process
Measurements. TSE, 18(11):943 –956, 1992.

[10] C. Chow and C. Liu. Approximating Discrete Probability Distributions with
Dependence Trees. TIT, 14(3):462–467, 1968.

[11] D. E. Knuth. The Errors of TEX. Journal of Software: Practice and Experience,
7:607–685, 1989.

[12] T. Nakamura, L. Hochstein, and V.R. Basili. Identifying Domain-Specific Defect
Classes Using Inspections and Change History. In ISESE, pages 346–355, 2006.

[13] Neelofar, M.Y. Javed, and H. Mohsin. An Automated Approach for Software Bug
Classification. In Proc. CISIS), pages 414 –419, 2012.

[14] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R.L. Feldmann, Y. Guo, and
S. Godfrey. Defect Categorization: Making Use of a Decade of Widely Varying
Historical Data. In Proc. ESEM, pages 149–157, 2008.



TABLE VI
BUG FEATURES

Group (Level 1) Group Feature Class Feature (Level 2)

Computation (C) Wrong output (A0)
Truncated values (A5) Expanded values (A6)
Rounded values (A7) Specific offset of values (A8)
Meaningless values (A9) Undefined values (A10)

Logic (L) Wrong Format (A1)

Missed a check (A11) Made a wrong condition (A12)
Loop terminal condition wrong (A13) Loop terminal condition missing (A14)
Loop terminal condition reversed (A15) Wrong operator (A16)
Wrong Precedence (A17) Wrong Operand A(18)
Missed to save a value (A19) Missed to Update a Value (A20)
Missed to set the right value (A21) Missed the relation (A22))
Extra complex logic (A23) Ran a loop more than it should (A24)
Ran a condition as a tautology or contradic-
tion (A25)

Made more than required checks (A26)

Made invalid extra checks (A27) Did not catch an exception (A28)
Caught the exception that will never be
thrown (A29)

Caught the right exception, but didn’t han-
dle it (A30)

Caught the right exception and did wrong
handing (A31)

Made some branch that will never be taken
(A32)

Made some branch that will always be taken
A(33)

Made wrong connections with components
(A34)

Made wrong interactions among code (A35) Changed Algorithm (A36)
Changed Implementation from what was
recommended (A37)

Memory (M) Memory Error (A2)

Tried to access non-allocated memory (A38) Tried to access memory out of permitted
value (A39)

Tried to access memory inside permitted
range with wrong attitude (A40)

Tried to free memory that was deallocated
(A41)

Tried to deallocate memory that hasn’t been
allocated (A42)

Tried deallocation in a wrong way (A43)

Did not deallocate a memory (A44) Did not allocate a memory (A45)
Deallocated only parts (A46) Allocated less than what’s required (A47)
Did not supply proper values for interface
(A48)

Data, Interface and I/O (D) More than One Entities (A3)

Did not supply proper types of values for
interface (A49)

Used default interface values (A50)

Tried to use an interface without enough
data (A51)

Tried to assign a data piece to a non-
matching one (A52)

Tried to cast up or down (A53) Changed data solely to meet the requirement
at hand (A54)

Supplied extra Input (A55) Did not supply enough input (A56)
Supplied wrong data format (A57) Provided access to members should not be

accessed (A58)
Failed to provide access to a member (A59)

Synchronization (S) More than One Processes (A4) Deadlock (A60) Data Race (A61)
Out of Sync (A62) Lock and Release (A63)


