The University of Saskatchewan Department of Computer Science

Technical Report \#2016-01

On Families of Full Trios Containing Counter Machine Languages *

Oscar H. Ibarra
Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu
Ian McQuillan
Department of Computer Science, University of Saskatchewan
Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract

We look at NFAs augmented with multiple reversal-bounded counters where, during an accepting computation, the behavior of the counters during increasing and decreasing phases is specified by some fixed "pattern". We consider families of languages defined by various pattern behaviors and show that some correspond to the smallest full trios containing restricted classes of bounded semilinear languages. For example, one such family is exactly the smallest full trio containing all the bounded semilinear languages. Another family is the smallest full trio containing all the bounded context-free languages. Still another is the smallest full trio containing all bounded languages whose Parikh map is a semilinear set where all periodic vectors have at most two non-zero coordinates. We also examine relationships between the families.

1 Introduction

A language L is bounded if $L \subseteq w_{1}^{*} \cdots w_{k}^{*}$, for non-empty words w_{1}, \ldots, w_{k}. Further, L is bounded semilinear if there exists a semilinear set $Q \subseteq \mathbb{N}_{0}^{k}$ such that $L=\left\{w \mid w=w_{1}^{i_{1}} \cdots w_{k}^{i_{k}},\left(i_{1}, \ldots, i_{k}\right) \in\right.$ $Q\}$ [10]. It is known that every bounded semilinear language can be accepted by a one-way nondeterministic reversal-bounded multicounter machine (NCM, [9]). Also, every bounded language accepted by an NCM can be accepted by a deterministic NCM (DCM, [10). Thus, every bounded semilinear language can be accepted by a DCM.

Recently, several families of languages that are both bounded and semilinear have been defined and studied [7]. The notion of bounded semilinear above is referred to as bounded Ginsburg semilinear to distinguish from other types. Two other interesting types are: a language $L \subseteq w_{1}^{*} \cdots w_{k}^{*}$ is bounded Parikh semilinear if $L=\left\{w \mid w=w_{1}^{i_{1}} \cdots w_{k}^{i_{k}}\right.$, the Parikh map of w is in $\left.Q\right\}$, where Q is a semilinear set with $|\Sigma|$ components; L is bounded general semilinear if L is both bounded and semilinear. It was shown that the family of bounded Parikh semilinear languages is a strict subset of the family of bounded Ginsburg semilinear languages, which is a strict subset of the family of bounded general semilinear languages. However, it was shown that in any language family \mathcal{L} that is a semilinear trio (the family only contains semilinear languages, and is closed under λ-free homomorphism, inverse homomorphism, and intersection with regular languages), all bounded languages within \mathcal{L} are bounded Ginsburg semilinear, and are therefore in NCM and even DCM, enabling

[^0]many decidability properties for bounded languages in \mathcal{L}. Furthermore, a criteria was developed for testing when the bounded languages within \mathcal{L} and DCM coincide; this occurs if and only if \mathcal{L} contains all distinct-letter-bounded Ginsburg semilinear languages. This was shown to be the case for finite-index ETOL languages [12], and therefore the bounded languages within these families are the same.

In this paper, we attempt to restrict the operation of NCM in order to precisely characterize types of languages that are bounded and semilinear. Indeed, restricting the behavior of NCM can naturally capture several interesting families of bounded languages. This is accomplished through the use of so-called instruction languages. Informally, a k-counter machine M is said to satisfy instruction language $I \subseteq\left\{C_{1}, D_{1}, \ldots, C_{k}, D_{k}\right\}^{*}$ if, for every accepting computation of M, replacing each increase of counter i with C_{i}, and decrease of counter i with D_{i}, gives a sequence in I. Then, for a family of instruction languages $\mathcal{I}, \operatorname{NCM}(\mathcal{I})$ is the family of NCM machines satisfying some $I \in \mathcal{I}$. Several interesting instruction language families are defined and studied. For example, if one considers $\mathrm{BD}_{i} \mathrm{LB}_{d}$, the family of instruction languages consisting of bounded increasing instructions followed by letter-bounded decreasing instructions, then we show that the family of languages accepted by $\operatorname{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right)$ is the smallest full trio containing all bounded Ginsburg semilinear languages (and therefore, the smallest full trio containing all bounded languages from any semilinear trio). It is also possible to characterize exactly the bounded context-free languages with a subfamily of counter languages. Several other families are also defined and compared. For each, characterizations are given with a single language for each number of counters such that the families are the smallest full trios containing the languages. Using these characterizations, we are able to give even simpler criteria than those in $[7$ for testing if the bounded languages within a semilinear full trio coincide with those in DCM. We then give applications to several interesting families, such as the multipushdown languages [1], and restricted types of Turing machines, and it is shown that the bounded languages within each are the same as those accepted by DCM. In a future paper, we will examine closure and decision properties of the models.

2 Preliminaries

In this paper, we assume knowledge of automata and formal languages, and refer to [6] for an introduction. Let Σ be a finite alphabet. Then, $\Sigma^{*}\left(\right.$ resp. $\left.\Sigma^{+}\right)$is the set of all words (non-empty words) over Σ. A word is any $w \in \Sigma^{*}$, and a language is any $L \subseteq \Sigma^{*}$. The empty word is denoted by λ. The complement of L with respect to $\Sigma, \bar{L}=\Sigma^{*}-L$. The shuffle of words $u, v \in \Sigma^{*}$, $u ш v=\left\{u_{1} v_{1} \cdots u_{n} v_{n} \mid u=u_{1} \cdots u_{n}, v=v_{1} \cdots v_{n}, u_{i}, v_{i} \in \Sigma^{*}, 1 \leq i \leq n\right\}$, extended to languages $L_{1} \amalg L_{2}=\left\{u ш v \mid u \in L_{1}, v \in L_{2}\right\}$.

A language $L \subseteq \Sigma^{*}$ is bounded if there exists $w_{1}, \ldots, w_{k} \in \Sigma^{+}$such that $L \subseteq w_{1}^{*} \cdots w_{k}^{*}$, and is letter-bounded if w_{1}, \ldots, w_{k} are letters. Furthermore, L is distinct-letter-bounded if each letter is distinct.

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. A linear set is a set $Q \subseteq \mathbb{N}_{0}^{m}$ if there exists $\overrightarrow{v_{0}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ such that $Q=\left\{\overrightarrow{v_{0}}+i_{1} \overrightarrow{v_{1}}+\cdots+i_{n} \overrightarrow{v_{n}} \mid i_{1}, \ldots, i_{n} \in \mathbb{N}_{0}\right\}$. The vector $\overrightarrow{v_{0}}$ is called the constant, and $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ are the periods. A semilinear set is a finite union of linear sets. Given an alphabet $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$, the length of a word $w \in \Sigma^{*}$ is denoted by $|w|$. And, given $a \in \Sigma$, $|w|_{a}$ is the number of a 's in w. Then, the Parikh map of w is $\psi(w)=\left(|w|_{a_{1}}, \ldots,|w|_{a_{m}}\right)$, and the Parikh map of a language $L, \psi(L)=\{\psi(w) \mid w \in L\}$. Also, $\operatorname{alph}(w)=\left\{\left.a \in \Sigma| | w\right|_{a}>0\right\}$. We refer to Section 1 for the definitions of bounded Ginsburg semilinear and bounded Parikh semilinear languages.

For a class of machines \mathcal{M}, we let $\mathcal{L}(\mathcal{M})$ be the family of languages accepted by machines in
\mathcal{M}. Let $\mathcal{L}(\mathrm{CFL})$ be the family of context-free languages. A trio (resp. full trio) is any family of languages closed under λ-free homomorphism (resp. homomorphism), inverse homomorphism, and intersection with regular languages. A full semi-AFL is a full trio closed under union 2]. Given a language family $\mathcal{L}, \mathcal{L}^{\text {bd }}$ are the bounded languages in \mathcal{L}.

A one-way k-counter machine [9] is a tuple $M=\left(k, Q, \Sigma, \triangleleft, \delta, q_{0}, F\right)$, where $Q, \Sigma, \triangleleft, q_{0}, F$ are respectively the finite set of states, input alphabet, right input end-marker (unnecessary for nondeterministic machines and will largely not be used in this paper), initial state, and final states. The transition relation is a relation from $Q \times(\Sigma \cup\{\triangleleft, \lambda\}) \times\{0,1\}^{k}$ to $Q \times\{-1,0,+1\}^{k}$, such that $\left(p, d_{1}, \ldots, d_{k}\right) \in \delta\left(q, a, c_{1}, \ldots, c_{k}\right)$ and $c_{i}=0$ implies $d_{i} \geq 0$ to prevent negative values in the counters. Also, M is deterministic if $\left|\delta\left(q, a, c_{1}, \ldots, c_{k}\right) \cup \delta\left(q, \lambda, c_{1}, \ldots, c_{k}\right)\right| \leq 1$, for all $q \in Q, a \in \Sigma \cup\{\triangleleft\},\left(c_{1}, \ldots, c_{k}\right) \in\{0,1\}^{k}$. A configuration of M is a tuple $\left(q, w, i_{1}, \ldots i_{k}\right)$ where q is the current state, $w \in \Sigma^{*} \triangleleft \cup\{\lambda\}$ is the remaining input, and i_{1}, \ldots, i_{k} are the contents of the counters. The derivation relation \vdash_{M} is defined between configurations, where ($q, a w, i_{1}, \ldots, i_{k}$) \vdash_{M} $\left(p, w, i_{1}+d_{1}, \ldots, i_{k}+d_{k}\right)$ if there is a transition $\left(p, d_{1}, \ldots, d_{k}\right) \in \delta\left(q, a, c_{1}, \ldots, c_{k}\right)$, where c_{j} is 1 if $i_{j}>0$, and $c_{j}=0$ otherwise, if $i_{j}=0$. Let \vdash_{M}^{*} the reflexive, transitive closure of $\vdash_{M} . M$ accepts a word $w \in \Sigma$ if $\left(q_{0}, w \triangleleft, 0, \ldots, 0\right) \vdash_{M}^{*}\left(q_{f}, \lambda, i_{1}, \ldots, i_{k}\right), q_{f} \in F, i_{1}, \ldots, i_{k} \in \mathbb{N}_{0}$, and the language of all words accepted by M is denoted by $L(M)$.

Further, M is l-reversal-bounded if, in every accepting computation, the counter alternates between increasing and decreasing at most l times. We will often associate labels from an alphabet T to the transitions of M bijectively, and then write $\vdash^{t}{ }_{M}$ to represent the changing of configurations via transition t. This is generalized to derivations over words in T^{*}.

Then $\operatorname{NCM}(k, l)$ is the class of one-way l-reversal-bounded k-counter machines, and NCM is all reversal-bounded multicounter languages, and replacing N with D gives the deterministic variant.

3 Instruction NCM Machines

It is known that the bounded languages in $\mathcal{L}(N C M)$ are a "limit" to the bounded languages in semilinear trios [7]. We start this section by considering subclasses of $\mathcal{L}(N C M)$ in order to determine more restricted methods of computation that can also form such a limit. We are able to do this optimally. Furthermore, characterizations of the restricted families are also possible, and lead to even simpler methods to determine the bounded languages within semilinear full trios.

First, we define restrictions of NCM depending on the sequences of counter instructions that occur. These restrictions will only be defined on NCMs that we will call well-formed. A k-counter NCM M is well-formed if $M \in \operatorname{NCM}(k, 1)$ whereby all transitions change at most one counter value per transition, and all counters decrease to zero before accepting. Indeed, an NCM (or DCM) can be assumed without loss of generality to be 1-reversal-bounded by increasing the number of counters [9. It is also clear that all counters can be forced to change one counter value at a time, and decrease to zero without loss of generality. Thus, every language in $\mathcal{L}(N C M)$ can be accepted by a well-formed NCM. Also, since we will only be considering nondeterministic machines, we will not include \triangleleft. Let Δ be an infinite set of new symbols, $\Delta=\left\{C_{1}, D_{1}, C_{2}, D_{2}, \ldots\right\}$, and for $k \geq 1, \Delta_{k}=\left\{C_{1}, D_{1}, \ldots, C_{k}, D_{k}\right\}, \Delta_{(k, c)}=\left\{C_{1}, \ldots, C_{k}\right\}, \Delta_{(k, d)}=\left\{D_{1}, \ldots, D_{k}\right\}$.

Given a well-formed k-counter NCM machine M, let T be a set of labels in bijective correspondence with transitions of M. Then, define a homomorphism h_{Δ} from T^{*} to Δ_{k} that maps every transition label associated with a transition that increases counter i to C_{i}, maps every label associated with a transition that decreases counter i to D_{i}, and maps all labels associated with transitions that do not change any counter to λ. Also, define a homomorphism h_{Σ} that maps every transition that reads a letter $a \in \Sigma$ to a, and erases all others. Then, we say that M satisfies instruction
language $I \subseteq \Delta_{k}^{*}$ if every sequence of transitions $\alpha \in T^{*}$ corresponding to an accepting computation - that is $\left(q_{0}, w, 0, \ldots, 0\right) \vdash_{M}^{\alpha}\left(q, \lambda, c_{1}, \ldots, c_{k}\right), q$ a final state - has $h_{\Delta}(\alpha) \in I$. This means that M satisfies instruction language I if I describes all possible counter increase and decrease instructions that can be performed in an accepting computation by M, with C_{i} occurring for every increase of counter i by one, and D_{i} occurring for every decrease of counter i by one.

Given a family of languages \mathcal{I} with each $I \in \mathcal{I}$ over Δ_{k}, for some $k \geq 1$, let $\operatorname{NCM}(k, \mathcal{I})$ be the subset of well-formed k-counter NCM machines that satisfy I for some $I \in \mathcal{I}$ with $I \subseteq \Delta_{k}^{*}$; these are called the k-counter \mathcal{I}-instruction machines. The family of languages they accept, $\mathcal{L}(\operatorname{NCM}(k, \mathcal{I}))$, are called the k-counter \mathcal{I}-instruction languages. Furthermore, $\operatorname{NCM}(\mathcal{I})=\bigcup_{k \geq 1} \operatorname{NCM}(k, \mathcal{I})$ (resp. $\mathcal{L}\left(\operatorname{NCM}(\mathcal{I})=\bigcup_{k \geq 1} \mathcal{L}(\operatorname{NCM}(k, \mathcal{I}))\right.$ are the \mathcal{I}-instruction machines (and languages). We will only consider instruction languages I where, for all $w \in I$, every occurrence of C_{i} occurs before any occurrence of D_{i}, for all $i, 1 \leq i \leq k$, which is enough since every well-formed machine is 1-reversalbounded.

First, we will study properties of these restrictions before examining some specific types.
Proposition 1. Given any family of languages \mathcal{I} over $\Delta_{k}, \mathcal{L}(\operatorname{NCM}(k, \mathcal{I}))$ is a full trio. Furthermore, given any family of languages \mathcal{I}, where each $I \in \mathcal{I}$ is over some $\Delta_{k}, k \geq 1, \mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ is a full trio.

Proof. The standard proofs for closure under homomorphism and inverse homomorphism apply. The proof for intersection with regular languages also works, as restricting the words of the language can restrict the possible sequences of instructions appearing in accepting computations, but the resulting sequences of instructions will therefore be a subset of the instruction language of the original machine.

Next, we require another definition. Given a language I over Δ_{k}, let

$$
I_{e q}=\left\{w\left|w \in I,|w|_{C_{i}}=|w|_{D_{i}}, \text { every } C_{i} \text { occurs before any } D_{i}, \text { for } 1 \leq i \leq k\right\} .\right.
$$

Further, given a language family \mathcal{I} over Δ where each $I \in \mathcal{I}$ is over Δ_{k}, for some $k \geq 1$, then $\mathcal{I}_{e q}$ is the family of all languages $I_{e q}$, where $I \in \mathcal{I}$.

Proposition 2. Let \mathcal{I} be a family of languages where each $I \in \mathcal{I}$ is a subset of Δ_{k}^{*}, for some $k \geq 1$, and \mathcal{I} is a subfamily of the regular languages. Then $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ is the smallest full trio containing $\mathcal{I}_{e q}$.

Proof. First, it follows from Proposition 1 that $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ is a full trio.
To see that $\mathcal{I}_{e q} \subseteq \mathcal{L}(\operatorname{NCM}(\mathcal{I}))$, let $I \in \mathcal{I}$ and let M be a DFA accepting $I \subseteq \Delta_{k}^{*}$. Then we will create a well-formed k-counter machine M^{\prime} that accepts $I_{e q}$ as follows: M^{\prime} simulates M while adding to counter i for every C_{i} read, and subtracting from counter i for every D_{i} read (never adding after subtracting), accepting if M does, and if all counters end at zero. Then M^{\prime} accepts all words of I with an equal number of C_{i} 's as D_{i} 's, for each i where all C_{i} 's occur before any D_{i}. This is exactly $I_{e q}$. Also, M^{\prime} satisfies $I_{e q}$ and I. Hence $\mathcal{I}_{e q} \subseteq \mathcal{L}(\operatorname{NCM}(\mathcal{I}))$.

Next we will verify that $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ is the smallest full trio containing $\mathcal{I}_{\text {eq }}$. For this, let $M=$ $\left(k, Q, \Sigma, \triangleleft, \delta, q_{0}, F\right) \in \operatorname{NCM}(\mathcal{I})$ with k counters that satisfies instruction language $I \in \mathcal{I}$.

Let g be a homomorphism from Γ^{*} to Δ_{k}^{*} (Γ defined below) that maps $\left(q, a, X_{i}, p\right)$ to X_{i}, where $X_{i} \in \Delta_{k}, p, q \in Q, a \in \Sigma \cup\{\lambda\}$, and there is a transition from q to p on a that increases counter i if $X_{i}=C_{i}$, decreases counter i if $X_{i}=D_{i}$; similarly g maps $(q, a, 0, p)$ to λ, where $p, q \in Q, a \in \Sigma \cup\{\lambda\}$, where there is a transition from q to p on a that does not change any counter. Both of these types of symbols can be created from transitions defined on any counter value (0 or positive). We say that
symbol $\left(q, a, X_{i}, p\right), X_{i} \in \Delta_{k} \cup\{0\}$ is defined on counter i positive if it was created above from a transition defined on counter i being positive. We say that the symbol is defined on counter i being zero if it was created from a transition on counter i being zero (such a symbol could be defined on counter i being both 0 and positive).

Then, create a regular language $R \subseteq \Gamma^{*}, R=\left\{y_{0} y_{1} \cdots y_{n} \mid y_{i}=\left(p_{i}, a_{i+1}, X_{i+1}, p_{i+1}\right), p_{0}=\right.$ $q_{0}, p_{n+1} \in F$, for each $i, 1 \leq i \leq k$, if j is the smallest such that $X_{j}=C_{i}$ and if l is the largest such that $X_{j}=D_{i}$, then y_{0}, \ldots, y_{j} are defined on counter i zero, y_{j+1}, \ldots, y_{l} are defined on counter i positive, and y_{l+1}, \ldots, y_{n} are defined on counter i zero $\}$.

Let h be a homomorphism from Γ^{*} to Σ^{*} such that h projects onto the second component. Then it is clear that $L(M)=h\left(g^{-1}\left(I_{e q}\right) \cap R\right)$ since $g^{-1}\left(I_{e q}\right) \cap R$ consists of all words of R with an equal number of C_{i} 's as D_{i} 's, for each $i, 1 \leq i \leq k$.

We will consider several instruction language families that define interesting subfamilies of $\mathcal{L}(\mathrm{NCM})$.

Definition 1. We define instruction language families:

- $\mathrm{LB}_{i} \mathrm{LB}_{d}=\left\{I=Y Z \mid k \geq 1, Y=a_{1}^{*} \cdots a_{m}^{*}, a_{i} \in \Delta_{(k, c)}, 1 \leq i \leq m, Z=b_{1}^{*} \cdots b_{n}^{*}, b_{j} \in\right.$ $\left.\Delta_{(k, d)}, 1 \leq j \leq n\right\}$, (letter-bounded-increasing/letter-bounded-decreasing instructions),
- $\operatorname{StLB}_{i d}=\left\{I \mid k \geq 1, I=a_{1}^{*} \cdots a_{m}^{*}, a_{i} \in \Delta_{k}, 1 \leq i \leq m\right.$, there is no $1 \leq l<l^{\prime}<j<j^{\prime} \leq$ m such that $\left.a_{l}=C_{r}, a_{l^{\prime}}=C_{s}, a_{j}=D_{r}, a_{j^{\prime}}=D_{s}, r \neq s\right\}$,
(stratified-letter-bounded instructions),
- $\mathrm{LB}_{i d}=\left\{I \mid k \geq 1, I=a_{1}^{*} \cdots a_{m}^{*}, a_{i} \in \Delta_{k}, 1 \leq i \leq m\right\}$, (letter-bounded instructions),
- $\mathrm{BD}_{i} \mathrm{LB}_{d}=\left\{I=Y Z \mid k \geq 1, Y=w_{1}^{*} \cdots w_{m}^{*}, w_{i} \in \Delta_{(k, c)}^{*}, 1 \leq i \leq m, Z=a_{1}^{*} \cdots a_{n}^{*}, a_{j} \in\right.$ $\left.\Delta_{(k, d)}, 1 \leq j \leq n\right\}$, (bounded-increasing/letter-bounded-decreasing instructions),
- $\mathrm{LB}_{i} \mathrm{BD}_{d}=\left\{I=Y Z \mid k \geq 1, Y=a_{1}^{*} \cdots a_{m}^{*}, a_{i} \in \Delta_{(k, c)}, 1 \leq i \leq m, Z=w_{1}^{*} \cdots w_{n}^{*}, w_{j} \in\right.$ $\left.\Delta_{(k, d)}^{*}, 1 \leq j \leq n\right\}$, (letter-bounded-increasing/bounded-decreasing instructions),
- $\mathrm{BD}_{i d}=\left\{I \mid k \geq 1, I=w_{1}^{*} \cdots w_{m}^{*}, w_{i} \in \Delta_{k}^{*}, 1 \leq i \leq m\right\}$, (bounded instructions),
- $\mathrm{LB}_{d}=\left\{I \mid k \geq 1, I=Y \amalg Z, Y=\Delta_{(k, c)}^{*}, Z=a_{1}^{*} \cdots a_{n}^{*}, a_{j} \in \Delta_{(k, d)}, 1 \leq j \leq n\right\}$, (letter-bounded-decreasing instructions),
- $\mathrm{LB}_{i}=\left\{I \mid k \geq 1, I=Y ш Z, Y=a_{1}^{*} \cdots a_{m}^{*}, a_{i} \in \Delta_{(k, c)}, 1 \leq i \leq m, Z=\Delta_{(k, d)}^{*},\right\}$, (letter-bounded increasing instructions),
- $\mathrm{LB}_{\cup}=\mathrm{LB}_{d} \cup \mathrm{LB}_{i}$, (either letter-bounded-decreasing or letter-bounded-increasing instructions),
- $\mathrm{ALL}=\left\{I \mid k \geq 1, I=\Delta_{k}^{*}\right\}$.

For example, every NCM machine M where the counters are increased and decreased according to some bounded language, then there is an instruction language I such that M satisfies I, and $I \in \mathrm{BD}_{i d}$, and $L(M) \in \mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right)$. Even though not all instructions in I are necessarily used, the instructions used will be a subset of I since the instructions used are a subset of a bounded language. It is also clear that $\mathcal{L}(N C M)=\mathcal{L}(N C M(A L L))$.
Example 1. Let $L=\left\{u a^{i} v b^{j} w a^{i} x b^{j} y \mid i, j>0, u, v, w, x, y \in\{0,1\}^{*}\right\}$. We can easily construct a well-formed 2-counter machine M to accept L where, on input $u a^{i} v b^{j} w a^{i^{\prime}} x b^{j^{\prime}} y, M$ increases counter $1 i$ times, then increases counter $2 j$ times, then decreases counter 1 verifying that $i=i^{\prime}$, then decreases counter 2 verifying that $j=j^{\prime}$. This machine satisfies instruction language $C_{1}^{*} C_{2}^{*} D_{1}^{*} D_{2}^{*}$, which is a subset of some instruction language in every family in Definition 1 except for $\mathrm{StLB}_{\text {id }}$, and therefore $L \in \mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ for each of these families \mathcal{I}.

Example 2. Let $L=\left\{a^{2+i+2 j} b^{3+2 i+5 j} \mid i, j \geq 0\right\}$. Note that the Parikh map of L is a linear set $Q=$ $\{(2,3)+(1,2) i+(2,5) j \mid i, j \geq 0\}$. L can be accepted by a well-formed 4 -counter NCM M as follows, when given input $a^{m} b^{n}$: first, on λ-moves, M increments counters 1 and 2 a nondeterministically guessed number of times $i \geq 0$, then on λ-moves, increments counters 3 and 4 a nondeterministically guessed number of times $j \geq 0$. Then, M verifies that $m=2+i+2 j$ by reading $2 a$'s and using (i.e., decrementing) counter 1 to zero and then 3 to zero to check that the remaining number of a's is equal to the value of counter 1 plus 2 times the value of counter 3. Finally, M checks and accepts if $n=3+2 i+5 j$ by first reading 3 b's and decrementing counter 2 and then 4. The instructions of M as constructed are a subset of $I=\left(C_{1} C_{2}\right)^{*}\left(C_{3} C_{4}\right)^{*} D_{1}^{*} D_{3}^{*} D_{2}^{*} D_{4}^{*}$. This is a subset of some language in each of $\mathrm{BD}_{i} \mathrm{LB}_{d}, \mathrm{BD}_{i d}, \mathrm{LB}_{d}$ but not the other families, and therefore M is in each of $\mathrm{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right), \mathrm{NCM}\left(\mathrm{BD}_{i d}\right), \mathrm{NCM}\left(\mathrm{LB}_{d}\right)$. Even though M is not in the other classes of machines such as $\mathrm{NCM}\left(\mathrm{LB}_{i}\right)$, it is possible for $L(M)$ to be in $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i}\right)\right)$ (using some other machine that accepts the same language). Indeed, we will see that $L(M)$ is also in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)$ and $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i}\right)\right)$.

Example 3. Let $L_{1}=\left\{\left.w \# a^{i} b^{j}| | w\right|_{a}=i,|w|_{b}=j\right\}$. We construct M_{1} that reads w, and adds to the first counter for every a read, and adds to the second counter for every b read. Then, after the \# symbol, M_{1} subtracts from counter 1 for every a read, then when reaching a b, it switches to decreasing the second counter for every b read. Therefore, it satisfies language $\left\{C_{1}, C_{2}\right\}^{*} D_{1}^{*} D_{2}^{*}$ which is indeed a subset of $\left\{C_{1}, C_{2}\right\}^{*} ш D_{1}^{*} D_{2}^{*} \in \mathrm{LB}_{d}$.

Now let $L_{2}=L_{1}^{R}$. We conjecture that L_{2} is not in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{d}\right)\right)$, but we can construct a machine $M_{2} \in \operatorname{NCM}\left(\mathrm{LB}_{i}\right)$ to accept L_{2}. (M_{2}, when given $b^{j} a^{i} \# w$, stores i and j in two counters and then checks by decrementing the counters that $|w|_{a}=i$ and $|w|_{b}=j$.) Similarly, we conjecture that L_{1} is not in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i}\right)\right)$. Obviously, L_{1} and L_{2} are both in $\mathcal{L}(\mathrm{NCM}(\mathrm{LB} \cup))$.

Example 4. Let $L=\left\{w\left|w \in\{a, b\}^{+},|w|_{a}=|w|_{b}>0\right\}\right.$. L can be accepted by an NCM which uses two counters that increments counter 1 (resp. counter 2) whenever it sees an a (resp., b). Then it decrements counter 1 and counter 2 simultaneously and accepts if they reach zero at the same time. This counter usage does not have a pattern in any of the restrictions above. It is quite unlikely that $L(M) \in \mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ for any of the families in the definition above except the full $\mathcal{L}(\operatorname{NCM}(\mathrm{ALL}))=\mathcal{L}(\mathrm{NCM})$.

Every family \mathcal{I} in Definition 1 is a subfamily of the regular languages. Therefore, by Proposition 2. the following can be shown by proving closure under union:

Proposition 3. Let \mathcal{I} be any family of instruction languages from Definition 1. Then $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ is the smallest full trio (and full semi-AFL) containing $\mathcal{I}_{\text {eq }}$.

Proof. It suffices to show closure under union for each family. For $\mathrm{LB}_{i} \mathrm{LB}_{d}$, given two machines M_{1}, M_{2} with k_{1}, k_{2} counters respectively, we can build a $k_{1}+k_{2}$ counter machine M where M adds to counters according to M_{1} using the first k_{1} counters, then decreasing according to M_{1}, or the same with M_{2} on the remaining counters. It is clear that this gives an instruction language that is a subset of the increasing pattern of M_{1} followed by the increasing pattern of M_{2}, followed by the decreasing pattern of M_{2}, then M_{1}. This is letter-bounded insertion followed by letter-bounded deletion behavior. The same construction works in all other cases.

As a corollary, if we consider the instructions languages of ALL (thus, the instructions are totally arbitrary), and for $i \geq 1$, let $L_{i}=\left\{C_{i}^{n} D_{i}^{n} \mid n \geq 0\right\}$, then $\operatorname{ALL}_{e q}=\left\{I \mid I=L_{1} ш L_{2} ш \cdots ш L_{k}, k \geq\right.$ 1\}. Hence, $\mathcal{L}(N C M)$ can be characterized as the smallest full trio containing $\mathrm{ALL}_{e q}$, by Proposition 2. Or, it could be stated as follows (this is essentially already known, and follows from work in [4] and (5).

Corollary 1. [4, 5] $\mathcal{L}(N C M)$ is the smallest shuffle or intersection closed full trio containing $\left\{a^{n} b^{n} \mid\right.$ $n \geq 0\}$.

Indeed, it is known that $\mathcal{L}(N C M)$ is shuffle and intersection closed full trio [9]. For intersection, this follows since each instruction language I above can be represented by taking each L_{i}, and a homomorphism h_{i} that maps C_{i} and D_{i} to itself, and erases all other letters of Δ_{k}. Then let $L_{i}^{\prime}=h_{i}^{-1}\left(L_{i}\right)$. Then, $L_{1} ш L_{2} ш \cdots ш L_{k}=L_{1}^{\prime} \cap L_{2}^{\prime} \cap \cdots \cap L_{k}^{\prime}$.

Since $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is in $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ for all \mathcal{I} in Definition 1 , the following is also immediate from Corollary 1.

Corollary 2. For all \mathcal{I} in Definition 1, $\mathcal{L}(\mathrm{NCM})$ is the smallest shuffle or intersection closed full trio containing $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$.

Thus, any instruction family \mathcal{I} whereby $\mathcal{L}(\operatorname{NCM}(\mathcal{I})) \subsetneq \mathcal{L}(\mathrm{NCM})$ and $\left\{a^{n} b^{n} \mid n \geq 0\right\} \in$ $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ is immediately not closed under intersection and shuffle.

Next, we will prove the following lemma regarding many of the instruction language families showing that letter-bounded instructions can be assumed to be distinct-letter-bounded, and for bounded languages, for each letter in Δ_{k} in the words to only appear once.

First, we need a definition. For each of the instruction families of Definition 1, we place an underline below each LB if the letter-bounded language is forced to have each letter occur exactly once (and therefore be distinct-letter-bounded), and we place an underline below BD if each letter $a \in \Delta_{k}$ appears exactly once within the words w_{1}, \ldots, w_{m}. Thus, as an example, $\underline{\mathrm{LB}}_{i} \mathrm{BD}_{d}$ is the subset of $\mathrm{LB}_{i} \mathrm{BD}_{d}$ equal to $\left\{I=Y Z\left|k \geq 1, Y=a_{1}^{*} \cdots a_{k}^{*}, a_{i} \in \Delta_{(k, c)},\left|a_{1} \cdots a_{k}\right|_{a}=1\right.\right.$, for all $a \in$ $\Delta_{(k, c)}, Z=w_{1}^{*} \cdots w_{n}^{*}, w_{i} \in \Delta_{(k, d)}^{*}, 1 \leq j \leq n,\left|w_{1} w_{2} \cdots w_{n}\right|_{a}=1$, for all $\left.a \in \Delta_{(k, d)}\right\}$. Thus, each letter appears exactly once in the words or letters. The construction uses multiple new instruction letters and counters, in order to allow each letter to only appear once.

Lemma 1. The following are true:
$\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)=\mathcal{L}\left(\operatorname{NCM}\left({\left.\left.\underline{\mathrm{LB}_{i}} \underline{\mathrm{LB}}_{d}\right)\right), \quad \mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)=\mathcal{L}\left(\operatorname{NCM}\left(\underline{\mathrm{LB}}_{i d}\right)\right), ~}_{\text {(}}\right.\right.$
$\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)=\mathcal{L}\left(\operatorname{NCM}\left(\underline{\mathrm{LB}}_{i} \underline{\mathrm{BD}}_{d}\right)\right), \mathcal{L}\left(\operatorname{NCM}^{\left.\left(\mathrm{LB}_{d}\right)\right)}=\mathcal{L}\left(\operatorname{NCM}^{\left(\mathrm{LB}_{d}\right)}\right)\right)$,
$\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right)\right)=\mathcal{L}\left(\operatorname{NCM}\left(\underline{\mathrm{BD}}_{i} \underline{\mathrm{LB}}_{d}\right)\right), \mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i}\right)\right)=\mathcal{L}\left(\mathrm{NCM}\left(\underline{\mathrm{LB}}_{i}\right)\right)$.
Proof. First, consider the case for $\mathrm{LB}_{i d}$. Let $M \in \operatorname{NCM}\left(k, \mathrm{LB}_{i d}\right)$ that satisfies $I \subseteq a_{1}^{*} \cdots a_{n}^{*}, a_{i} \in$ $\Delta_{k}, 1 \leq i \leq n$. We will construct a machine $M^{\prime} \in \operatorname{NCM}\left(m, \mathrm{LB}_{i d}\right)$ (with m potentially bigger than k) such that M^{\prime} satisfies $I^{\prime} \subseteq b_{1}^{*} \cdots b_{2 m}^{*}$, where $b_{1}, \ldots, b_{2 m}$ is some permutation of the symbols in Δ_{m}, and $L(M)=L\left(M^{\prime}\right)$.

We will proceed in steps, removing each counter x whereby at least one of C_{x} or D_{x} occurs multiple times in a_{1}, \ldots, a_{n}, one counter at a time. Then, for each such x, we convert M with I to M_{x} and $I_{x} \subseteq d_{1}^{*} \cdots d_{l}^{*}, d_{1}, \ldots, d_{l} \in \Delta_{m}$, whereby counter x will be removed, and multiple counters added back, and then each new symbol C_{y} and D_{y} only appears once within d_{1}, \ldots, d_{l}, such that M_{x} satisfies I_{x}, and $L(M)=L\left(M_{x}\right)$.

Let

$$
\begin{equation*}
f(x)=i_{1}, \ldots, i_{\alpha} \tag{1}
\end{equation*}
$$

be the sequence of all positions where $a_{i_{p}}=C_{x}, 1 \leq p \leq \alpha$, and let

$$
\begin{equation*}
g(x)=j_{1}, \ldots, j_{\beta} \tag{2}
\end{equation*}
$$

be all positions where $a_{j_{q}}=D_{x}, 1 \leq q \leq \beta$.

Then in M_{x}, instead of using counter x, M_{x} replaces it with $\alpha \cdot \beta$ counters, which we refer to by $(p, q), 1 \leq p \leq \alpha, 1 \leq q \leq \beta$, and we will use $C_{(p, q)}\left(\right.$ resp. $\left.D_{(p, q)}\right)$ to represent the instruction character while increasing (resp. decreasing) counter (p, q) (these can easily be replaced with consecutive numbered characters in Δ_{m} at the end of the procedure). Then, M_{x} simulates M identically for all counters other than x. When simulating M increasing counter x in section i_{p}, for $1 \leq p \leq \alpha$, M_{x} instead uses and increases counter $(p, 1)$ until some nondeterministically chosen spot where M_{x} switches to and increases from counter $(p, 2)$ (while still simulating the same section i_{p} of M), etc., through counter (p, β). Then, when simulating the decrease of counter x in section j_{q} of M, for $1 \leq q \leq \beta$, instead, M_{x} decreases from counters $(1, q)$ until empty, then $(2, q)$, etc. until counter (α, q) is empty.

The sequence of instructions of M_{x} in every accepting computation is therefore in $d_{1}^{*} \cdots d_{l}^{*}$, where the sequence d_{1}, \ldots, d_{l} is obtained from a_{1}, \ldots, a_{n} by replacing each occurrence of C_{x} at position $i_{p}, 1 \leq p \leq \alpha$ by $C_{(p, 1)}, \ldots, C_{(p, \beta)}$, and replacing each occurrence of D_{x} at position $j_{q}, 1 \leq q \leq \beta$ by $D_{(1, q)}, \ldots, D_{(\alpha, q)}$.

Let $w \in L(M)$ and consider an accepting computation on w. Then consider counter x with $f(x)$ as in Equation (1) and $g(x)$ as in Equation (2). Let $\gamma_{i_{p}}$ be the number of times that counter x is increased in section i_{p}, for $1 \leq p \leq \alpha$, in the accepting computation, and let $\theta_{j_{q}}$ be the number of times that counter x is decreased in section j_{q}, for $1 \leq q \leq \beta$ in the accepting computation. Since M is well-formed, $\gamma_{i_{1}}+\cdots+\gamma_{i_{\alpha}}=\theta_{j_{1}}+\cdots+\theta_{j_{\beta}}$. Then w can be accepted in M_{x} as follows: for each section i_{p}, for $1 \leq p \leq \alpha, M_{x}$ adds to counters $(p, 1), \ldots,(p, \beta)$ by amounts $\gamma_{(p, 1)}, \ldots, \gamma_{(p, \beta)}$ respectively (these amounts determined in the algorithm below), and for each section j_{q}, for $1 \leq$ $j \leq \beta, M_{x}$ subtracts from counter $(1, q), \ldots,(\alpha, q)$ by amounts $\theta_{(1, q)}, \ldots, \theta_{(\alpha, q)}$ respectively, such that, for each $1 \leq p \leq \alpha, 1 \leq q \leq \beta$, the following are true:

$$
\begin{align*}
\gamma_{i_{p}} & =\gamma_{(p, 1)}+\cdots+\gamma_{(p, \beta)} \tag{3}\\
\theta_{j_{q}} & =\theta_{(1, q)}+\cdots+\theta_{(\alpha, q)} \tag{4}\\
\gamma_{(p, q)} & =\theta_{(p, q)}
\end{align*}
$$

If Equations (3) and (4) are true, then the simulation increases and decreases the same amount as the computation of M and can therefore accept in M_{x}, but where each new counter is increased and decreased in exactly one section.

Intuitively, the situation can be visualized as follows:

$\gamma_{i_{1}}$,	\ldots,	$\gamma_{i_{\alpha}}$	$\theta_{j_{1}}$,	\cdots,
$\gamma_{(1,1)}$		$\gamma_{(\alpha, 1)}$	$\gamma_{(1,1)}$	\cdots
\vdots		\vdots		
$\gamma_{(1, \beta)}$				
$\gamma_{(1, \beta)}$		$\gamma_{(\alpha, \beta)}$	$\gamma_{(\alpha, 1)}$	\cdots

These amounts can be simulated in a "greedy" fashion, by the following algorithm where $\gamma_{(p, q)}$ is the output, for all $1 \leq p \leq \alpha, 1 \leq q \leq \beta$:
1 let $X(p)=\gamma_{i_{p}}, 1 \leq p \leq \alpha$; let $Y(q)=\theta_{j_{q}}, 1 \leq q \leq \beta$;
2 let $p=1 ; q=1 ; \gamma_{\left(p^{\prime}, q^{\prime}\right)}=0, \forall p^{\prime}, q^{\prime}, 1 \leq p^{\prime} \leq \alpha, 1 \leq q^{\prime} \leq \beta$;
3 while $(p \leq \alpha$ and $q \leq \beta)$
$4 \quad \gamma_{(p, q)}=\min \{X(p), Y(q)\}$;
$5 \quad X(p)=X(p)-\gamma_{(p, q)}$;
$6 \quad Y(q)=Y(q)-\gamma_{(p, q)}$;
7 if $(X(p)=0)$ then $p++$;
8 if $(Y(q)=0)$ then $q++$;

In this algorithm, X and Y are initialized to hold $\gamma_{i_{p}}$ and $\theta_{j_{q}}$, for each $1 \leq p \leq \alpha, 1 \leq q \leq \beta$. And, as amounts from each are added to various "counters" $\gamma_{(p, q)}$ in line 4 , these same amounts are simultaneously reduced from $X(p)$ and $Y(q)$ in lines 5 and 6 until they are zero.

We will show by induction that each time line 3 is executed, $X(p)=\gamma_{i_{p}}-\gamma_{(p, q-1)}-\cdots-\gamma_{(p, 1)}$ and $Y(q)=\theta_{j_{q}}-\gamma_{(p-1, q)}-\cdots-\gamma_{(1, q)}$, and after line 6 is executed, $X(p)=\gamma_{i_{p}}-\gamma_{(p, q)}-\cdots-\gamma_{(p, 1)}$ and $Y(q)=\theta_{j_{q}}-\gamma_{(p, q)}-\cdots-\gamma_{(1, q)}$.

The base case, when $p=1=q$ the first time line 3 is executed is true because $X(1)=\gamma_{i_{1}}$ and $Y(1)=\theta_{j_{1}}$.

Assume it is true at some iteration when reaching line 3 , with $p \leq \alpha$ and $q \leq \beta$. Then $\gamma_{(p, q)}=\min \left\{\gamma_{i_{p}}-\gamma_{(p, q-1)}-\cdots-\gamma_{(p, 1)}, \theta_{j_{q}}-\gamma_{(p-1, q)}-\cdots-\gamma_{(1, q)}\right\}$ in line 4. Assume the first is minimal. Then, in line $4, X(p)=\gamma_{(p, q)}=\gamma_{i_{p}}-\gamma_{(p, q-1)}-\cdots-\gamma_{(p, 1)}$, thus $X(p)$ is now zero after line 5, and indeed $0=\gamma_{i_{p}}-\gamma_{(p, q)}-\cdots-\gamma_{(p, 1)}$, which is what we want by induction. Also, after line $6, Y(q)=\theta_{j_{q}}-\gamma_{(p, q)}-\cdots-\gamma_{(1, q)}$. Then, p is increased in line 7, and when reaching line 3, $X(p)$ (where p has been increased) is equal to $\gamma_{i_{p}}$ which is what we want since $\gamma_{(p, q-1)}, \ldots, \gamma_{(p, 1)}$ are all zero. Furthermore, $Y(q)=\theta_{j_{q}}-\gamma_{(p-1, q)}-\cdots-\gamma_{(1, q)}$ since p was increased from line 6 of the previous iteration. Similarly when the second case is minimal.

Since $\gamma_{i_{1}}+\cdots+\gamma_{i_{\alpha}}=\theta_{j_{1}}+\cdots+\theta_{j_{\beta}}$, and the same values are subtracted from some $X(p)$ and $Y(q)$ at each step, all $X(p)$ and $Y(q)$ must decrease to 0 , and the final iteration has to occur when $p=\alpha, q=\beta$, and in this case $X(p)=Y(q)$. Further, for each p, q in the loop where $X(p)$ is set to $0, \gamma_{i_{p}}$ is the sum of $\gamma_{(p, q)}, \ldots, \gamma_{(p, 1)}$, and since p is increased and never decreased again, $\gamma_{(p, q+1)}, \ldots, \gamma_{(p, \beta)}$ are always 0 . Thus, Equation (3) is true. Similarly when $Y(q)$ hits zero demonstrates that Equation (4) is true. Thus, since \bar{M}_{x} simulates M with these values $\gamma_{(p, q)}$ calculated nondeterministically, they can be set to the amounts calculated by this algorithm. Hence, $w \in L\left(M_{x}\right)$.

Let $w \in L\left(M_{x}\right)$. Then, for counter x, the number of times counter (p, q) is increased is equal to the number of times it is decreased. Furthermore, M_{x} increases counters $(p, 1), \ldots,(p, \beta)$ consecutively, for each $p, 1 \leq p \leq \alpha$, which can be simulated in M by the construction, by increasing counter x this many times in this section. Similarly, M_{x} decreases from counters $(1, q), \ldots,(\alpha, q)$ consecutively, for each $q, 1 \leq q \leq \beta$ in the q th section, which can be simulated by M by the construction, by decreasing counter x this many times. Furthermore, the sum that counter x increases is the same as the amount that it decreases. Thus, $w \in L(M)$.

Thus, $L(M)=L\left(M_{x}\right)$. Continuing this procedure inductively for every counter y where either C_{y} or D_{y} occurs more than once yields the result.

It is clear that the procedure works works identically for $\mathrm{LB}_{i} \mathrm{LB}_{d}$. For LB_{d}, it is simpler, since there is no restrictions on the increasing instructions, and similarly for LB_{i}.

For $\mathrm{LB}_{i} \mathrm{BD}_{d}$, the process is similar but an extra step is involved. First, letters that repeat multiple times in the letter-bounded increasing sections are eliminated one at a time according to a similar procedure. For example, say the instruction language of M is a subset of the language $C_{1}^{*} C_{2}^{*} C_{1}^{*} C_{3}^{*} C_{2}^{*}\left(D_{1} D_{2} D_{1}\right)^{*}\left(D_{2} D_{3}\right)^{*}\left(D_{1} D_{3}\right)^{*}$. First, multiple copies of C_{1} say are eliminated by introducing new counters $(1,1),(1,2),(2,1),(2,2)$ as above, where the first coordinate is over the number of occurrences of C_{1} in the increasing section, and the second coordinate is over the number of words containing D_{1} in the decreasing section. Then, M is simulated by M_{1} using the procedure above, where instead of increasing according to pattern C_{1} in the first section, M_{1} increases counter $(1,1)$, then nondeterministically switches to $(1,2)$. Then when simulating the second section of C_{1}, M_{1} increases counter $(2,1)$ then switches to $(2,2)$. Therefore, M_{1} is increasing according to the pattern $C_{(1,1)}^{*} C_{(1,2)}^{*} C_{2}^{*} C_{(2,1)}^{*} C_{(2,2)}^{*} C_{3}^{*} C_{2}^{*}$. In the decreasing section, instead of decreasing according to pattern $\left(D_{1} D_{2} D_{1}\right)^{*}\left(D_{2} D_{3}\right)^{*}\left(D_{1} D_{3}\right)^{*}, M_{1}$ decreases according to pattern
$\left(D_{(1,1)} D_{2} D_{(1,1)}\right)^{*}\left(D_{(2,1)} D_{2} D_{(2,1)}\right)^{*}\left(D_{2} D_{3}\right)^{*}\left(D_{(1,2)} D_{3}\right)^{*}\left(D_{(2,2)} D_{3}\right)^{*}$. Essentially, M_{1} is nondeterministically guessing how much of counter 1 will be decreased in the various bounded sections.

Then, after re-numbering these new counters to be consecutive numbers, and repeating this procedure for every counter where some C_{x} occurs multiple times, results in an instruction language where each C_{i} occurs exactly once (although running this procedure amplifies the number of each D_{i} symbols within the bounded words).

To remove multiple copies of each letter D_{x} that occurs multiple times within the words, consider a machine M which satisfies $I=C_{i_{1}}^{*} \cdots C_{i_{k}}^{*} w_{1}^{*} \cdots w_{m}^{*}$, where each element of $\Delta_{(k, c)}$ occurs exactly once in $C_{i_{1}}, \ldots, C_{i_{k}}, w_{i} \in \Delta_{(k, d)}^{+}, 1 \leq i \leq m$ and some D_{x} occurs multiple times in w_{1}, \ldots, w_{m}. We will eliminate multiple copies of D_{x} for each counter x, one at a time. Then we create M_{x} as follows: if D_{x} occurs $\beta>1$ times (where D_{x} occurring multiple times within a single word counts as multiple occurrences) within the words w_{1}, \ldots, w_{m}, then introduce counters $(x, 1), \ldots,(x, \beta)$. Instead of increasing from counter x (which only happens in one section), M_{x} increases from counter (x,1), then nondeterministically switches to $(x, 2)$, etc. until counter (x, β). Intuitively, M_{x} is guessing how much of counter x will be decreased by the p th occurrence of D_{x} in w_{1}, \ldots, w_{m}. Then, when simulating the decrease of counter x, M_{x} decreases according to the pattern $w_{1}^{\prime}, \ldots, w_{m}^{\prime}$, where each w_{i}^{\prime} is obtained from w_{i} by replacing the p th occurrence of D_{x} with $D_{(x, p)}$. (M_{x} must remember the words $w_{1}^{\prime}, \ldots, w_{m}^{\prime}$ in the finite control and keep track of which word w_{i}^{\prime} and the position within w_{i}^{\prime} it is currently simulating in order to decrease the counters in the appropriate order.) For example, if M is decreasing according to $w_{1}=\left(D_{1} D_{1}\right)^{*}$, then when increasing according to the pattern C_{1}^{*}, M_{1} uses counter $(1,1)$, then switches to $(1,2)$. Then when decreasing, M_{x} decreases according to the pattern $\left(D_{(1,1)} D_{(1,2)}\right)^{*}$ (which it can do by remembering $\left(D_{(1,1)} D_{(1,2)}\right)$ in the finite control). Thus, during the increase, M_{1} is guessing how much will be consumed by the first and second occurrence of D_{1} and then decreasing the appropriate counters. Hence, $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)=\mathcal{L}\left(\mathrm{NCM}\left(\underline{\mathrm{LB}}_{i} \underline{\mathrm{BD}}_{d}\right)\right)$.

Similarly with $\mathrm{BD}_{i} \mathrm{LB}_{d}$.
The next goal is to separate some families of NCM languages with different instruction languages.
A (quite technical) lemma that is akin to a pumping lemma is proven, but is done entirely on derivations rather than words, so that it can be used twice starting from the same derivation within Proposition 5.

First, we require the following definition. Given an NCM machine M, a derivation of M, $\left(p_{0}, w_{0}, c_{0,1}, \ldots, c_{0, k}\right) \vdash_{M}^{t_{1}} \cdots \vdash_{M}^{t_{m}}\left(p_{m}, w_{m}, c_{m, 1}, \ldots, c_{m, k}\right)$, is called collapsible, if there exists $i, j, 0 \leq$ $i<j \leq m$ such that $p_{i}=p_{j}, w_{i}=w_{j}$, and $c_{i, l}=c_{j, l}$, for all $l, 1 \leq l \leq k$, and non-collapsible otherwise. It is clear that given any accepting computation, there is another that can be constructed that is non-collapsible, simply by eliminating configurations from the original.

Lemma 2. Let $M=\left(k, Q, \Sigma, \triangleleft, \delta, q_{0}, F\right)$ be a well-formed k-counter machine in $\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)$ over a distinct-letter-bounded instruction language. Consider any non-collapsible accepting derivation

$$
\left(p_{0}, w_{0}, c_{0,1}, \ldots, c_{0, k}\right) \vdash_{M}^{t_{1}} \cdots \vdash_{M}^{t_{m}}\left(p_{m}, w_{m}, c_{m, 1}, \ldots, c_{m, k}\right),
$$

where $p_{0}=q_{0}, c_{0, j}=c_{m, j}=0,1 \leq j \leq k, p_{m} \in F, w_{m}=\lambda$. Assume that there exists x, y, $0<x \leq y \leq m$ such that $p_{x-1}=p_{y}$, and this state occurs at least $|Q|+2$ times in $p_{x-1}, p_{x}, \ldots, p_{y}$, and $\left|h_{\Sigma}\left(t_{x} \cdots t_{y}\right)\right|>0, h_{\Delta}\left(t_{x} \cdots t_{y}\right) \in C_{i}^{*} \cup D_{i}^{*}$, for some $i, 1 \leq i \leq k$. Then at least one of the following are true:

1. there exists r, s with $x \leq r \leq s \leq y$ and an accepting derivation on transition sequence $t_{1} t_{2} \cdots t_{r-1}\left(t_{r} \cdots t_{s}\right)^{2} t_{s+1} \cdots t_{m}$, with $\left|h_{\Sigma}\left(t_{r} \cdots t_{s}\right)\right|>0$,
2. $h_{\Delta}\left(t_{x} \cdots t_{y}\right) \in C_{i}^{+}$and there exists r, s with $x \leq y \leq r \leq s$ and $k_{1}, k_{2}>1$ such that the sequence

$$
t_{1} t_{2} \cdots t_{x-1}\left(t_{x} t_{x+1} \cdots t_{y}\right)^{k_{1}} t_{y+1} \cdots t_{r-1}\left(t_{r} t_{r+1} \cdots t_{s}\right)^{k_{2}} t_{s+1} \cdots t_{m}
$$

is an accepting computation, and $h_{\Delta}\left(t_{r} \cdots t_{s}\right) \in D_{i}^{+}$,
3. $h_{\Delta}\left(t_{x} \cdots t_{y}\right) \in D_{i}^{+}$and there exists r, s with $r \leq s \leq x \leq y$ and $k_{1}, k_{2}>1$ such that the sequence

$$
t_{1} t_{2} \cdots t_{r-1}\left(t_{r} t_{r+1} \cdots t_{s}\right)^{k_{1}} t_{s+1} \cdots t_{x-1}\left(t_{x} t_{x+1} \cdots t_{y}\right)^{k_{2}} t_{y+1} \cdots t_{m}
$$

is an accepting computation, and $h_{\Delta}\left(t_{r} \cdots t_{s}\right) \in C_{i}^{+}$.
Proof. Consider a derivation as above, satisfying the stated assumptions. Let $q=p_{x-1}=p_{y}$ be the state, and i the counter.

Between any two consecutive occurrences of q in the subderivation t_{x}, \ldots, t_{y}, if counter i does not change, then at least one input letter must get read since this derivation is non-collapsible (and since only counter i can change in this sequence). Furthermore, repeating this sequence of transitions between q and itself twice must be an accepting computation, since the state repeats, the counters have not changed, and at least one extra input letter is read. In this case, 1) is true.

Otherwise, between every two consecutive occurrences of q in the subderivation t_{x}, \ldots, t_{y}, counter i must change (and either an input letter is read, or not). Thus, between the first and last occurrence of q in t_{x}, \ldots, t_{y}, at least one input letter is read (by assumption), and the counter must change at least $|Q|+1$ times (since q occurs $|Q|+2$ times in the sequence), either increasing if $h_{\Delta}\left(t_{x} \cdots t_{y}\right) \in C_{i}^{+}$, or decreasing if $h_{\Delta}\left(t_{x} \cdots t_{y}\right) \in D_{i}^{+}$.

For the first case, assume $h_{\Delta}\left(t_{x} \cdots t_{y}\right) \in C_{i}^{+}$. Within $t_{x} \cdots t_{y}$, counter i increases by z say, where $z>|Q|$. Hence, counter i must decrease by z as well since M is well-formed. Since the instruction language is in $\mathrm{LB}_{i d}$, all the decreasing of counter i must be within the derivation where no other counter is changed. When counter i decreases, there must also be a state p that appears twice with at least one decrease in between this repeated state since $z>|Q|$. Let $z^{\prime}>0$ be the amount the counter is decreased between p and itself. That is, there must exist $r \leq s$ such that $p_{r-1}=p=p_{s}$ and counter i is decreased by $z^{\prime}>0$ within this part of the derivation.

Then, create a derivation from the derivation above where, during the cycle that increases counter i by z, we increase by $z+z z^{\prime}$ (by iterating this cycle $1+z^{\prime}=k_{1}>1$ times), and during the cycle that decreases counter i by z^{\prime}, we instead decrease the counter by $z^{\prime}+z z^{\prime}$ (by iterating this cycle $1+z=k_{2}>1$ times). This new computation must accept and 2$)$ is true.

The case is similar if $h_{\Delta}\left(t_{x} \cdots t_{y}\right) \in D_{i}^{+}$, with 3) being true.
The next result follows from Lemma 1 and this new pumping lemma.
Proposition 4. $\left\{a^{n} b^{n} c^{n} \mid n>0\right\} \notin \mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)$.
Proof. Assume otherwise. Let L be the language in the statement, and let M be a well-formed k-counter machine accepting L, over a distinct-letter-bounded instruction alphabet where each character of Δ_{k} occurs exactly once, $I \subseteq a_{1}^{*} \cdots a_{2 k}^{*}$, which is enough by Lemma 1 Let Q be the state set of M.

Let $n=(|Q|+1)(|Q|+2)(2 k+1)$. Then, on input $w=a^{n} b^{n} c^{n}$, consider a non-collapsible accepting computation on transition sequence $t_{1} t_{2} \cdots t_{m}$ of M; that is,

$$
\left(p_{0}, w_{0}, c_{0,1}, \ldots, c_{0, k}\right) \vdash_{M}^{t_{1}} \cdots \vdash_{M}^{t_{m}}\left(p_{m}, w_{m}, c_{m, 1}, \ldots, c_{m, k}\right),
$$

where $p_{0}=q_{0}, c_{0, j}=0=c_{m, j}, 1 \leq j \leq k, p_{m} \in F, w_{m}=\lambda$, and $w=w_{0}$.

Then, when reading the a 's there must exist $x^{\prime}, y^{\prime}, 0<x^{\prime} \leq y^{\prime} \leq m$ such that $h_{\Delta}\left(t_{x^{\prime}} \cdots t_{y^{\prime}}\right) \in$ $\left\{C_{i}, D_{i}\right\}^{*}$, for some $i, 1 \leq i \leq 2 k$, such that $\left|h_{\Sigma}\left(t_{x^{\prime}} \cdots t_{y^{\prime}}\right)\right| \geq(|Q|+1)(|Q|+2)$ (at least $(|Q|+$ $1)(|Q|+2) a$'s are read while increasing or decreasing counter $i)$. Then, at least this many transitions are applied during this sequence of transitions. Then, some state q occurs at least $|Q|+2$ times in this subderivation, with at least one input letter read between the first and last occurrence of q. Hence, Lemma 2 must apply.

If case 1 is true, this produces a word with more a 's than b 's.
If case 2 is true, then (using the variables in the Lemma 2 statement), this derivation has more than $n a$'s since $k_{1}>1$ and $\left|h_{\Sigma}\left(t_{x} \cdots t_{y}\right)\right|>0$, and therefore $h_{\Sigma}\left(t_{r} \cdots t_{s}\right)$ would need to consist of both b 's and c 's, otherwise words would be produced with more b 's than c 's, or more c 's than b 's. But then, there are words that are not in $a^{*} b^{*} c^{*}$, a contradiction.

If case 3 is true, then this produces a word with more a 's than b 's and c 's.
In addition, the following can be shown with Lemma 1 and two applications of the pumping lemma.
Proposition 5. $\left\{a^{n} b^{n} c^{l} d^{l} \mid n, l>0\right\} \notin \mathcal{L}\left(\mathrm{NCM}_{\left.\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right) .}\right.$
Proof. Assume otherwise. Let L be the language in the statement, and let M be a well-formed k counter machine accepting L, over a distinct-letter-bounded instruction alphabet where each letter of Δ_{k} occurs exactly once, $I \subseteq a_{1}^{*} \cdots a_{2 k}^{*}$, which is enough by Lemma 1 . Let Q be the state set of M.

Let $n=(|Q|+1)(|Q|+2)(2 k+1)$. Then, on input $w=a^{n} b^{n} c^{n} d^{n}$, consider a non-collapsible accepting computation on $t_{1} t_{2} \cdots t_{m}$ of M accepting w; that is,

$$
\left(p_{0}, w_{0}, c_{0,1}, \ldots, c_{0, k}\right) \vdash_{M}^{t_{1}} \cdots \vdash_{M}^{t_{m}}\left(p_{m}, w_{m}, c_{m, 1}, \ldots, c_{m, k}\right),
$$

where $p_{0}=q_{0}, c_{0, j}=0=c_{m, j}, 1 \leq j \leq k, p_{m} \in F, w_{m}=\lambda$, and $w=w_{0}$.
Then, when reading the a 's there must exist $x^{\prime}, y^{\prime}, 0<x^{\prime} \leq y^{\prime} \leq m$ such that $h_{\Delta}\left(t_{x^{\prime}} \cdots t_{y^{\prime}}\right) \in$ $\left\{C_{i}, D_{i}\right\}^{*}$, for some $i, 1 \leq i \leq 2 k$, such that $\left|h_{\Sigma}\left(t_{x^{\prime}} \cdots t_{y^{\prime}}\right)\right| \geq(|Q|+1)(|Q|+2)$ (at least $(|Q|+$ $1)(|Q|+2) a$'s are read while increasing or decreasing counter $i)$. Then, at least this many transitions are applied during this sequence of transitions. Then, some state q occurs at least $|Q|+2$ times in this subderivation, with at least one input letter read between the first and last occurrence of q. Hence, Lemma 2 must apply.

If case 1 is true, this produces a word with more a 's than b 's.
If case 3 is true, then this produces a word with more a 's than b 's.
Assume for the rest of this proof then that case 2 is true. Then, there exists r, s with $x \leq y \leq$ $r \leq s$ and $k_{1}, k_{2}>1$ such that the sequence

$$
t_{1} t_{2} \cdots t_{x-1}\left(t_{x} t_{x+1} \cdots t_{y}\right)^{k_{1}} t_{y+1} \cdots t_{r-1}\left(t_{r} t_{r+1} \cdots t_{s}\right)^{k_{2}} t_{s+1} \cdots t_{m}
$$

is an accepting computation, and $h_{\Delta}\left(t_{r} \cdots t_{s}\right) \in D_{i}^{+}$. The word accepted, has more than $n a$'s, n^{\prime} say, since $k_{1}>1$ and $\left|h_{\Sigma}\left(t_{x} \cdots t_{y}\right)\right|>0$, and the only way to not obtain a contradiction would be if $h_{\Sigma}\left(t_{r} \cdots t_{s}\right)$ consists of only b 's such that the resulting input word reading during this derivation also has $n^{\prime} b$'s. Also, because $h_{\Delta}\left(t_{r} \cdots t_{s}\right) \in D_{i}^{+}$, it follows that a counter has already started decreasing while reading the b 's. Therefore, after this point of the derivation, no counter can increase again since $M \in \operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)$.

Although this new derivation is potentially collapsible (since new transitions were added in from $t_{1} \cdots t_{m}$), as mentioned earlier, it is possible to obtain a non-collapsible derivation from this new derivation simply by removing configurations (entirely in the new sections added while reading
a^{\prime} 's and b 's). Then, a new derivation can be obtained on transition sequence $s_{1} \cdots s_{m^{\prime}}$ accepting $a^{n^{\prime}} b^{n^{\prime}} c^{n} d^{n}$.

Then consider this non-collapsible accepting derivation and consider the subsequence when reading the c^{\prime} 's. There must exist $x^{\prime \prime}, y^{\prime \prime}, 0<x^{\prime \prime} \leq y^{\prime \prime} \leq m^{\prime}$ such that $h_{\Delta}\left(t_{x^{\prime \prime}} \cdots t_{y^{\prime \prime}}\right) \in\left\{D_{j}\right\}^{*}$, for some $i, 1 \leq j \leq k$, such that $\left|h_{\Sigma}\left(t_{x^{\prime \prime}} \cdots t_{y^{\prime \prime}}\right)\right| \geq(|Q|+1)(|Q|+2)$ (it must be D_{j} since this derivation has already started decreasing while reading the b 's). Then, at least this many transitions are applied during this sequence of transitions. Then, some state q^{\prime} occurs at least $|Q|+2$ times in this subderivation, with at least one input letter read between the first and last occurrence of q^{\prime}. Hence, Lemma 2 must again apply.

If case 1 applies, then this produces a word with more c 's than d 's, as does case 3 , and case 2 cannot apply since the derivation has already started decreasing. Thus, we obtain a contradiction.

Therefore, the following is immediate:
Proposition 6. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right) \subsetneq \mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i d}\right)\right) \subsetneq \mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right)$.
Proof. The inclusions follow from the definitions. Strictness of the first inclusion follows from Proposition 5, as $\left\{a^{n} b^{n} c^{l} d^{l} \mid n, l>0\right\} \in \mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i d}\right)\right)$ by making a 2 -counter machine that reads a 's and adds the number of a 's to the first counter, then reads b 's while verifying that this number is the same, and then reads c 's while adding the number of c 's to the second counter, then reads d 's while decreasing the second counter, verifying that the number is the same.

Strictness of the second inclusion follows by Proposition 4 as $\left\{a^{n} b^{n} c^{n} \mid n>0\right\} \in \mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{\text {id }}\right)\right)$ by building a 2 -counter machine that adds 1 to counter 1 then 2 repeatedly for each a read, then verifies that the contents of the first counter is the same as the number of b 's, then verifies that the contents of the second counter is the same as the number of c 's.

4 Generators for the Families

We will go through certain families individually while creating a more restricted set of generators than is provided by Proposition 3 .

First, we will give two characterizations of $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)$.
Proposition 7. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{\text {id }}\right)\right)$ is the smallest full trio containing all distinct-letter-bounded languages of the form $\left\{a_{1}^{i_{1}} \cdots a_{m}^{i_{m}} \mid a_{j}=C_{l}, a_{n}=D_{l}\right.$ imply $\left.i_{j}=i_{n}\right\}$, where a_{1}, \ldots, a_{m} is a permutation of Δ_{k} such that $a_{j}=C_{l}, a_{n}=D_{l}$ implies $j<n$.

Proof. It follows from Lemma 1 that every language in $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i d}\right)\right)$ can be obtained by an instruction language in \mathcal{I}, where \mathcal{I} is the distinct-letter-bounded subset of $\mathrm{LB}_{\text {id }}$. Thus, $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))=$ $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)$. From Proposition 2, it follows that $\mathcal{L}(\operatorname{NCM}(\mathcal{I}))$ is the smallest full trio containing $\mathcal{I}_{e q}$. Furthermore, $\mathcal{I}_{e q}$ is equal to the languages in the proposition statement.

A similar characterization can be obtained with a single language for each k.
Proposition 8. Let $k \geq 1$, and let $L_{k}^{\mathrm{LB}_{i d}}=\left\{a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{m}^{i_{m}} \mid\left\{a_{1}, \ldots, a_{m}\right\}\right.$ is a permutation of Δ_{k}, and ($C_{j}=a_{l}, D_{j}=a_{n}$ implies both $l<n$ and $i_{l}=i_{n}$), for each $\left.j, 1 \leq j \leq k\right\}$.

Then $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)$ is the smallest full trio containing $L_{k}^{\mathrm{LB}}{ }_{i d}$, for each $k \geq 1$.
Proof. It is clear that $L_{k}^{\mathrm{LB}} \mathrm{B}_{i d}$ is the finite union of languages of the form of Proposition 7, and since this family is closed under union by Proposition 3, then $L_{k}^{\mathrm{LB}}{ }_{i d} \in \mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i d}\right)\right)$. Further, all
bounded languages I of the form of Proposition 7 can be obtained by intersecting $L_{k}^{\mathrm{LB}_{i d}}$ with the regular language $a_{1}^{*} \cdots a_{m}^{*}$.

Next, we will give characterizations for $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$, whose proof is similar to Proposition 7.

Proposition 9. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$ is the smallest full trio containing all distinct-letter-bounded languages of the form $\left\{a_{1}^{l_{1}} \cdots a_{k}^{l_{k}} b_{1}^{j_{1}} \cdots b_{k}^{j_{k}} \mid a_{i}=C_{m}, b_{n}=D_{m}\right.$ imply $\left.l_{i}=j_{n}\right\}$, where a_{1}, \ldots, a_{k} is a permutation of $\Delta_{(k, c)}$ and b_{1}, \ldots, b_{k} is a permutation of $\Delta_{(k, d)}$.

This can similarly be turned into one language for each k, as follows with a proof similar to Proposition 8

Proposition 10. Let $k \geq 1$, and let $L_{k}^{\mathrm{LB}} \mathrm{LB}_{d}=\left\{a_{1}^{l_{1}} \cdots a_{k}^{l_{k}} b_{1}^{j_{1}} \cdots b_{k}^{j_{k}} \mid a_{1}, \ldots, a_{k}\right.$ is a permutation of $\Delta_{(k, c)}, b_{1}, \ldots, b_{k}$ is a permutation of $\Delta_{(k, d)}$, and $\left(C_{m}=a_{i}, D_{m}=b_{n}\right.$ implies $\left.l_{i}=j_{n}\right)$, for each $j, 1 \leq j \leq k\}$.

Then $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$ is the smallest full trio containing $L_{k}^{\mathrm{LB}_{i} \mathrm{LB}_{d}}$, for each $k \geq 1$.
Next, we will provide an alternate interesting characterization for both families using properties of semilinear sets. Let $m \geq 1$. A linear set $Q \subseteq \mathbb{N}_{0}^{n}, n \geq 1$, is m-bounded if the periodic vectors of Q have at most m non-zero coordinates. (There is no restriction on the constant vector.) A semilinear set Q is m-bounded if it is a finite union of m-bounded linear sets.

Let $L \subseteq a_{1}^{*} \cdots a_{n}^{*}, a_{1}, \ldots, a_{n} \in \Sigma$ be a distinct-letter-bounded language. L is called a distinct-letter-bounded 2-bounded semilinear language if there exists a 2 -bounded semilinear set Q such that $L=\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}} \mid\left(i_{1}, \ldots, i_{n}\right) \in Q\right\}$. L is called a distinct-letter-bounded 2-bounded overlapped semilinear language if there exists a 2-bounded semilinear set Q with the property that in any of the linear sets comprising Q, there are no periodic vectors v with non-zero coordinates at positions $i<j$, and v^{\prime} with non-zero coordinates at positions $i^{\prime}<j^{\prime}$ such that $1 \leq i<j<i^{\prime}<j^{\prime} \leq n$, and $L=\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}} \mid\left(i_{1}, \ldots, i_{n}\right) \in Q\right\}$. (They overlap in the sense that, for any such $Q, v, i, j, v^{\prime}, i^{\prime}, j^{\prime}$, then the interval $[i, j]$ must overlap with $\left[i^{\prime}, j^{\prime}\right]$.)

As above, we can also define distinct-letter-bounded 1-bounded semilinear languages. Clearly, these languages are regular and, hence, contained in any nonempty full trio family [2]. For 2bounded, the following is true:

Proposition 11.

1. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{\text {id }}\right)\right)$ is the smallest full trio containing all distinct-letter-bounded 2-bounded semilinear languages.
2. $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$ is the smallest full trio containing all distinct-letter-bounded 2-bounded overlapped semilinear languages.

Proof. For Part 1, let $Q \subseteq \mathbb{N}_{0}^{n}$ be a 2-bounded semilinear set. It will be shown that $L=$ $\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}} \mid\left(i_{1}, \ldots, i_{n}\right) \in Q\right\}$ is accepted by an $M \in \operatorname{NCM}\left(\mathrm{LB}_{i d}\right)$. It is sufficient prove the case when Q is a linear set by Proposition 3. For ease in notation, we illustrate the construction of M with an example, which is easy to generalize. Let

$$
\begin{aligned}
& Q=\{(5,4,2,0,0,3)+i(1,0,3,0,0,0)+j(2,3,0,0,0,0)+k(0,4,0,2,0,0) \\
& +m(1,0,6,0,0,0)+n(0,0,2,0,7,0)+r(0,0,0,0,2,0)+s(0,0,0,0,0,8) \mid i, j, k, m, n, r, s \geq 0\} .
\end{aligned}
$$

Then $L=\left\{a^{5+i+2 j+m} b^{4+3 j+4 k} c^{2+3 i+6 m+2 n} d^{0+2 k} e^{0+7 n+2 r} f^{3+8 s} \mid i, j, k, m, n, r, s \geq 0\right\}$.

Let $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}, b_{2}, c_{0}, c_{1}, c_{2}, c_{3}, d_{0}, d_{1}, e_{0}, e_{1}, e_{2}, f_{0}, f_{1}$ be distinct symbols. Let

$$
L^{\prime}=\left\{a_{0}^{5} a_{1}^{i} a_{2}^{2 j} a_{3}^{m} b_{0}^{4} b_{1}^{3 j} b_{2}^{4 k} c_{0}^{2} c_{1}^{3 i} c_{2}^{6 m} c_{3}^{2 n} d_{0}^{0} d_{1}^{2 k} e^{0} e_{1}^{7 n} e_{2}^{2 r} f_{0}^{3} f_{1}^{8 s} \mid i, j, k, m, n, r, s \geq 0\right\}
$$

Thus $L^{\prime} \subseteq a_{0}^{*} a_{1}^{*} a_{2}^{*} a_{3}^{*} b_{0}^{*} b_{1}^{*} b_{2}^{*} c_{0}^{*} c_{1}^{*} c_{2}^{*} c_{3}^{*} d_{0}^{*} d_{1}^{*} e_{0}^{*} e_{1}^{*} e_{2}^{*} f_{0}^{*} f_{1}^{*}$. M^{\prime} will have counters $C_{i}, C_{j}, C_{m}, C_{k}, C_{n}$. It is straightforward to construct M^{\prime} to accept L^{\prime} whose counter behavior is contained in the language $C_{i}^{*} C_{j}^{*} C_{m}^{*} D_{j}^{*} C_{k}^{*} D_{i}^{*} D_{m}^{*} C_{n}^{*} D_{k}^{*} D_{n}^{*}$. (Note that M^{\prime} does not need counters to check the constants and to check the $2 r$ and $8 s$ portions. As usual, we assume that for any symbol $x, x^{0}=\lambda$.)

Let h be a homomorphism which maps $a_{0}, a_{1}, a_{2}, a_{3}$ to $a ; b_{0}, b_{1}, b_{2}$ to $b ; c_{0}, c_{1}, c_{2}, c_{3}$ to $c ; d_{0}, d_{1}$ to $d ; e_{0}, e_{1}, e_{2}$ to $e ; f_{0}, f_{1}$ to f. Then $L=h\left(L^{\prime}\right)$.

The construction above is easy to generalize. For each position p (e.g., position 1), we split the symbol in that position (e.g., a) into 1 plus the number of periodic vectors with non-zero values in position p (e.g., a is split into split- symbols $a_{0}, a_{1}, a_{2}, a_{3}$). Then these symbols are assigned exponents that represent the number of times the corresponding non-zero values need to be repeated (e.g., $a_{0}^{5}, a_{1}^{1 \times i}, a_{2}^{2 \times j}, a_{3}^{1 \times m}$, where 5 is the non-zero value at position 1 in the constant vector, and 1 , 2,1 are the non-zero values at position 1 in the periodic vectors with parameters i, j, m representing the number of times the corresponding non-zero values have to be repeated). Then a counter is assigned to a split-symbol at position p if and only if there there is a periodic vector with non-zero values at positions p and q with $p<q$. (For example, counter C_{i} is assigned to symbol a_{1}, C_{j} is assigned to a_{2}, C_{m} is assigned to a_{m}, C_{k} is assigned to b_{2}, C_{n} is assigned to c_{3}. However, no counters are assigned to $a_{0}, b_{0}, c_{0}, d_{0}, e_{0}, f_{0}$ because they correspond to the constant vector, and no counters are assigned to e_{2} and f_{1}.) Then one can easily determine the counter behavior pattern which would guide the computation of the $\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)$ machine.

Conversely, $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)$ is the smallest full trio containing all distinct-letter-bounded languages of the form of Proposition 9, by that proposition. Further, all of these are distinct-letterbounded 2-bounded semilinear languages. Thus, Part 1 follows.

The proof for Part 2 is similar to the above proof.
Next we will give a characterization of the smallest full trio containing all bounded \mathcal{L} (CFL) languages. For that, we consider instruction family $\mathrm{StLB}_{i d}$. An example of an $\mathrm{StLB}_{i d}$ language (counter behavior) is $C_{1}^{*} C_{2}^{*} C_{3}^{*} D_{3}^{*} C_{2}^{*} D_{2}^{*} C_{1}^{*} D_{1}^{*}$. But the counter behavior $C_{1}^{*} C_{2}^{*} C_{3}^{*} D_{3}^{*} C_{2}^{*} D_{2}^{*} C_{1}^{*} D_{2}^{*} C_{1}^{*} D_{1}^{*}$ is not an $\mathrm{StLB}_{i d}$ language since C_{2} appears, then C_{1}, then D_{2}, then D_{1}, violating the $\mathrm{StLB}_{i d}$ definition.

The next results show that $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{StLB}_{i d}\right)\right)$ is the smallest full trio containing all bounded context-free languages. It has previously been found that there is no principal full trio (ie. generated by a single language [2]) accepting these languages [11] (this paper does not use the 'principal' notation). Our proof uses a known characterization of distinct-letter-bounded context-free languages (CFLs) from [3].

Proposition 12. $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{StLB}_{i d}\right)\right)$ is the smallest full trio containing all bounded context-free languages.

Proof. First we show containment. For every bounded $L \in \mathcal{L}(\mathrm{CFL}), L \subseteq w_{1}^{*} \cdots w_{n}^{*}$, for distinct a_{1}, \ldots, a_{n}, then $L^{\prime}=\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}} \mid w_{1}^{i_{1}} \cdots w_{n}^{i_{n}} \in L\right\}$ must also be in $\mathcal{L}(\mathrm{CFL})$ by using a finite transducer that reads w_{i} and outputs a_{i}, as $\mathcal{L}(\mathrm{CFL})$ is closed under finite transductions [2]. Then since $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{StLB}_{i d}\right)\right)$ is a full trio, it is sufficient to show that every distinct-letter-bounded \mathcal{L} (CFL) $L^{\prime} \subseteq a_{1}^{*} \cdots a_{n}^{*}$ can be accepted by an $\operatorname{NCM}\left(\mathrm{StLB}_{i d}\right)$, as $L=h\left(L^{\prime}\right)$ for a homomorphism h that outputs w_{i} from a_{i}.

Assume that $n \geq 2$. (The case $n=1$ is trivial, since L is regular.)

We will prove the claim by induction on n. The result holds for $n=2$, since it is known that for every $\mathcal{L}(\mathrm{CFL}) L \subseteq w_{1}^{*} w_{2}^{*}$ (where $w_{1}, w_{2} \in \Sigma^{+}$), L can be accepted by an $\operatorname{NCM}(1,1)$, hence by an $\mathrm{NCM}\left(\mathrm{StLB}_{i d}\right)$ 8.

Now suppose $n \geq 3$. The following characterization is known [3]. For all $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$, $n \geq 3$, then each $\mathcal{L}(\mathrm{CFL}) L \subseteq a_{1}^{*} \cdots a_{n}^{*}$ is a finite union of sets of the following form:

$$
M(D, E, F)=\left\{a_{1}^{i} x y a_{n}^{j} \mid a_{1}^{i} a_{n}^{j} \in D, x \in E, y \in F\right\},
$$

where $D \subseteq a_{1}^{*} a_{n}^{*}, E \subseteq a_{1}^{*} \cdots a_{q}^{*}, F \subseteq a_{q}^{*} \cdots a_{n}^{*}, 1<q<n$, are in $\mathcal{L}(\mathrm{CFL})$, and conversely, each finite union of sets of the form $M(D, E, F)$ is a $\mathcal{L}(\mathrm{CFL}) L \subseteq a_{1}^{*} \cdots a_{n}^{*}$.

By this, D can be accepted by an $\operatorname{NCM}\left(\mathrm{StLB}_{i d}\right) M_{1}$ with 1 counter. By the induction hypothesis, E and F can be accepted by $\operatorname{NCM}\left(\mathrm{StLB}_{i d}\right) s M_{2}$ with k_{2} and M_{3} with k_{3} counters, respectively, since they are over smaller alphabets.

Since $\mathcal{L}\left(\operatorname{NCM}\left(\operatorname{StLB}_{i d}\right)\right)$ is closed under union, it is sufficient to build an $\operatorname{NCM}\left(\operatorname{StLB}_{i d}\right) M$ accepting $M(D, E, F)$. Then M has $k_{2}+k_{3}+1$ counters. On a given input, M starts by simulating M_{1}, and while still reading a_{1} 's, it remembers the current state of M_{1} in the finite control, and starts simulating M_{2}. (The point when M starts simulating M_{2} is nondeterministically chosen, as long as the input head of M has not gone past the a_{1} 's.) After M_{2} accepts, M starts simulating M_{3}. (Again, the point when M starts simulating M_{3} is nondeterministically chosen.) When M_{3} accepts, M continues the simulation of M_{1} from the state it remembered until the string is accepted.

Conversely, let L be any language accepted by an $\operatorname{NCM}\left(\mathrm{StLB}_{i d}\right)$ with k counters. As usual, all counters are zero on acceptance. We construct an NPDA M^{\prime} that accepts $L . M^{\prime}$ has stack alphabet $\left\{Z_{0}, C_{1}, \ldots, C_{k}\right\}$, where Z_{0} denotes the bottom of the stack which is never altered. The stack containing only Z_{0} indicates that it is empty. M^{\prime} accepts on empty stack and final state. Let $I=a_{1}^{*} \cdots a_{m}^{*} \in \mathrm{StLB}_{i d}$ be a superset of the instructions of M. Then M^{\prime} simulates M faithfully but uses the stack to simulate the counters as follows (noting that a counter C_{i} is zero if and only if the stack is empty or the top of the stack is not C_{i}):

- If M increments counter i, M^{\prime} pushes C_{i} on the stack.
- If M decrements counter i, M^{\prime} pops C_{i} from the stack.

Note that because I is an $\mathrm{StLB}_{i d}$ instruction, in any accepting computation, when M decrements counter i, the top of the stack must be C_{i}.

When M accepts (with all counters zero, corresponding to the stack of M^{\prime} being empty), M^{\prime} accepts.

From this, the following can be determined:

Corollary 3.

1. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{StLB}_{i d}\right)\right) \subsetneq \mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)$.
2. $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{StLB}_{\text {id }}\right)\right.$ and $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$ are incomparable.

Proof. Obviously, $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{StLB}_{i d}\right)\right.$ is contained in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)\right)$. To show proper containment, let $L=\left\{a^{i} b^{j} c^{i} d^{j} \mid i, j \geq 1\right\}$. Clearly, L can be accepted by an $\operatorname{NCM}\left(\mathrm{LB}_{i d}\right)$ with counter behavior $C_{1}^{*} C_{2}^{*} D_{1}^{*} D_{2}^{*}$, but L is not a context-free language. The result follows since every language in $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{StLB}_{i d}\right)\right.$ is a context-free language.

For Part $2, L$ is in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$ but is not a $\mathcal{L}(\mathrm{CFL})$. Now let $L^{\prime}=\left\{a^{i} b^{i} c^{j} d^{j} \mid i, j \geq 1\right\}$. L^{\prime} is a $\mathcal{L}(\mathrm{CFL})$, but this is not in $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$ by Proposition 5 .

Next, we will show that all bounded Ginsburg semilinear languages are in two of the language families (and therefore in all larger families).

Lemma 3. All bounded Ginsburg semilinear languages are in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right)\right), \mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)$.

Proof. By [7, it is enough to show for all distinct-letter-bounded semilinear languages. And since both families are closed under union, by Proposition 3, and since every semilinear set is the finite union of linear sets, it is enough to show for all distinct-letter-bounded semilinear languages induced by a linear set Q.

Let $Q \subseteq \mathbb{N}_{0}^{k}$ be the linear set with constant vector $\overrightarrow{v_{0}}$ and periods $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$. We will create a machine M where input is of the form $w=a_{1}^{i_{1}} \cdots a_{k}^{i_{k}}$, each a_{i} is distinct, and M accepts w if and only if $\left(i_{1}, \ldots, i_{k}\right) \in Q$. We will start with the case for $\mathrm{BD}_{i} \mathrm{LB}_{d}$.

Then M first adds $v_{0}(i)$ to counter i, for each i from $1 \leq i \leq k$, on λ transitions. Then M does the same for $\overrightarrow{v_{1}}$ arbitrarily many times, then the same for $\overrightarrow{v_{2}}$, etc. This insertion pattern is in the bounded language

$$
C_{1}^{*} \cdots C_{k}^{*}\left(C_{1}^{\overrightarrow{v_{1}}(1)} C_{2}^{\overrightarrow{v_{1}}(2)} \cdots C_{k}^{\overrightarrow{v_{1}}(k)}\right)^{*} \cdots\left(C_{1}^{\overrightarrow{v_{n}}(1)} C_{2}^{\overrightarrow{v_{n}}}(2) \cdots C_{k}^{\overrightarrow{v_{n}}(k)}\right)^{*} .
$$

Then the counter contents are in the linear set without having read any input. Then it verifies that the input is equal to the counter contents one counter at a time, and therefore M accepts the distinct-letter-bounded language induced by Q. So the decreasing pattern is $D_{1}^{*} D_{2}^{*} \cdots D_{k}^{*}$ which is letter-bounded.

For $\mathrm{LB}_{i} \mathrm{BD}_{d}$, this pattern is inverted, and M starts by placing i_{j} in counter j, for $1 \leq j \leq k$, according to the letter-bounded pattern $D_{1}^{*} \cdots D_{k}^{*}$. Then, M subtracts from the counters with the same pattern that it increased from the counters in the case above, which is in the bounded language (replacing all C 's with D 's). M accepts if all counters reach zero in this fashion.

From the definition, it is immediate that if $\mathcal{I} \subseteq \mathcal{I}^{\prime}$, then $\mathcal{L}(\operatorname{NCM}(\mathcal{I})) \subseteq \mathcal{L}\left(\operatorname{NCM}\left(\mathcal{I}^{\prime}\right)\right)$. It is clear that all of $\mathrm{LB}_{i d}, \mathrm{BD}_{i} \mathrm{LB}_{d}, \mathrm{LB}_{i} \mathrm{BD}_{d}$ are a subset of $\mathrm{BD}_{i d}$. We will show that three of these counter families coincide.

Proposition 13. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{i}\right)\right)=\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)=\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right)$ is the smallest full trio containing all bounded Ginsburg semilinear languages, and the smallest full trio containing all bounded Parikh semilinear languages.

Proof. All of the families are full trios by Proposition 1. All must contain all bounded Ginsburg semilinear languages by Lemma 3, and therefore all bounded bounded Parikh semilinear languages [7].

To complete the proof, we will now show that all languages in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i d}\right)\right)$ can be obtained from the bounded Parikh (which are then bounded Ginsburg) semilinear languages using full trio operations.

Let $\mathcal{I}=\mathrm{BD}_{i d}$. By Proposition 2, $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right)$ is the smallest family of languages containing $\mathcal{I}_{e q}=\left\{I \mid I=\left\{w=\left.w_{1}^{*} \cdots w_{m}^{*}| | w\right|_{C_{i}}=|w|_{D_{i}}\right.\right.$, for each $1 \leq i \leq k$, all C_{i} 's appear before any D_{i} 's $\}$, $\left.w_{i} \in \Delta_{k}^{*}, k \geq 1\right\}$. But every $I_{e q} \in \mathcal{I}_{e q}$ is a bounded Parikh semilinear language. Thus the statement follows.

Corollary 4. For all $\mathcal{I} \in\left\{\mathrm{BD}_{i} \mathrm{LB}_{d}, \mathrm{LB}_{i} \mathrm{BD}_{d}, \mathrm{BD}_{i d}, \mathrm{LB}_{d}, \mathrm{LB}_{i}, \mathrm{LB}_{\cup}, \mathrm{ALL}\right\}$, then $\mathcal{L}(\mathrm{NCM}(\mathcal{I}))$ contains all bounded Ginsburg semilinear languages, and all bounded languages in $\mathcal{L}(\mathrm{NCM})$.

Next, we establish two simple sets of generators for $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i d}\right)\right)$. These languages will therefore be a simple mechanism to show whether or not a full trio \mathcal{L} contains every bounded Ginsburg semilinear language, and therefore has exactly the same bounded languages as NCM, and has all bounded languages contained in any semilinear trio.

Proposition 14. For $k \geq 1$, let

$$
\begin{aligned}
L_{k}^{\mathrm{BD}_{i} \mathrm{LB}_{d}}=\left\{w_{1}^{x_{1}} \cdots w_{m}^{x_{m}} D_{1}^{y_{1}} \cdots D_{k}^{y_{k}} \mid\right. & w_{j} \in \Delta_{(k, c)}^{+}, x_{j}>0,1 \leq j \leq m, \\
& \text { for } 1 \leq i \leq k,\left|w_{1} w_{2} \cdots w_{m}\right|_{C_{i}}=1, \\
& \left.\left(C_{i} \in \operatorname{alph}\left(w_{j}\right) \text { implies } y_{i}=x_{j}\right)\right\} \\
L_{k}^{\mathrm{LB}_{i} \mathrm{BD}_{d}}=\left\{C_{1}^{y_{1}} \cdots C_{k}^{y_{k}} w_{1}^{x_{1}} \cdots w_{m}^{x_{m}} \mid\right. & w_{j} \in \Delta_{(k, d)}^{+}, x_{j}>0,1 \leq j \leq m, \\
& \text { for } 1 \leq i \leq k,\left|w_{1} w_{2} \cdots w_{m}\right|_{D_{i}}=1, \\
& \left.\left(D_{i} \in \operatorname{alph}\left(w_{j}\right) \text { implies } y_{i}=x_{j}\right)\right\} .
\end{aligned}
$$

Then $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right)\right)=\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)=\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right)$ is the smallest full trio containing $L_{k}^{\mathrm{BD}_{i} \mathrm{LB}_{d}}$, for each $k \geq 1$, and also the smallest full trio containing $L_{k}^{\mathrm{LB}_{i} \mathrm{BD}_{d}}$, for each $k \geq 1$.
Proof. The equality of the families follows from Proposition 13 . First, we will consider $L_{k}^{\mathrm{LB}_{i} \mathrm{BD}_{d}}$. To show this language is in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)$, notice that $L_{k}^{\mathrm{LB}_{i} \mathrm{BD}_{d}} \cap C_{1}^{*} \cdots C_{k}^{*} w_{1}^{*} \cdots w_{m}^{*}$ is clearly in this family for fixed words w_{1}, \ldots, w_{m}, where $\left|w_{1} \cdots w_{m}\right|_{D_{i}}=1$ for each i. Furthermore, there are a finite number of combinations of such words, and $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)$ is closed under union by Proposition 3, therefore $L_{k}^{\mathrm{LB} B_{i} \mathrm{BD}_{d}}$ is in this family.

From Lemma 1 and Proposition 2, it follows that $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)$ is the smallest full trio containing $\left(\mathrm{LB}_{i} \underline{\mathrm{BD}}_{d}\right)_{e q}$.

First consider a slight variant of $L_{k}^{\mathrm{LB}_{i} \mathrm{BD}_{d}}$,

$$
\begin{aligned}
L_{k}=\left\{C_{i_{1}}^{y_{1}} \cdots C_{i_{k}}^{y_{k}} w_{1}^{x_{1}} \cdots w_{m}^{x_{m}} \mid\right. & w_{j} \in \Delta_{(k, d)}^{+}, x_{j}>0,1 \leq j \leq m, \\
& C_{i_{1}, \ldots, C_{i_{k}} \text { is a permutation of } \Delta_{(k, c)},} \\
& \text { for } 1 \leq l \leq k,\left|w_{1} w_{2} \cdots w_{m}\right|_{D_{l}}=1, \\
& \left.\left(D_{i_{l}} \in \operatorname{alph}\left(w_{j}\right) \text { implies } y_{l}=x_{j}\right)\right\} .
\end{aligned}
$$

Then every language $I \in\left(\underline{\mathrm{LB}}_{i} \underline{\mathrm{BD}}_{d}\right)_{e q}$ over Δ_{k}^{*} for some $k \geq 1$ is equal to

$$
\left\{w=C_{i_{1}}^{y_{1}} \cdots C_{i_{k}}^{y_{k}} w_{1}^{x_{1}} \cdots w_{m}^{x_{m}} \mid x_{j}=y_{l} \text { if } D_{i_{l}} \in \operatorname{alph}\left(w_{j}\right)>0\right\},
$$

where $C_{i_{1}}, \ldots, C_{i_{k}}$ is a permutation of $\Delta_{(k, c)}, w_{j} \in \Delta_{(k, d)}^{+}$, and each letter of $\Delta_{(k, d)}$ occurs exactly once in $w_{1} w_{2} \cdots w_{m}$. In this case, $I=L_{k} \cap C_{i_{1}}^{+} C_{i_{2}}^{+} \cdots C_{i_{k}}^{+} w_{1}^{+} \cdots w_{m}^{+}$. Furthermore, consider the homomorphism that maps $C_{i_{l}}$ to C_{l}, and $D_{i_{l}}$ to D_{l}. Then,

$$
I=h^{-1}\left(L_{k}^{\mathrm{BD}_{i} \mathrm{LB}_{d}} \cap C_{1}^{+} C_{2}^{+} \cdots C_{k}^{+} h\left(w_{1}\right)^{+} \cdots h\left(w_{m}\right)^{+}\right) .
$$

The case is similar for $L_{k}^{\mathrm{BD}_{i} \mathrm{LB}_{d}}$.
Then, by Proposition 13, Proposition 14, and [7], the following is true:
Proposition 15. Let \mathcal{L} be a full trio. Then, the following are equivalent:

- \mathcal{L} contains all bounded Ginsburg semilinear languages,
- \mathcal{L} contains all distinct-letter-bounded Ginsburg semilinear languages,
- \mathcal{L} contains all bounded Parikh semilinear languages,
- $\mathcal{L}(\mathrm{NCM})^{\mathrm{bd}}\left(=\mathcal{L}(\mathrm{DCM})^{\mathrm{bd}}=\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right)^{\mathrm{bd}}\right)$ is contained in \mathcal{L},
- $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right)\right)\left(=\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{BD}_{d}\right)\right)=\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right)\right)$ is contained in \mathcal{L},
- \mathcal{L} contains $L_{k}^{\mathrm{BD}_{i} \mathrm{LB}_{d}}$, for each $k \geq 1$,
- \mathcal{L} contains $L_{k}^{\mathrm{LB}_{i} \mathrm{BD}_{d}}$, for each $k \geq 1$.

Furthermore, if \mathcal{L} is also semilinear, then these conditions are equivalent to $\mathcal{L}^{\mathrm{bd}}=\mathcal{L}(\mathrm{NCM})^{\mathrm{bd}}=$ $\mathcal{L}(\mathrm{DCM})^{b d}$.

By Proposition 4 and Proposition 15, the following is immediate:
Corollary 5. $\mathrm{NCM}\left(\mathrm{LB}_{i d}\right)$ and $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{LB}_{i} \mathrm{LB}_{d}\right)\right)$ do not contain all bounded Ginsburg semilinear languages, or all bounded Parikh semilinear languages.

There is another simple equivalent form of the family $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i d}\right)\right)$. Let $\mathrm{SBD}_{i d}$ be the subset of $\mathrm{BD}_{i d}$ that is the family

$$
\left\{I\left|k \geq 1, I=w_{1}^{*} \cdots w_{m}^{*}, w_{i} \in \Delta_{k}^{+},\left|w_{i}\right| \leq 2,1 \leq i \leq m\right\} .\right.
$$

Proposition 16. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{SBD}_{i d}\right)\right)$ contains all bounded Ginsburg semilinear languages. Hence, $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{SBD}_{i d}\right)\right)=\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i d}\right)\right)$.

Proof. We need only show that every distinct-letter-bounded Ginsburg language induced by a linear set Q is in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{SBD}_{\text {id }}\right)\right)$ as this family is clearly closed under union. We illustrate with an example, which can easily be generalized.

Let $Q=\{(2,0,3,1)+(4,2,3,6) i+(3,5,1,0) j+(1,0,0,0) k+(0,7,0,2) m \mid i, j, k, m \geq 0\}$. The distinct-letter-bounded language $L=\left\{a^{2+4 i+3 j+k} b^{2 i+5 j+7 m} c^{3+3 i+j} d^{1+6 i+2 m} \mid i, j, k, m \geq 0\right\}$ is induced by this linear set.

Let $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}, b_{2}, b_{3}, c_{0}, c_{1}, c_{2}, d_{0}, d_{1}, d_{2}$ be new symbols, and let

$$
L^{\prime}=\left\{a_{0}^{2} a_{1}^{4 i} a_{2}^{3 j} a_{3}^{k} b_{0}^{0} b_{1}^{2 i} b_{2}^{5 j} b_{3}^{7 m} c_{0}^{3} c_{1}^{3 i} c_{2}^{j} d_{0}^{1} d_{1}^{6 i} d_{2}^{2 m} \mid i, j, k, m \geq 0\right\} .
$$

L^{\prime} can be accepted by an NCM M with counters $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}$ which operates as follows when given input w :

- reads the first input segment and verifies that it is a_{0}^{2}.
- reads $a_{1}^{4 i}$ and stores i in $\left(C_{1}, C_{2}\right)$.
- reads $a_{2}^{3 j}$ and stores j in $\left(C_{3}, C_{4}\right)$.
- reads the next input segment a_{3}^{k}.
- reads the next input segment b_{0}^{0}.
- reads the next input segment and verifies that it is $b_{1}^{2 i}$ by decrementing C_{1} while incrementing C_{5}.
- reads the next input segment and verifies that it is $b_{2}^{5 j}$ by decrementing C_{3}.
- reads $b_{3}^{7 m}$ and stores m in C_{6}.
- reads the next input segment and verifies that it is c_{0}^{3}.
- reads the next input segment and verifies that it is $c_{1}^{3 i}$ by decrementing C_{2}.
- reads the next input segment and verifies that it is c_{2}^{3}. by decrementing C_{4}.
- reads the next input segment and verifies that it is d_{0}^{1}.
- reads the next input segment and verifies that it is $d_{1}^{6 i}$ by decrementing C_{5}.
- reads the next input segment and verifies that it is $d_{2}^{2 m}$ by decrementing C_{6}.
Then M satisfies $\left(C_{1} C_{2}\right)^{*}\left(C_{3} C_{4}\right)^{*}\left(D_{1} C_{5}\right)^{*} D_{3}^{*} C_{6}^{*} D_{2}^{*} D_{4}^{*} D_{5}^{*} D_{6}^{*}$. Hence, M is in $\operatorname{NCM}\left(\mathrm{SBD}_{i d}\right)$. Now define a homomorphism on $L(M)$ which maps $a_{0}, a_{1}, a_{2}, a_{3}$ to a and b_{0}, b_{1}, b_{2} to b, c_{0}, c_{1}, c_{2} to c, and d_{0}, d_{1}, d_{2} to d. Then $L=h(L(M))$ is also in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{SBD}_{i d}\right)\right)$.

Thus, $\mathrm{SBD}_{i d}$ is enough to generate all bounded Ginsburg semilinear languages, whereas $\mathrm{LB}_{i d}$ is not.

Next, we will explore the language families $\operatorname{NCM}\left(\mathrm{LB}_{d}\right)$ and $\mathrm{NCM}\left(\mathrm{LB}_{i}\right)$.
Proposition 17. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{d}\right)\right)$ is the smallest full trio containing, for each $k \geq 1$, (here, $w_{0} \in$ $\Delta_{(k, c)}^{*}$, and $\left.w_{k} \in D_{k}^{*}\right)$,

$$
\begin{aligned}
L_{k}^{\mathrm{LB} B_{d}}=\left\{w_{0} w_{1} \cdots w_{k} \mid\right. & w_{i} \in\left\{C_{i+1}, C_{i+2}, \ldots, C_{k}, D_{i}\right\}^{*}, 0 \leq i \leq k, \\
& \left.\left|w_{0} w_{1} \cdots w_{j-1}\right| C_{j}=\left|w_{j}\right|_{D_{j}}>0,1 \leq j \leq k\right\} \subseteq \Delta_{k}^{*} .
\end{aligned}
$$

Proof. First, L_{k}^{LB} can be accepted by $M \in \mathrm{NCM}\left(\mathrm{LB}_{d}\right)$ by guessing a partition into $w_{0} w_{1} \cdots w_{k}$, and while reading w_{i}, verify it is in $\left\{C_{i+1}, C_{i+2}, \ldots, C_{k}, D_{i}\right\}^{*}$, incrementing counter j for every C_{j} read, and decrementing counter i for every D_{i} read, finishing with all counters empty.

From Lemma 1 and Proposition 2 , it follows that $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{d}\right)\right)$ is the smallest full trio containing all $I \subseteq \Delta_{k}^{*}, k \geq 1$ such that

$$
\begin{aligned}
& I=\left\{w \mid \quad w \in Y ш Z, Y=\Delta_{(k, c)}^{*}, Z=D_{i_{1}}^{*} \cdots D_{i_{k}}^{*}, D_{i_{1}}, \ldots, D_{i_{k}}\right. \text { is a permutation } \\
& \quad \text { of } \Delta_{(k, d)},|w|_{C_{i}}=|w|_{D_{i}}>0, \text { all } C_{i} \text { 's appear before any } D_{i} \text { 's, } \\
& \quad \text { for } 1 \leq i \leq k\} .
\end{aligned}
$$

Notice, every such I can be obtained from

$$
\begin{gathered}
I^{\prime}=\{w \mid \\
w \in Y ш Z, Y=\Delta_{(k, c)}^{*}, Z=D_{1}^{*} \cdots D_{k}^{*},|w|_{C_{i}}=|w|_{D_{i}}>0, \text { all } \\
\left.C_{i} \text { 's appear before any } D_{i} \text { 's, for } 1 \leq i \leq k\right\} .
\end{gathered}
$$

via homomorphisms that permute elements of $\Delta_{(k, d)}$ such that $h\left(D_{i}\right)=D_{j}$ implies $h\left(C_{i}\right)=C_{j}$.
Notice that there is only one such I^{\prime} for each k, and it is equal to $L_{k}^{\mathrm{LB}_{d}}$.
The next proposition follows with a similar proof.
Proposition 18. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{i}\right)\right)$ is the smallest full trio containing, for each $k \geq 1$, (here, $w_{0} \in C_{1}^{*}$, and $w_{k} \in \Delta_{(k, d)}^{*}$,

$$
\begin{aligned}
& L_{k}^{\mathrm{LB}_{i}}=\left\{w_{0} \cdots w_{k} \mid w_{i} \in\left\{D_{1}, \ldots, D_{i}, C_{i+1}\right\}^{*}, 0 \leq i \leq k,\right. \\
& \left.\left|w_{j-1}\right|_{C_{j}}=\left|w_{j} w_{j+1} \cdots w_{k}\right|_{D_{j}}>0,1 \leq j \leq k\right\} \subseteq \Delta_{k}^{*} .
\end{aligned}
$$

5 Applications To Existing Families

We will apply the results of this paper to quickly characterize the bounded languages inside known language families. It has been recently shown that finite-index ETOL languages contain all bounded Ginsburg semilinear languages [7]. This implies $\mathcal{L}\left(\mathrm{NCM}\left(\mathrm{BD}_{i d}\right)\right) \subseteq \mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$ (the family of finiteindex ETOL languages, which is a full trio [12]; we refer to this paper for the formal definitions of ETOL systems and languages), and the bounded languages within DCM, NCM, and ETOL fin coincide by Proposition 15. Here, we strengthen this result. First, it is shown that each $L_{k}^{\mathrm{LB}}{ }_{d}$ and $L_{k}^{\mathrm{LB}_{i}}$ is in $\mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$.
Lemma 4. For each $k \geq 1, L_{k}^{\mathrm{LB}_{d}}, L_{k}^{\mathrm{LB}} \in \mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$.
Proof. Let $k \geq 1$. We can create an ETOL system of index $k+1$ to accept $L_{k}^{\mathrm{BD}_{d}}$ as follows. Let $G=\left(V, \mathcal{P}, S, \Delta_{k}\right) . G$ has production tables and productions defined as follows (in the productions, C_{j} and D_{j} are terminals, and it is assumed that $C_{j} \rightarrow C_{j}$ and $D_{j} \rightarrow D_{j}$ are in every table):

- P_{S} contains $S \rightarrow S_{0} S_{1} \cdots S_{k}$.
- P_{j}^{i} for all $0 \leq i<j \leq k$, contains
$-S_{l} \rightarrow S_{l}$, for all $l \in\{1, \ldots, k\}-\{i, j\}$
$-S_{j} \rightarrow D_{j} S_{j}$,
$-S_{i} \rightarrow C_{j} S_{i}$.
- P_{F} contains $S_{l} \rightarrow \lambda$, for all $l, 0 \leq l \leq k$.

We will prove that $L(G)=L_{k}^{\mathrm{LB}_{d}}$.
" \subseteq " Let $w \in L(G)$. Thus, there exists a sequence of production tables $P_{S}, P_{j_{1}}^{i_{1}}, \ldots, P_{j_{n}}^{i_{n}}, P_{F}$, such that $S \Rightarrow_{P_{S}} x_{0} \Rightarrow_{P_{j_{1}}^{i_{1}}} x_{1} \cdots \Rightarrow_{P_{j_{n}}^{i_{n}}} x_{n} \Rightarrow_{P_{F}} w$, and $x_{0}=S_{0} \cdots S_{k}$. It is clear that x_{0}, \ldots, x_{n} all have S_{0}, \ldots, S_{k} as the sequence of nonterminals. Let w_{j} be the sequence of terminals derived from S_{j} in w. Then only w_{j} can contain D_{j} by the productions, and w_{j} can only contain C_{j+1}, \ldots, C_{k} and not C_{1}, \ldots, C_{j} by the productions. Furthermore, for every D_{j} derived using table P_{j}^{i} say (implying $i<j$), only one other nonterminal, S_{i}, can derive a new symbol from $\Delta_{(k, c)}$, and it must be C_{j} which must get added to $w_{i}, i<j$. Hence, $w=w_{0} w_{1} \cdots w_{k} \in{ }_{k}^{\mathrm{LB}_{d}}$.
"?" Let $w \in L_{k}^{\mathrm{LB}_{d}}$. Then $w=w_{0} \cdots w_{k}, w_{i} \in\left\{C_{i+1}, \ldots, C_{k}, D_{i}\right\}^{*}, 0 \leq i \leq k,\left|w_{0} \cdots w_{j-1}\right|_{C_{j}}=$ $\left|w_{j}\right|_{D_{j}}>0,1 \leq j \leq k$. We will show by induction that there is a sequence of word sequences (setting $n=|w| / 2)$ for $0 \leq i \leq n, \alpha_{i}=\left(w_{i, 0}, \ldots, w_{i, k}\right)$, where $w_{i, j}$ is a prefix of $w_{j}, w_{0, j}=\lambda$, for $1 \leq j \leq k$, α contains the same number of C_{j} 's as D_{j} 's, for $1 \leq j \leq k$, and α_{i+1} differs from α_{i} in exactly two positions, $0 \leq l<j \leq k, w_{i+1, j}=w_{i, j} D_{j}, w_{i+1, l}=w_{i, l} C_{j}$.

The base case, $i=0$, is true since $w_{0, j}=\lambda$ is a prefix of w_{j} trivially for each $j, 0 \leq j \leq k$. Assume there exists $\alpha_{i}, i<n$, where $w_{i, j}$ is a prefix of w_{j} for all $0 \leq j \leq k$, and α_{i} contains the same number of C_{j} 's as D_{j} 's, for $1 \leq j \leq k$. Since $i<n$, there must exist some j^{\prime} maximal, where $w_{i, j^{\prime}}$ is not equal to $w_{j^{\prime}}$. Then the "next letter" of $w_{j^{\prime}}\left(\right.$ ie. $\left.\left(w_{i, j^{\prime}}\right)^{-1} w_{j^{\prime}}\right)$ must be $D_{j^{\prime}}$, otherwise it is C_{x}, for some $x>j^{\prime}$, but then one copy of D_{x} would yet to have been generated by the inductive hypothesis as D_{x} would need to occur in w_{x}, but $w_{i, x}=w_{x}$, by the maximality of j^{\prime}, a contradiction. Let l^{\prime} be the largest number less than j^{\prime} such that the next letter of $w_{l^{\prime}},\left(w_{i, l^{\prime}}\right)^{-1} w_{l^{\prime}}$ is in $\Delta_{(k, c)}$, say $C_{y}, y>l^{\prime}$. We will argue this must exist, otherwise all of w_{0} would have been already consumed, as w_{0} only contains symbols from $\Delta_{(k, c)}$, therefore all D_{1} 's would have been consumed by the inductive hypothesis. But then w_{1} must have been consumed, since the next letter does not start with a letter from $\Delta_{(k, c)}$ and it does not contain D_{1}. Then, the first letter remaining in any of $w_{0}, \ldots, w_{l^{\prime}-1}$ must be from $\Delta_{(k, d)}$, and therefore does not match a symbol from $\Delta_{(k, c)}$, a contradiction. Then, the remaining part of $w_{l^{\prime}}$ must start with C_{z} for some $z>l^{\prime}$, and then w_{z} must start with D_{z} since it does not start with any symbol of $\Delta_{(k, c)}$. Hence, the induction follows. Hence, $S \Rightarrow{ }_{P_{S}} w_{0,0} S_{0} \cdots w_{0, k} S_{k} \Rightarrow_{P_{j_{1}}^{l_{1}}} \cdots \Rightarrow_{P_{j_{n}}^{l_{n}}} w_{n, 0} S_{0} \cdots w_{n, k} S_{k} \Rightarrow_{P_{F}} w_{n, 0} w_{n, 1} \cdots w_{n, k}=w_{0} w_{1} \cdots w_{k}=$ w, where α_{i+1} differs from α in positions l_{i} and $j_{i}, l_{i}<j_{k}$, for all $i, 0 \leq i<n$.

For $L_{k}^{\mathrm{LB}_{i}}$, this follows since it can be obtained by reversal and homomorphism from $L_{k}^{\mathrm{LB}_{d}}$, and finite-index ETOL is closed under these operations [12].

It was also shown that that there are $\mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$ languages that are not in $\mathcal{L}(\mathrm{NCM})$ 7]. Then, this sub-family of $\mathcal{L}(\mathrm{NCM})$ is strictly contained in $\mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$.
Proposition 19. $\mathcal{L}\left(N C M\left(\mathrm{LB}_{\cup}\right)\right) \subsetneq \mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$, and $\mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)^{\text {bd }}=\mathcal{L}(\mathrm{DCM})^{\mathrm{bd}}$.
Proof. Inclusion follows directly from Proposition 17 and Lemma 4, and since $\mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$ is a semilinear full trio [12. Strictness follows from [7]. The fact that bounded languages are the same follows from Proposition 15.

We leave as an open problem whether there are languages accepted by NCM that cannot be generated by a finite-index ETOL system. We conjecture that over $\Sigma_{k}=\left\{a_{1}, \ldots, a_{k}\right\},\left\{\left.w| | w\right|_{a_{1}}=\right.$ $\left.\cdots=|w|_{a_{k}}\right\}$ is not in $\mathcal{L}\left(\mathrm{ETOL}_{\text {fin }}\right)$, for some k. One might think that the (non-finite-index ETOL) one-sided Dyck language on one letter is a candidate witness, but this language is not in \mathcal{L} (NCM) [4].

Next, the class of TCA machines are Turing machines with a one-way read-only input tape, and a finite-crossing ${ }^{11} \mathrm{read} /$ write worktape. This language family is a semilinear full trio [5]. Therefore, $\mathcal{L}(\mathrm{TCA})^{\text {bd }} \subseteq \mathcal{L}(\mathrm{NCM})^{\text {bd }}$. To show that there is equality, we will simulate $\mathrm{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right)$. Let M be a well-formed k-counter machine satisfying instruction language $I \subseteq w_{1}^{*} w_{2}^{*} \cdots w_{l}^{*} D_{i_{1}}^{*} \cdots D_{i_{n}}^{*}$, $w_{i} \in$ $\Delta_{(k, c)}^{*}, 1 \leq i \leq l, D_{j} \in \Delta_{(k, d)}, 1 \leq j \leq n$. Then we build a TCA machine M^{\prime} with worktape alphabet Δ_{k} that, on input w, simulates a derivation of M, whereby, if M increases from counters in the sequence $C_{j_{1}}, \ldots, C_{j_{m}}, M^{\prime}$ instead writes this sequence on the worktape. Then, M^{\prime} simulates the decreasing transitions of M as follows: for every section of decreases in $D_{i_{j}}^{*}$, for $1 \leq j \leq n, M^{\prime}$ sweeps the worktape from right-to-left, and corresponding to every decrease, replaces the next $C_{i_{j}}$ symbol with the symbol $D_{i_{j}}$ (thereby marking the symbol). This requires n sweeps of the worktape, and M^{\prime} accepts if all symbols end up marked and the simulated computation is in a final state.

Proposition 20. $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{BD}_{i} \mathrm{LB}_{d}\right)\right) \subseteq \mathcal{L}(\mathrm{TCA})$, and $\mathcal{L}(\mathrm{TCA})^{\mathrm{bd}}=\mathcal{L}(\mathrm{DCM})^{\mathrm{bd}}$.
Next, the family of multi-push-down automata and languages has been introduced [1]. We let MP be these machines. They have some number k of pushdowns, and allow to push to every pushdown, but only pop from the first non-empty pushdown. This can clearly simulate every machine in $\operatorname{NCM}\left(\mathrm{LB}_{d}\right)$ (distinct-letter-bounded, which is enough to accept every language in $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{d}\right)\right)$ by Lemma 1). Furthermore, it follows from results within [1 that $\mathcal{L}(M P)$ is closed under reversal (since it is closed under homomorphic replication with reversal, and homomorphism). Therefore, $\mathcal{L}(M P)$ also contains $\mathcal{L}\left(\operatorname{NCM}\left(\mathrm{LB}_{\cup}\right)\right)$. Also, this family only contains semilinear languages [1]. Therefore, the bounded languages within $\mathcal{L}(\mathrm{MP})$ coincide with those in $\mathcal{L}(\mathrm{NCM})$ and $\mathcal{L}(\mathrm{DCM})$.

Proposition 21. $\mathcal{L}\left(N C M\left(\mathrm{LB}_{\cup}\right)\right) \subseteq \mathcal{L}(\mathrm{MP}), \mathcal{L}(\mathrm{MP})^{\mathrm{bd}}=\mathcal{L}(\mathrm{DCM})^{\text {bd }}$.

References

[1] L. Breveglieri, A. Cherubini, C. Citrini, and S.C. Reghizzi. Multi-push-down languages and grammars. International Journal of Foundations of Computer Science, 7(3):253-291, 1996.
[2] S Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages. North-Holland Publishing Company, Amsterdam, 1975.
[3] Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, Inc., New York, NY, USA, 1966.
[4] S. Greibach. Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science, 7:311-324, 1978.
[5] Tero Harju, Oscar Ibarra, Juhani Karhumäki, and Arto Salomaa. Some decision problems concerning semilinearity and commutation. Journal of Computer and System Sciences, 65(2):278294, 2002.

[^1][6] J E Hopcroft and J D Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA, 1979.
[7] O.H. Ibarra and I. McQuillan. On bounded semilinear languages, counter machines, and finiteindex ET0L, 2016. accepted to the 21st International Conference on Implementation and Application of Automata (CIAA).
[8] O.H. Ibarra and B. Ravikumar. On bounded languages and reversal-bounded automata. Information and Computation, 246(C):30-42, 2016.
[9] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J. ACM, 25(1):116-133, 1978.
[10] Oscar H. Ibarra and Shinnosuke Seki. Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. International Journal of Foundations of Computer Science, 23(6):1291-1306, 2012.
[11] J. Kortelainen and T. Salmi. There does not exist a minimal full trio with respect to bounded context-free languages. In G. Mauri and A. Leporati, editors, Lecture Notes in Computer Science, volume 6795 of 15th International Conference on Developments in Language Theory, DLT 2011, Milan, Italy, pages 312-323, 2011.
[12] G. Rozenberg and D. Vermeir. On ET0L systems of finite index. Information and Control, 38:103-133, 1978.

[^0]: *The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708. The research of I. McQuillan was supported, in part, by Natural Sciences and Engineering Research Council of Canada Grant 327486-2010.

[^1]: ${ }^{1}$ There is a fixed c such that the number of times the boundary between any two adjacent input cells is crossed is at most c.

