
Empowering the Creative User: Personalized HTTP-based
Adaptive Streaming of Multi-path Nonlinear Video

Vengatanathan Krishnamoorthi† Patrik Bergström† Niklas Carlsson†

Derek Eager§ Anirban Mahanti‡ Nahid Shahmehri†
† Linköping University, Sweden, firstname.lastname@liu.se
§ University of Saskatchewan, Canada, eager@cs.usask.ca

‡ NICTA, Australia, anirban.mahanti@nicta.com.au

ABSTRACT

This paper presents the design, implementation, and valida-
tion of a novel system that supports streaming and playout
of personalized, multi-path, nonlinear video. In contrast to
regular video, in which the file content is played sequen-
tially, our design allows multiple nonlinear video sequences
of the underlying (linear) video to be stitched together and
played in any personalized order, and clients can be pro-
vided multiple path choices. The design combines the ideas
of HTTP-based adaptive streaming (HAS) and multi-path
nonlinear video. Personalization of the content is achieved
with the use of a customized metafile, which is downloaded
separately from the underlying media and the manifest file
that defines the HAS structure. An extension to the user in-
terface allows path choices to be presented to and made by
the user. Novel buffer management and prefetching policies
are used to ensure seamless uninterrupted playback regard-
less of client path choices, even under scenarios in which
clients defer their choices until the last possible moment.
Our solution allows creative home users to easily create their
own multi-path nonlinear video, opening the door to an end-
less possibility of new opportunities and media forms.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Applications; H.5.1 [Multimedia

Information Systems]: Video

Keywords

HTTP-based adaptive streaming, Multi-path video, Nonlin-
ear video, Seamless playback

1. INTRODUCTION
The Internet and the World-wide Web is continually trans-

forming the way people access information and content. In-
creasingly, people use the Internet for their daily news and
entertainment. This trend is particularly apparent when

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FhMN’13, August 16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2183-9/13/08 ...$15.00.

considering the current volume of video traffic [4] and the
quickly growing content catalogues offered to online users.
For example, more than 72 hours of new content is uploaded
to YouTube each minute.1

1.1 Personalized multi-path nonlinear video
The success of user generated content (UGC) sites such

as YouTube shows that there is great value in leveraging the
creative power of regular home users. One contribution of
this paper is that we enable a solution that further empowers
creative developers and home users, such that they easily can
define personalized multi-path nonlinear videos.

A relatively simple example generalization of a traditional
(linear) video to a multi-path video is a movie in which the
viewer is able to choose among a variety of possible endings
and/or plot sequences. There are already DVD releases of
movies with multiple endings (e.g., the DVD edition of the
Hollywood movie “Clue”), and it is easy to imagine general-
izations to tree or graph structures.

In this work, we consider a multi-path, nonlinear form
of video in which: (1) non-contiguous fragments of video
can be stitched together to form what we term a nonlinear

video segment (Figure 1(a)), and (2) the video can include
branch points at which there are multiple choices of which
segment to play back next (Figure 1(b)). The path choices
can be selected online (while viewing the media) either by
the user, or based on information about the user, including
the user’s previous path choices. In general, our solution
allows the creator to define any arbitrary set of paths and
path choices through some original video (or a file that is the
concatenation of multiple linear video clips, for example).

1.2 HTTP-based adaptive streaming
There is an increasing demand for personalized delivery to

increasingly heterogeneous users (e.g., using mobile devices).
To better utilize the available bandwidth and improve the
service of each client, many content providers (including
Netflix) have begun using HTTP-based Adaptive Streaming
(HAS) [1, 2, 13]. In contrast to basic HTTP-based stream-
ing, with HAS the video is encoded into different qualities
and the player, at each point in time, adaptively chooses
the most suitable encoding based on the current buffer and
network conditions. While HAS allows the service quality
to be adapted to the individual user’s device and network
conditions, it does not customize the content itself.

1YouTube statistics, www.youtube.com/yt/press/
statistics.html, March 2013.

nikca
Text Box
©(2013) ACM. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proc. ACM SIGCOMM Workshop on Future Human-Centric Multimedia Networking (FhMN), August 2013, Hong Kong, China, http://dx.doi.org/10.1145/2491172.2491183

In this paper we introduce the concept of HAS-based multi-
path nonlinear video, effectively enabling customization of
the content itself. The use of HAS also has the advantage
that the different video sequences are easily addressable by
the player and the quality of each path can be adapted to
match the available bandwidth.

1.3 Contributions
This paper presents the design, implementation, and pre-

liminary validation of HAS-based multi-path nonlinear video
streaming. Our design has three novel components.

• Light-weight personalizable metafile: To provide
developers with maximum possible flexibility, we cre-
ate a personalizable metafile (defining the multi-path
nonlinear structure) that is downloaded separately from
the regular media object and the accompanying HAS
manifest (that defines quality encodings).

• Customizable path options and longest-path match-

ing: Rules associated with each branch-point give the
alternatives available to the user when that branch
point is reached. The applicability of each rule can be
dependent on the path the user has followed up to that
point. To maximize personalization opportunities, we
allow a creative developer to define multiple individu-
alized branch-point rules for the same playback point
in the underlying media. To break ties when there
are multiple branch-point rules that apply, we employ
a longest-path matching policy that always picks the
rule that most closely specifies the conditions for when
the rule should be applied.

• Branch-point aware buffer management and rate-

adaptation: To ensure seamless playback with min-
imum playback interruptions, while allowing the user
to defer playback decisions as late as possible, careful
buffer management and prefetching is required. For
each branch point, the player prefetches fragments for
the different candidate paths into a prefetch buffer and
manages the content of the playback buffer as needed.
To achieve the best possible playback experience the
qualities of the prefetched fragments are adaptively se-
lected based on estimates of the download rate and
the likelihoods of the different path choices. While we
leave a deeper evaluation for future work, we provide
some promising validation results for one such candi-
date policy.

To the best of our knowledge, no prior work has combined
HAS and multi-path video. We argue that merging these
two ideas is natural and allows highly personalized delivery
for heterogeneous clients.

The flexibility of our generalized multi-path format and
the seamlessly linked media sequences is attractive when of-
fering personalized or customizable versions of many existing
services (such as news on-demand, virtual tours, etc.). How-
ever, perhaps more importantly, the simplicity of our solu-
tion opens the door for user-generated multi-path nonlinear
video; creating an endless possibility of new opportunities
and media forms.

While our solution and system design (Section II) applies
to any HAS-based media, our proof-of-concept implementa-
tion (Section III) is implemented as an extension to Adobe’s

(a) Nonlinear segments

(b) Multi-path video

Figure 1: Example media structure.

Open Source Media Framework (OSMF). Our preliminary
validation results (Section IV) are encouraging and show
that the example implementation can adapt prefetch quali-
ties based on current conditions such as to avoid stall events
at branch points.

2. SYSTEM DESIGN

2.1 Design goals
While companies are spending much money on personal-

ization of information and services, little attention has been
given to personalizing the video sequences presented to in-
dividual users. Typically, all viewers are expected to watch
the entire video sequentially. We present a novel system de-
sign that allows seamless personalized video delivery. Our
solution is motivated by five primary design goals:

• Flexibility: The solution should allow creation of a
wide variety of multi-path, nonlinear media structures.

• Personalization: The solution should make it easy
to personalize the viewer experience based on both in-
formation about the user and previous path choices
made by the user.

• Privacy: Personalization of the viewer experience should
be possible based on both information that the user is
willing to share with the server (i.e., public informa-
tion) and information that the player keeps private.

• Scalability and light-weight overhead: The solu-
tion should avoid creating, storing, and delivering un-
necessary redundant file data. For example, by avoid-
ing any changes to underlying linear media objects and
their manifest files, greater scale can be achieved as
different multi-path, nonlinear videos can be created
from the same stored video objects.

• Adaptive and seamless playback: To ensure seam-
less playback and effective resource usage for heteroge-
neous clients, the solution should include prefetching,
as well as quality-aware rate adaptation.

In addition to the above primary goals, extensions are
also possible which can enhance our solution. For example,
to improve the user experience (e.g., as measured by the
average playback quality) or the degree of personalization,
the server could optimize and personalize metafiles leverag-
ing information obtained based on previous user interactions
with the service. This paper focuses on the first four goals
and presents a proof-of-concept validation of the fifth.

2.2 Multi-path, nonlinear video
Before going into the details of our solution, we first define

our terminology and general media structure. In contrast,
to previous works (e.g., [6,15]), which typically use the term
nonlinear media to refer to media in which the user can
take different paths, we build our terminology around the
playback patterns based on the original linear media object.

• Fragments and segments: With HAS, the video is
downloaded in units a few seconds long that we term
fragments. We term a sequence of fragments a seg-

ment. Note that some authors use the term segment
for what we call a fragment.

• Nonlinear segment: A sequence of possibly non-
contiguous fragments of video that are stitched to-
gether. For example, in Figure 1(a) a nonlinear seg-
ment (Sk) is defined which has cut out the fragments
between 10 and 20, as well as between 25 and 27.

• Multi-path video: Any video in which users may
take different pre-defined paths through the media. In
most cases, such video can be described using a direc-
tional graph structure in which each edge corresponds
to a (nonlinear) segment, and each vertex with two
or more outgoing edges corresponds to a path choice.
Figures 1(b) and 3 provide two such examples.

We allow fragments to appear in multiple nonlinear seg-
ments, and segments can be present along many different
paths. This multi-path nonlinear video structure allows any
arbitrary graph structure and path choices to be defined.

2.3 System overview
Our solution is client-driven. No server-side modifications

are required; the server simply serves each fragment request.
As summarized in Section 1.3, our design include three

novel components. Most of our design goals are achieved
by incorporating a novel light-weight metafile that defines
the multi-path structure and provides the necessary infor-
mation about upcoming path selections that can be used by
our player and its buffer management and rate adaption poli-
cies. The addition of a separate light-weight personalizable
metafile helps separate the multi-path nonlinear informa-
tion, potentially unique to each client, and the HAS manifest
that describes the underlying media object and the playback
qualities in which each fragment can be downloaded.

Before beginning playback, clients download their indi-
vidual metafile and the common manifest files (potentially
from different servers). During playback, our modified HAS
player identifies the next branch point rule that the client
will reach, manages buffers, and carefully prefetches video
associated with the alternative path choices, based on the
bandwidth conditions, available video encodings, and the
relative likelihood of each path choice. Overall, good prefetch-
ing and rate adaption policies must weigh high video play-
back quality against the risk of playback interruptions.

2.4 Metafile structure
Our multi-path nonlinear metafile provides developers with

maximum possible flexibility, and is designed to address the
first four design goals of our system. The metafile allows the
multi-path structure to be defined using two components:

• Nonlinear segments: At the convenience of the cre-
ator, a nonlinear segment can be specified as a list
of specific fragments (or fragment sequences), stitched
together from the original video, and a short-cut label
that allow easy referencing.

• Branch-point rules: The overall path structure is
defined using branch-point rules, with each rule spec-
ifying: (i) the characteristics for the client for which
the rule applies, (ii) the path sequences that the client
must have taken for this branch point rule to apply,
(iii) the available path choices at the branch-point, (iv)
their respective priorities, and (v) the corresponding
explanations to be presented to the user when select-
ing between the path choices.

Branch rules can be used in two ways: user-driven or
knowledge-driven choices. The most obvious way is to present
clients with path choices, define priorities with which the
initial fragments for each of those path choices should be
prefetched, and allow the client to pick among these path
choices. The second way is for the player to make the de-
cision for the user based on private information about the
client or other internal knowledge about the client’s previ-
ous path choices, for example, at the time the branch point
is reached. Note that this information may not be known at
the time the metafile is downloaded and/or created.

Our approach reduces the overhead at the media server
and ensure that the server does not have to maintain individ-
ual copies of the content and/or maintain state information
on a per-client basis during the playback itself. The separa-
tion between metafile and manifest file allows the client to
download the metafile from any Web server, and the media
server must only serve requests for individual fragments.

A common metafile can be created and shared with clients
requesting access to the service, or personalized metafiles
can be created at the time of the client request. In both cases
the clients independently request and download the parts
of the original media content that matches its personalized
and/or selected media paths.

2.5 Longest-path matching
Developers should be able to define branch-point rules

that take into account the user’s previous path choices. To
allow this functionality, we allow the developers to define
multiple branch-point rules, including multiple rules that
have the same lead-in segment (going into a branch point).

To break ties when there are multiple branch-point rules
that match a particular user’s current playback point, we
employ a longest-path matching policy that picks the rule
that satisfies the properties of the client (part (i) of the rule)
and for which the branch-point path (part (ii) of the rule)
most closely matches the path taken thus far by the client.

2.6 Prefetching and rate adaptation
To allow seamless playback we carefully prefetch content

for each candidate path for upcoming branch points. For
this purpose, we maintain a prefetch buffer, which works in
tandem with the playback buffer to provide uninterrupted
playback experience. While ongoing work includes the eval-
uation of alternative buffer management designs, Figure 2
illustrates our current high-level design. To allow easy ac-
cess to prefetched fragments associated with different paths,

Figure 2: High-level design and buffer management.

the prefetch buffer is implemented as a dictionary with the
fragment index as the key.

A request module manages the fragment downloads. It
is designed to differentiate between regular fragments and
landing fragments that are the first fragments of segments
following a branch point. It is also responsible for quality-
encoding selection of each requested segment.

Based on the class that a fragment belongs to, it is di-
rected either directly to the playback buffer or is stored in
the prefetch buffer. Fragments belonging to the default path
are handled using the default player routines, and are imme-
diately forwarded to the playback buffer, from which they
are played in the order they are inserted into the buffer.
Prefetched fragments, belonging to alternative candidate seg-
ments are typically prefetched and stored in the dictionary,
from which they are moved into the playback buffer only at
a time when the user selects such a non-default path. At the
time of such selections, our modified player replaces the pre-
loaded fragments for the default path with the prefetched
fragments corresponding to the selected path.

Figure 4 illustrates the prefetching and buffer manage-
ment process for a client that is playing a multi-path video
shown in Figure 3 and is selecting the path along the red
(dashed) arrows; in no case the default path. The request
and download completion times are shown for each fragment.
In this example scenario, we have used a policy in which the
player requests the landing fragments of each path choice
three fragments ahead of reaching the next branch point.

Our request module adapts the requested video quality of
both the regular requests and the prefetch requests. As with
other adaptive players, we keep track of the average down-
load rates observed over previous fragments, estimating the
available bandwidth, and selecting fragments qualities based
on this information. While our framework allows a variety
of policies, we note that a good policy should ensure that all
fragments are downloaded by the time of their (potential)
playback deadlines, and yet ensuring that the playback qual-
ity is of highest possible quality. For further improvements,
policies can carefully weigh the priorities of different path
choices; e.g., as defined by the likelihood a path is selected.

3. IMPLEMENTATION DESCRIPTION
We built an implementation of our solution using the

Open Source Media Framework (OSMF) version 2.0, and
its accompanying Strobe Media Playback (SMP) player.

3.1 Implementation overview
At a high level, we have added functionalities required to

track, monitor, and play multi-path nonlinear video. This
includes (i) changes to ensure that we can download and read
metafiles, (ii) the introduction of a request module that is

Figure 3: Example structure of a multi-path video.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80
 0

 5

 10

 15

 20

 25

 30

 35

 40

P
la

y
b
a
c
k
 t
im

e

F
ra

g
m

e
n
t
n
u
m

b
e
r

Elapsed time

Playback time

Download request

Download completion

Prefetch request

Prefetch completion

Figure 4: Timestamps when an example client re-

quest and download different segments.

responsible for prefetch requests, and (iii) the addition of
a buffer manager module that is responsible for seamless
playback when jumping between fragments in different parts
of the original media object.

A new downloadManager class is responsible for download-
ing the multi-path nonlinear metafile and the manifest file of
the original media, as well as controlling the request module.
The request module incorporates both the HttpStreamDown-
loader class, which is responsible for the sequential in-order
requests, as defined by the default path, and the prefetch
requests. The buffer manager module works in tandem with
the request module, and is responsible for controlling the
fragments moved in and out of the playback buffer.

The downloadManager is also responsible for tracking the
playback path, managing the set of branch points, and de-
termining the next branch point to be considered.

The downloadManager also integrates user-triggered event
actions. We use a routine in the user interface (the SMP
player) as a trigger for these routines. While the user in
theory should have the freedom to change the path selec-
tion up until the time of the branch point, we use a 50ms
threshold before the end of the playback of the last fragment
before the branch point to trigger these events.

Currently we have two versions of the SMP player. The
first, more general, implementation allows for up to ten dif-
ferent path choices at each branch point, and path choices
are entered using the keyboard. The last pressed key at the
time the branch-point event is reached determines the selec-
tion. The second implementation assumes a binary tree, and
use a button with a left-turn or right-turn arrow, which when
pressed switches the turn of the arrow. Both implementa-
tions help the user to visualize the selected path choice, and
allow changes until the branch-point is almost reached. Fu-
ture work includes more user-friendly designs.

3.2 Buffer management
The interaction between our request module and buffer

manager module are of critical importance in providing seam-
less interruption free playback. The request module feeds
the playback buffer with sequential in-order fragments and
the prefetch buffer with the landing fragments of the dif-
ferent alternative paths for the next branch point. We use
a prefetch policy in which we prefetch fragments when the
player is n fragments before the branch point and the Http-

StreamDownload class is downloading fragments along the
default path directly into the playback buffer.

The playback buffer behaves like a first-in-first-out (FIFO)
queue, in which the fragments downloaded are read as a
byte/datastream by the SMP player in the same order they
were inserted. No consideration for fragments or FLV tags
are present at this time which otherwise could be used to
separate different parts of the media. Unfortunately, this
FIFO property limits the possibility of inserting/replacing
nonlinear events, as every out-of-order fragment would be
queued behind already inserted in-order fragments. To al-
low seamless and non-interruptive playback without the user
having to watch any irrelevant fragments (corresponding to
non-wanted fragments along the default path, for example)
which have already filled the buffer, we must therefore mod-
ify the buffer content. This functionality is implemented in
our buffer management module.

At the time a non-default path is selected, the buffer man-
agement module use the HTTPNetStream class to invoke a
seek event. When triggered, the seek routine immediately
clears the playback buffer, and reinserts data from the point
at which the user wants to seek to. In our case, we seek
to the fragment just before the landing point. This would
immediately cause the player to request the desired land-
ing fragment. As we already have this landing fragment in
our prefetch buffer, we can intercept this request and mod-
ify the request to the following segment along that path.
The reason for the manipulation of requests, is to preserve
some of the player’s internal states and to make the player
consume a fragment that was not downloaded through its
normal download port. As soon as this request is placed
and when the player expects some bytes, we can push the
data held in the prefetch buffer into the playback buffer,
which immediately can be played out. In the meantime the
next fragment is downloaded and is typically downloaded by
the time the landing fragment is played. All requests follow-
ing this can be handled in the regular manner, without any
manipulation of the player state.

By prefetching data in advance and pushing it into the
playback buffer exactly when it is needed, we are able to
provide un-interrupted playback even in the case of nonlin-
ear playback events. To the user, this appears as a seamless
jump from one playback point to another. Of course, there
are some minor delays associated with empting the play-
back buffer, updating the player states, and inserting the
already prefecthed fragment(s) into the player. However,
during transition points between media segments these de-
lays are minimal and are not noticeable by the user.

3.3 Rate-adaptive prefetching
Rate adaptation is at the core of any HAS-based system.

Our request module utilizes the bandwidth estimations pro-
vided by the underlying OSMF player when selecting qual-
ities, but also takes into account that both the regular re-

quests, downloading fragments along the default path, and
the prefetch requests must share the same bandwidth.

In this paper we present preliminary validation results for
one basic example policy. With our adaptive policy, the re-
quest quality of the regular requests are adjusted based on
the bandwidth that the prefetch requests will require. At a
time when parallel downloads will be done, the qualities are
selected such that all the paths are given at least the mini-
mum quality, the quality of the default path is maximized,
and all assignments are done under the constraint that their
combined estimated bandwidth should not exceed the over-
all estimated available bandwidth. For validation purposes
we also include results for a policy that does not perform
any prefetching, and hence does not require any additional
buffer management. Future work includes in-depth investi-
gation of a range of policy alternatives.

4. PROOF-OF-CONCEPT VALIDATION

4.1 Experimental setup
All experiments were done in a testbed, in which we con-

nect a client machine and a server machine over a LAN.
Running dummynet at the client machine, we can manip-
ulate the perceived bandwidth conditions, end-to-end de-
lay, and packet losses. Our modified player is embedded
in a Web page and runs on the client PC. The server runs
Adobe Media Server version 5.0, and hosts a video of the
animation movie Big Buck Bunny, encoded at 1300Kb/s,
850Kb/s, 500Kb/s and 250Kb/s. We have also instrumented
the source codes to write internal player states and informa-
tion into a log file, which we post process for further analysis.

4.2 Player validation
To validate the functionality of our multi-path nonlinear

player, we performed a number of validation experiments.
Due to limited space we can only show a small subset.

Table 1 summarizes the stall-time statistics for validation
experiments in which we used a low (1Mb/s), intermediate
(2Mb/s) and high (3Mb/s) bottleneck bandwidth, and the
client used the test path in Figure 3, with each segment
consisting of five fragments. Figure 5 presents the video
quality statistics for these experiments. Average values and
standard deviations are presented over ten experiments.

We can see that our adaptive policy nicely adjusts the
video quality to current conditions, and is able to completely
eliminate any playback interruptions due to the data not
being delivered to the client in time. At this time, the only
waiting times the player will endure is the time that it takes
to clear the buffer and reload the prefetched content. We
see that this time is typically around 0.5s, out of which 0.2-
0.3s is to load the content and the rest is to update various
internal states in the player. We have found that this time
is not noticeable to the human eye, as long as we shift scene.

Our initial results are encouraging. However, many in-
teresting performance tradeoffs remains to be considered,
including tradeoffs between video quality and potential play-
back interruptions. Future work includes the development
and performance evaluation of more advanced buffer man-
agement and rate adaptation policies.

5. RELATEDWORK
In the past, much work has considered scalable server-side

protocols for on-demand media delivery [7, 10], including

Scenario Policy
Late data Branch time

(stall events) (seconds)

3Mb/s
No prefetching 100% 3.39 (0.94)
Adaptive prefetch 0% 0.49 (0.10)

2Mb/s
No prefetching 100% 4.96 (1.08)
Adaptive prefetch 0% 0.64 (0.19)

1Mb/s
No prefetching 100% 4.14 (1.10)
Adaptive prefetch 0% 0.68 (0.17)

Table 1: Stall events and branch times.

 20

 40

 60

 80

 100

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

2000Kb/s 3000Kb/s1000Kb/s

Adaptive prefetch
No prefetching

Figure 5: Playback quality.

some works that use scalable techniques to deliver multi-
path (traditionally referred to as nonlinear) media [3,6,15].
For example, Zhao et al. [15] present lower bounds on the
server bandwidth requirements for different protocols and
media objects when incorporating multicast-based delivery
techniques such as stream merging and periodic broadcast
protocols. In general, these solutions divide the media into
different segments (or pieces) that are multicast/broadcast
on dedicated channels to which clients can tune in. In con-
trast to these works, we do not require any multicast/broadcast
capability from the server.

Other related work considers different means of encoding
and delivering 3D content [5], proposes a syntactic language
to describe nonlinear media [14], and develops video author-
ing tools [12]. These works split the file into many smaller
objects that can be downloaded independently. Meixner and
Hoffmann [11] also present different download and caching
strategies to facilitate interruption free nonlinear playback.
In contrast to these works, we leverage the existing struc-
ture of HAS, which in addition to pre-defined chunking, also
allows for adaptive prefetch quality based on available band-
width conditions. This property is particularly important
when prefetching video content for upcoming branch points.

Finally, Johansen et al. [8] leverage annotated video and
search functionality to concatenate multiple video clips (back-
to-back) that may be of interest to the users. Combining
such server-side search-based functionality with our solution
could potentially further enhance the user experience.

6. CONCLUSION
This paper presents a novel system design that leverages

the fragment-based nature and differentiated quality levels
of HAS to define and achieve seamless streaming of multi-
path video. Personalization of the content can be achieved
with the use of a customized metafile. Our overall solution is
simple and provides the creative home user with the power
to create inventive multi-path, nonlinear videos and to ex-
plore new media forms. While preliminary validation results
are presented, future work includes more careful exploration
and performance evaluation of more advanced buffer man-

agement, prefetching, and rate adaptive policies. The im-
pact of caching policies may also provide interesting future
avenues of research [9].

7. ACKNOWLEDGEMENTS
The authors are thankful to our shepherd Eduardo Cerqueira

and the anonymous reviewers for their feedback, which helped
improve the clarity of the paper. This work was supported
by funding from Center for Industrial Information Technol-
ogy (CENIIT) and the Swedish National Graduate School
in Computer Science (CUGS) at Linköping University, the
Natural Sciences and Engineering Research Council (NSERC)
of Canada, and National ICT Australia (NICTA).

8. REFERENCES
[1] S. Akhshabi, A. C. Begen, and C. Dovrolis. An

experimental evaluation of rate-adaptation algorithms in
adaptive streaming over HTTP. In Proc. ACM MMSys,
San Jose, CA, Feb. 2011.

[2] A. C. Begen, T. Akgul, and M. Baugher. Watching video
over the web: Part 1: Streaming protocols. IEEE Internet
Computing, (15):54–63, 2011.

[3] N. Carlsson, A. Mahanti, Z. Li, and D. Eager. Optimized
periodic broadcast of nonlinear media. IEEE Transactions
on Multimedia, 10(5):871–884, Aug. 2008.

[4] J. Erman, A. Gerber, S. Sen, O. Spatscheck, and
K. Ramakrishnan. Over the top video: the gorilla in cellular
networks. In Proc. ACM IMC, Germany, Nov. 2011.

[5] A. Gotchev. Computer technologies for 3d video delivery
for home entertainment. In Proc. CompSysTech, Gabrovo,
Bulgaria, 2008.

[6] D. Gotz. Scalable and adaptive streaming for non-linear
media. In Proc. ACM Multimedia, 2006.

[7] A. Hu. Video-on-demand broadcasting protocols: a
comprehensive study. In Proc. IEEE INFOCOM, 2001.

[8] D. Johansen, P. Halvorsen, H. Johansen, H. Riiser,
C. Gurrin, B. Olstad, C. Griwodz, øA Kvalnes, J. Hurley,
and T. Kupka. Search-based composition, streaming and
playback of video archive content. Multimedia Tools and
Applications, 61:419–445, Nov. 2012.

[9] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti,
and N. Shahmehri. Helping hand or hidden hurdle:
Proxy-assisted http-based adaptive streaming performance.
In Proc. IEEE MASCOTS, Aug. 2013.

[10] A. Mahanti, D. L. Eager, M. K. Vernon, and
D. Sundaram-Stukel. Scalable on-demand media streaming
with packet loss recovery. In Proc. ACM SIGCOMM, San
Diego, CA, Aug. 2001.

[11] B. Meixner and J. Hoffmann. Intelligent download and
cache management for interactive non-linear video.
Multimedia Tools and Applications, pages 1–44, Jun. 2012.

[12] B. Meixner, K. Matusik, C. Grill, and H. Kosch. Towards
an easy to use authoring tool for interactive non-linear
video. Multimedia Tools and Applications, pages 1–26,
Sept. 2012.

[13] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and
W. Dabbous. Network characteristics of video streaming
traffic. In Proc. ACM CoNEXT, Tokyo, Japan, Dec. 2011.

[14] A. Sobe, L. Bs̈zr̈menyi, and M. Taschwer. Video Notation
(ViNo): A Formalism for Describing and Evaluating
Non-sequential Multimedia Access. International Journal
on Advances in Software, 3(1/2):19–30, Sept. 2010.

[15] Y. Zhao, D. Eager, and M. Vernon. Scalable on-demand
streaming of nonlinear media. IEEE/ACM Transactions on
Networking, 15(5):1149–1162, Oct. 2007.

