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Abstract

Hot-spot contention has been studied previously in the context of
shared-memory multiprocessor systems. Two techniques have been
proposed for shared-memory multiprocessor systems to increase
the system capacity in handling hot-spot references: hardware
combining and software combining. The effectiveness of the two
corresponding approaches for multicomputer systems is studied
here, for two hypercube-based static interconnection networks,
using a combination of simulation and analytical models. Our
results suggest that software combining provides greater
performance improvements under the realistic constraints of limited
buffer storage.

1. Introduction

In large parallel processing systems there is a possibility of
many processors requesting access to the same data item, or
"service" by the same processor, at the same time. Such hot-spot
contention creates congestion in the system. In shared-memory
multiprocessor systems, the memory module containing the "hot-
spot” data item may become saturated. In distributed-memory
multicomputer systems, communication links leading to the "hot-
spot" processor may become saturated.

Hot-spot contention has been studied previously in the
context of multiprocessor systems that utilize buffered multistage
interconnection networks to connect processors to the shared
memory modules [5, 7, 8]. It has been observed that the access
times for all memory references may be severely degraded, not just
the references to a hot-spot location, owing to a phenomenon
termed tree saturation [7). In tree saturation, all switches within a
"tree" rooted at the hot memory and extending to the switches
connected to the processors become "saturated” in that buffer
queues in these switches fill to capacity. This degrades overall
performance, particularly in large systems.

Two schemes have been previously proposed to increase the
capacity of a system in handling concentrated references to a hot-
spot -- hardware combining and software combining. Both these
schemes are based on essentially the same underlying principle of
combining several hot-spot requests into a single request and
forwarding this request to the hot-spot memory. These two
schemes, however, differ in the way this combining is
accomplished.

This paper is concerned with hot-spot contention in
distributed-memory multicomputer systems. Processors in such
systems communicate by explicit message passing. It is easy to see
that hot-spots can also exist in multicomputer systems. For
example, consider database operations in a multicomputer system.
In a shared-nothing system each node consists of a processor,
memory and a disk drive. To exploit the parallel I/O capability in
such a system, relations are horizontally partitioned into disjoint
" subsets across all disk drives in the system. Data from parallel
paths need to be combined in order to compute the final result for
each of the relational and scalar aggregation operations (e.g., max,
min, sum etc.) [1]. In this situation, the processor coordinating the
activity may become a "hot-spot” node. The impact of hot-spot
contention in multicomputer systems that use binary hypercube-
based static interconnection networks has been studied in [4]. This
paper studies the effectiveness of hardware combining and software
combining schemes in reducing hot-spot contention in such
systems, using both simulation and analytical models.

Two types of hypercube-based static interconnection
networks are considered; the binary hypercube, or BH and a type
of binary hypercube-based "hierarchical interconnection network"
(HIN), BH/BH. HINs can be informally described as follows [3].
Let N denote the total number of nodes in the network. These N

nodes are grouped into K, clusters of n, = N /K| nodes each.
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Each cluster of n nodes is linked together by a level 1
interconnection network. One node from each cluster is selected to
act as an interface node, and these K, interface nodes are again

grouped into K, clusters of #,= K /K nodes each, A level 2

interconnection network is used to link each of these K, clusters
of n, level 1 interface nodes. If desired, one node from each level
2 cluster could be selected as a level 2 interface node, and these
nodes grouped into clusters, etc. Figure 1 shows an example of the
type of HIN considered here: a two level "BH/BH" network in
which both levels use a binary hypercube (BH) network.

The remainder of this paper is organized as follows. Section
2 gives details on the hot-spot and locality models used in this
study. Sections 3 and 4 present results for networks with
unbounded and bounded ing capacity, respectively. Section 5
concludes the paper by summarizing the results,

2. The Workload and System Models

The two characteristics of communication in a distributed-
memory multicomputer that are of interest in this study are the
communication locality and the hot-spot proportion (the
proportion of traffic that is directed towards a hot-spot). Each is
modelled by a single parameter: o (defined below) is used to
model locality, and a parameter  (defined below) is used to model
the hot-spot proportion.

In our model of communication locality, system nodes (of
total number N = 2P) are conceptually divided into equal-sized

clusters of size 29, (These conceptual clusters become physical

clusters in the BH/BH network.) Locality is measured by the

probability o (cluster-size dependent) that a message is a nonhot-
spot message destined for a node within the same cluster as the
source node. It is assumed that:

e Intra-cluster (except hot-spot) communication is uniformly
random (i.e., an intra-cluster message is destined to each
node within the cluster with equal probability).

e  Inter-cluster (except hot-spot) communication is uniformly
random (i.e., an inter-cluster message is destined to each
cluster other than the source cluster with equal probability,
and to each node within the destination cluster with equal
probability). .
Hot-spots can be modelled in several ways [8]. In this study,

as in [4], we assume that there is only a single hot-spot and use the

hot-spot model of Pfister and ‘Norton [7]. In this model, each

message has a probability & of being a hot-spot message (a

combinable message destined for the hot-spot node) and a

probability (1-h) of being a regular message (assumed here to be a

non-combinable). Here, the regular messages are further divided

into intra-cluster and inter-cluster messages. When a message
reaches its destination node, it is assumed that a reply is generated.

Thus, there are hot-spot replies, intra-cluster replies, and inter-

cluster replies. When each nonhot-spot node generates messages at

rate A, it generates hot-spot messages at rate kA, intra-cluster

messages at rate @A, inter-cluster messages at rate (1— a— h)A,

intra-cluster replies at rate @A, and inter-cluster replies at rate

(1— a@— h)A. The hot-spot node generates messages and replies

at the same rates, except that it also generates hot-spot replies at rate

NhA. Note that h must be less than orequalto (1- @).

Links are classified according to whether they join nodes in
the same cluster ("cluster links") or in different clusters ("non-
cluster links"). The following assumptions are made about the
network and its workload:

() The time between successive message generations at each
node is exponentially distributed with mean 1/ A,
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(i) The node message generation processes are independent of
each other.

(ii) Message service times are exponentially distributed; each
cluster link processes messages at rate M., while each non-
cluster link processes messages atrate Hy,.

(iv) Packet-switching is used for message transmission.

3. Performance with Unbounded Buffering Capacity

In this section it is assumed that each node has unbounded
message buffering capacity. This assumption is relaxed in Section
4, which considers the case of finite buffering capacity. The impact
of hot-spot contention on the average message delivery time or
"delay" R., is derived analytically in [2]. Figure 2 gives a
representative sample of the results showing the impact of hot-spot
contention in both the BH and BH/BH networks. Figure 2b gives
two sets of plots corresponding to U, =1.4 and [, =2.8.
The latter message processing rate (i.e., My, =2.8) can be
achieved, for example, by mapping each logical link to two
physical links [3]. Even though this increases link cost, this
increase is more than compensated for by the decreases achieved in
message delivery times and increases in throughput capacity [3), In
the remainder of the paper, we use K., =2.8 for the BH/BH
network. Sections 3.1 and 3.2 study the performance
improvements that may be possible with hardware combining and
software combining schemes, respectively. These two sections
assume a routing algorithm that routes messages by selecting
randomly among shortest paths.

3.1, Hardware Combining

In hardware combining, the queues associated with links can
be classified as either forward queues or return queues. A queue
associated with a link / that carries messages from node a to node
b is termed a forward queue if node b is closer to the hot-spot
node than node a, and a return queue if node a is closer to the hot-
spot node than node b. A "wait buffer" must be associated with
each node. When several hot-spot messages are queued in a
forward queue, they are combined into a single hot-spot message,
called a combined message, which is forwarded toward the hot-
spot node. A record of all messages combined is kept in the wait
buffer. When the reply from the hot-spot node returns (routing
must be such that a reply follows the same path, except in reverse,
as the corresponding message), the node, using the information in
the wait buffer, generates replies to all combined messages and
places them in return T)J,:ues. Note that a message may participate
in many combinings before reaching the hot-spot node. In this
section, unbounded buffering space for forward queues, return
queues, and wait buffers is assumed, and no restrictions are placed
on the number of messages that may be combined at a single node.

The results of simulation experiments are shown in Figure 3.
It is obvious from these graphs that hardware combining is
effective in reducing the hot-spot contention. Interestingly, delays
associated with regular and hot-spot messages reduce with an
increasing hot-spot proportion h. This is because with higher A
larger numbers of hot-spot messages get combined, effectively
reducing the load and thus the contention within the network. The
impact of increasing h is more pronounced in the BH/BH network
because this network forces all hot-spot messages (from the same
cluster) to go through the corresponding interface node, leading to a
greater chance of participating in a combining operation,

In practice, hardware combining may not perform as well as
Figure 3 would suggest because of finite queue sizes and wait
buffers, and limitations on the number of hot-spot messages that
may be combined at a time. Finite queues are considered in Section
4. Unbounded queues, however, provide an upper bound on the
achievable performance improvements.

3.2. Software Combining

Software combining has been studied in detail by Yew et al.
[8] in the context of shared-memory multiprocessors. In a
distributed-memory multicomputer, software combining can be
applied, for example, to the problem of recognizing the end of a
computation by logically constructing a tree of nodes that exchange
messages so as to finally result in a "root" node being notified of
the termination. This root node may then broadcast the fact that the
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computation has terminated back down the tree,

There are many ways a software combining tree can be
constructed on a BH network. A simple mapping scheme that is
applicable to both BH and BH/BH networks is considered here.
The structure of the software combining tree is shown in Figure 4.
This structure is a two-level, unbalanced tree. Nodes within a
cluster are linked by a level 1 tree (shown in dashed lines). The root
nodes of each of these subtrees (i.e., nodes 0, 8, 16, and 24 in
Figure 4) are linked by a level 2 tree (shown in solid lines). At each
level, the mapping is done as follows. A node is selected as the root
node (for example, node 8 in Figure 4). (This root node selection
may be made randomly for the networks considered here, except in
the selection of the cluster root nodes in a BH/BH network for
which the interface nodes should be chosen.) The children of this
root node are the nodes that are one link away from the root node
(e.g., nodes 9, 10, and 12), the grandchildren of this root node are
all those nodes that are two links away (e.g., nodes 11, 14, and
13), and so on. In any part of the tree, the addresses of a child node
and that of its parent differ in only one coordinate. Therefore, there
is a link that directly connects each parent-child pair. The members
of a set of %randchildrcn nodes (e.g., 11, 14, 13) are distributed
over a set of child nodes (e.g., 9, 10, 12) as uniformly as possible.
For example, the grandchildren nodes 11, 14, and 13 are attached
one each to the child nodes 9, 10 and 12. Further, if there is a
choice in regard to which node a node can be attached in building
the software combining tree, a node is randomly selected. For
example, node 15 can be attached to either node 13 or node 14. It
should be noted that, irrespective of the degree of a node, all links
in the tree process hot-spot messages at rate AA.

The analysis of delay with a software combining tree is given
in [2]. The assumptions stated in Section 2 allow each link to be
modelled as a queueing center. Because of space limitations, the
analysis is not presented here; only the results are discussed.

The impact of utilizing a software combining tree is presented
in Figure 5a for a 256-node BH network. All parameters remain
the same as those used in Figure 3. The figure shows that software
combining is effective in reducing the adverse effect of hot-spot
contention. Note that for all values of h, the message generation

rate at which the network saturates, A, remains constant. This is
because the effective message arrival rate seen by a cluster link
participating in the combining tree (a tree cluster link) is
independent of & and these tree cluster links saturate first, for the
parameter values considered here. In general, it can be shown that

A will never decrease as h increases, when the proposed
software combining tree is utilized [2].
Figure 5b shows results for the BH/BH network. The
network parameters are the same as those used in Figure 3. Again,
as for the BH network, software combining works well, Note that

for the BH/BH network, as with hardware combining, A_

increases with an increasing proportion of hot-spot traffic A.
Comparing Figures 3 and 5, we note that hardware

combining and software combining provide performance that is

comparable to each other in terms of A, values. Limited buffer
space, however, may reduce the effectiveness of hardware
combining because of the more limited opportunities for combining
messages. This effect is demonstrated in the next section, which
discusses the effectiveness of both these schemes with bounded
buffering capacity.

4. Performance with Bounded Buffering Capacity

This section presents simulation results for the case of
bounded buffering capacity. When the number of buffers is finite,
there is a possibility of store-and-forward deadlock [6]. Store-and-
forward deadlock refers to the situation in which there is a set of
buffers, all of which hold messages waiting to be forwarded, and
in which these messages can be forwarded only to other buffers of
the set. The result is a deadlock.

The simulation experiments implemented a scheme for
deadlock avoidance proposed by Merlin and Schweitzer [6]. Let M
be the maximum number of hops a message can make in the
network. At each node, suppose that there are M+1 buffers, say
[ B, B,,..., B, ). When a message is generated, it is placed in

buffer B, at the source node. For a given message, let ¢ denote
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the total number of hops from source to destination. When a
message has made s<t hops, it can be placed in any buffer B, at
the next node on the message route such that

O gs M-(t-s5)+ 1.
It can be shown that if this rule is followed, there will not be store-
and-forward deadlocks. For the BH network, M=D and each
node should have at least (D+1) buffers. For the BH/BH network,
M=D+d and each node should have a minimum of (D+d+1)
buffers. If the actual number of buffers C is greater than M, the
message can be placed in any buffer B, such that

0<gsC-(r-35)+ 1

The simulation experiments were conducted on a 256-node network
with a cluster size of 8 (d=3). Thus, each node should have a
minimum of 12 buffers.

The simulation experiments and the analysis described in
Sections 3.1 and 3.2 used a routing algorithm in which each of the
shortest paths between the source and destination nodes is
randomly selected with equal probability. However, the links that
are used by hot-spot messages tend to saturate much earlier than the
other links. Thus, if the routing algorithm can be improved such
that it chooses that shortest path with the least traffic, the adverse
impact of hot-spot contention on system performance can be
reduced. Previous studies have demonstrated the suitability of such
improved algorithms [3]. This section uses an improved routing
algorithm that works as follows. At each node, if a message can
take one of [ links (on shortest path), it is routed over the link that
has the shortest queue of messages waiting to be forwarded.

The impact of hardware combining on both the average
delays of hot-spot (R},,,) and non-hot-spot (R reg) messages and
replies is shown in Figures 6 and 7. Note that these graphs use
throughput rather than the message generation rate A on the x-axis,
and that the throughput may be less than the message generation
rate because of buffer limitations. These graphs show that hardware
combining is still effective in reducing the adverse effects of hot-
spot contention. For the BH network, using hardware combining
practically eliminates the interference of hot-spot messages on
regular message transmission. As shown in Figure 64, the impact
of varying the hot-spot proportion / on regular message delay is
negligible. However, with bounded buffering capacity, hot-spot
messages still experience considerable delay as shown in Figure
6b. This is not the case with infinite buffering capacity as shown
in Figure 3a, For hot-spot messages, hardware combining
provides only marginal improvementin 4, values. Thus we may
conclude that with finite buffer space, hardware combining
eliminates completely the adverse impact of hot-spot contention on
regular messages, but hot-spot messages themselves still
experience a considerable degradation in performance.

Similar conclusions can be drawn for the BH/BH network as

well. As shown in Figure 7a, increasing the hot-spot proportion h
reduces the delay associated with the regular messages. (This is not
the case in Figure 2b because those results were obtained with a
random routing algorithm while the results in Figure 7 were
obtained by using the improved routing algorithm.) As far as hot-
spot messages are concerned, these still experience considerable
delays. For smaller h values (1-4%) A_, values are not affected
(see Figures 7a and 2b). For higher h values (8% and 16%),
A, decreases with increasing h, but the actual A_ values
remain largely unaffected whether or not hardware combining is
used. Again, as with the BH network, primarily the regular
messages benefit from hardware combining when buffer space is
limited.

Figures 8 and 9 show the influence of software combining on
the average delays of regular and hot-spot messages for the BH and
BH/BH networks. The results show that software combining
achieves message combining more effectively than hardware
combining in this case. These results further demonstrate that the
simple mapping scheme used here for the software combining tree
is adequate, even with finite buffer space. Regular messages
experience similar delays with both hardware combining and
software combining schemes (compare Figures 8a and 92 with
Figures 6a and 7a). However, for both networks, the hot-spot
message delays with software combining are substantially less

1-293

compared to the delays with hardware combining,

5. Summary

This paper has studied the impact of hardware combining and
software combining on hot-spot contention in two types of static
interconnection networks that are appropriate for use in distributed
memory multicomputer systems. One was the standard binary
hypercube (BH) network and the other was a hierarchical
interconnection network -- the BH/BH network.

With unbounded buffering capacity at each node, both
schemes tend to provide similar performance improvements and
completely eliminate the adverse effects of hot-spot contention on
both the regular (non-hot-spot) messages and hot-spot messages.

With bounded buffering capacity, hardware combining could
eliminate only the influence of hot-spot contention on regular
messages; the hot-spot messages experience degraded performance
whether or not hardware combining is used. With bounded
buffering capacity, software combining is more effective than
hardware combining. Although regular messages experience similar
delays with both hardware combining and software combining,
only the software combining scheme provides substantial
improvements in the throughput capacity and in the delays
associated with hot-spot messages. However, as the number of
buffers is increased, hardware combining tends to improve its
performance for hot-spot messages as well. But this may require an
infeasibly large number of buffers,

It should be noted that the results for the finite buffer case (in
particular, the ability to eliminate the interference of hot-spot
contention on regular messages) are also dependent on using a
good (adaptive) routing algorithm,
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Figure 2 Impact of hot-spot
contention on the BH and BH/BH
networks (& is varied from 0% to
16%) (a) BH network (d =3,D =
8, MUy = My = 14, a=075)
(b) BH/BH network (d =3, D =8,
= 14, a=0.75): Hyep, = 2.8
for solid lines; = 1.4 for dotted
lines. (from [4])

H NCL

Figure 3 Impact of hardware
combining on hot-spot contention in
the BH and BH/BH networks (A is
varied from 0% to 16%) (a) BH
network (d =3,D =38, u,
=y = 14, a = 0.75) (b)
BH/BH network (d =3,D =8,
g, =14, p,.. =28 a=075)

Figure 4 Software combining tree
for the BH and BH/BH networks
(D=5andd=3)

Figure 5 Impact of software
combining on hot-spot contention in
the BH and BH/BH networks (A is
varied from 0% to 16%) (a) BH
network (d =3,D =38, p.,
= Hyer 14, a = 0.75) (b)
BH/BH network (d =3,D = 3§,
Mo, =14, p,., =28, a=075)
(Rayg here represents the average of
non-hot-spot message/reply delays
and the delays of hot-spot replies.)
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Figure 6 Impact of hardware
combining on hot-spot contention in
the BH network -- the case of finite
buffering capacity (I is varied from
0% to 16%) (d =3,D =8, u. =

Hye, = 1.4, o =0.75, number of

buffers/node = 32)

Figure 7 Impact of hardware
combining on hot-spot contention in
the BH/BH network -- the case of
finite buffering capacity (h is varied
from 0% to 16%) (d =3,D =8,

po, =14, p., =28, a=0.75,
number of buffers/node = 32)

Figure 8§ Impact of software
combining on hot-spot contention in
the BH network -- the case of finite
buffering capacity (h is varied from
0% to 16%) (d=3,D =8, u. =

Hyee = 1.4, a=0.75, number of
buffers/node = 32)

Figure 9 Impact of software
combining on hot-spot contention in
the BH/BH network -- the case of
finite buffering capacity (/i is varied
from 0% to 16%) (d =3,D =8,
Moy =14, py, =28, = 0.75,
number of buffers/node = 32)
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