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Abstract—Conventional video consists of a single sequence of
video frames. During a client’s playback period, frames are
viewed sequentially from some specified starting point. Thefixed
frame ordering of conventional video enables efficient scheduled
broadcast delivery, as well as efficient near on-demand delivery
to large numbers of concurrent clients through use of periodic
broadcast protocols in which the video file is segmented and
transmitted on multiple channels.

This paper considers the problem of devising scalable protocols
for near on-demand delivery of “non-linear” media files whose
content may have a tree or graph, rather than linear, structure.
Such media allows personalization of the media playback accord-
ing to individual client preferences. We formulate a mathematical
model for determination of the optimal periodic broadcast
protocol for non-linear media with piecewise-linear structures.
Our objective function allows differing weights to be placed on
the startup delays required for differing paths through the media.
Studying a number of simple non-linear structures we provide
insight into the characteristics of the optimal solution. For cases
in which the cost of solving the optimization model is prohibitive,
we propose and evaluate an efficient approximation algorithm.

I. I NTRODUCTION

Conventional video consists of a single sequence of video
frames that are viewed sequentially from a chosen starting
point. Of interest in this paper is “non-linear” media consisting
of multiple linear sequences seamlessly linked in a tree or
graph structure, allowing multiple possible playback paths
differing in the media portions they include and/or their
ordering. One example is the generalization of the traditional
linear movie to a non-linear form in which the viewer is able
to choose among a variety of possible plot sequences and end-
ings. Such non-linear formats are already available on DVD
releases of movies (e.g., the DVD edition of the Hollywood
movie “Clue” has three different endings). More conventional
applications are evident in areas such as news-on-demand and
virtual tours. For example, a customizable news on-demand
service may allow clients to watch extended coverage of
entertainment, sports, or political news following the coverage
of the main headlines. Typically, in these customizable on-
demand streaming services some of the content sequences are
common to all viewers, with the remaining sequences shared
among only a fraction of the media’s viewers. As such, non-
linear media offers benefits to both the media creator and the
end user. For media developers, non-linear media offers the
potential for creation of new media artifacts that would not
be possible when constrained to the linear form. For clients,

To appear inIEEE Transactions on Multimedia. This work was supported
by the Natural Sciences and Engineering Research Council ofCanada.

non-linear media allowspersonalization of the viewed content
according to individual preferences.

The single linear frame sequence of conventional video has
enabled use of efficient scheduled broadcast delivery systems
(e.g., TV broadcasting), as well as development of scalable
techniques for on-demand and near on-demand delivery. With
on-demand delivery, incoming client requests for a media file
are served immediately (system capacity permitting), allowing
clients to view the media at times of their choosing. However,
the total resource usage (server and/or peer, and network)
increases with the rate of media file requests, although this
increase can be reduced to sublinear (e.g., [3], [12]). Periodic
broadcast protocols [5], [7], [9], [11], [14], [15] offer near on-
demand service, in which each client incurs a playback startup
delay of duration dependent on the server’s transmission
schedule, using fixed server bandwidth that is independent of
the request rate. In the most efficient of these protocols, the
required server bandwidth increases only logarithmicallywith
linearly decreasing client startup delay [11].

One approach to delivery of non-linear media with
piecewise-linear structures is to cyclically multicast each lin-
ear portion [4]. Like periodic broadcast, this approach can
accommodate arbitrarily high client request rates using fixed
server bandwidth; however, the required client startup delay is
linear in the sizes of the linear portions. A related approach
is to deliver each linear portion using a separate set of
periodic broadcast channels, enabling the client startup delay
to be decreased with logarithmic increase in server bandwidth;
however, such approaches have been shown to be inherently
less efficient than techniques that exploit the particular non-
linear media structure, at least for some classes of media
structures [16].

On-demand and near on-demand scalable delivery tech-
niques that exploit knowledge of the possible or likely client
paths through the media were proposed in [16]. However, the
near on-demand periodic broadcast protocols were developed
only for fairly narrow subclasses of media file topologies (e.g.,
trees). Furthermore, these protocols have the disadvantage
of requiring the multiplexing of data from different paths
on the same channel (implying that clients receive data that
they do not require), and/or fragmented use of transmission
resources using possibly many channels that cycle between
active and idle states. An additional disadvantage is that the
transmission schedules used in these protocols are heuristically
determined. In contrast, for linear media,optimized periodic
broadcast protocols have been developed that minimize client
startup delay for a given server bandwidth allocation and client
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reception capacity [11], [14].
This paper concerns the problem of devising periodic broad-

cast protocols for non-linear media structures, that require
neither the multiplexing of data from multiple paths on the
same channel, nor fragmented use of transmission resources.
Furthermore, of interest is the determination ofoptimized
protocols that minimize a weighted average of path dependent
client startup delays, for given server bandwidth allocation and
client reception capacities.

We formulate a mathematical optimization model for peri-
odic broadcast delivery of non-linear media structures that can
be partitioned into a finite number of linear media segments,
under the assumption that clients make their path choices
(from a finite set of paths) at their arrival to the system.1

A key component of our work is the modelling of periodic
broadcast as alinear optimization problem, as first proposed
for a context of linear media with heterogeneous clients [14].
The new optimization model for non-linear media files is
substantially more complex than that for the linear media
files. Specifically, our optimization model requires solution
of a possibly very large number of linear programs (LPs)
rather than just a single LP as in [14]. We develop solution
space pruning methods, and exploit structure that we identify
in the optimal solution for a particular class of scenarios,so
as to substantially expand the range of cases for which exact
solutions are feasible. For other cases in which the cost of
solving the optimization model is prohibitive, we propose and
evaluate an efficient approximation algorithm.

The remainder of the paper is organized as follows. Sec-
tion II describes the class of periodic broadcast protocolsof
interest in this work. Section III presents our optimization
model for non-linear media, the ways in which we expand
the range of cases for which exact solutions of the model
are feasible, and the approximation algorithm that we propose
for use when the cost of an exact solution is prohibitive.
Section IV presents numerical results illustrating the scal-
ability properties of optimized periodic broadcast for non-
linear media, the use of weights in the optimization model
to obtain lower startup delays for particular classes of clients,
and the accuracy and example application of the approximation
algorithm. Conclusions are presented in Section V.

II. PERIODIC BROADCAST

For scalable near on-demand delivery of linear media files,
many periodic broadcast protocols have been proposed [5]–[7],
[9], [11], [15]; a number of these are surveyed in [5]. Most
periodic broadcast protocols have a similar structure. These
protocols devote a fixed number of server channels per media
file, and cyclically broadcast segments of the media file on
these channels according to a predetermined schedule. Clients
receive multiple segments concurrently at an aggregate rate
that exceeds the media playback rate. Any data that is received
ahead of when it is needed for playback is buffered. With

1We note that 3D-graphic models used for video games (such as Second
Life, for example) could be considered as non-linear media,but fall outside
the scope of this paper. Such media is not composed of pre-existing “paths”
or “segments” as in the type of media assumed here, and the users’ navigation
is dynamic rather than being fixed at the time the user enters the system.

appropriate design of segment lengths, channel transmission
rates, and segment broadcast schedule, clients are able to
receive all data in time for playback, with required server
bandwidth that increases only logarithmically with decreasing
client startup delay.

In this paper we consider the class of periodic broadcast
protocols in which a (constant bit rate) media file is partitioned
into K segments and each segment is repeatedly broadcast
on a separate channel at a fixed rater times the media
playback rate. Clients download each segment of the media
file in its entirety before playback of its media data begins.
In addition to simplifying protocol design, this latter property
is important for support of quality adaptation [14] and packet
loss recovery [11].

Within the aforementioned class of protocols, optimized
periodic broadcast (OPB) protocols have been developed [11].
The client download schedule and segment lengths in these
protocols are optimized so as to minimize client startup delay
for a given server bandwidth and client reception capacity.
The protocols assume linear media and homogenous clients
wherein each client can concurrently receive froms server
channels. In the following, clients able to receives server
channels are said to haves “reception channels”. Clients
initially start downloading the firsts segments. The download
of each segmentk, k > s, uses the same reception channel as
that used for segmentk−s and begins as soon as the download
of segmentk − s is complete; i.e., a round-robin, in-order,
ordering of segment downloads across the reception channels
is optimal in this context. (Note that the data for each segment
is generally received out-of-order since a server channel may
be at any point in its cyclic transmission of its segment when
a client begins reception.) Clients may begin playback as
soon as they have completed download of the first segment.
The segment lengths are chosen such that clients continuing
playback without pause will receive each subsequent segment
just prior to this segment’s playback point. Such segment
lengths can be easily determined using equations that express
the maximum length of each segment in terms of the lengths
of the preceding segments. Subsequent work generalized the
OPB protocols to the context of heterogeneous clients with
differing reception capacities [14]. In these protocols, segment
sizes are determined through solution of a linear program in
which weights can be used to control the relative quality of
service given to the various types of clients.

In addition to extensive analysis and simulation studies
of the performance of periodic broadcast protocols, other
work has shown the feasibility of such protocols using an
Internet streaming video testbed [1]. While implementations
of periodic broadcast protocols are most efficient in multicast
enabled networks,2 we note that cyclic multicast protocols
(used to deliver each segment) can significantly reduce the
resource usage at servers even in systems without multicastor
broadcast channels [13].

2Whereas wide-area multicast is currently not implemented throughout
the Internet, we note that there is much anecdotal evidence indicating
that multicast is deployed within many sub-domains, private, and enterprise
networks. Also, proxy-assisted multicast architectures [2], [8], [10] may be
deployed by Content Distribution Networks.
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III. O PTIMIZED NON-LINEAR BROADCAST

This section describes methods for obtaining optimized
periodic broadcast protocols for near on-demand streamingof
non-linear media. Section III-A describes our model and as-
sumptions. Section III-B provides a mathematical formulation
for the case in which clients are assumed to make their media
selection at their arrival instance. This formulation allows the
optimal channel allocation and segment size progression to
be obtained by solving a large set of Linear Programs (LPs).
Section III-C describes how the model can be applied to the
case in which clients may defer their path selection decisions.
The possible characteristics of optimal solutions are discussed
in Section III-D. To expand the range over which optimal
solutions are feasible, Sections III-E and III-F consider ways to
reduce the number of LPs that must be solved; Section III-E
introduces state space pruning methods, while Section III-F
consider a class of scenarios for which the basic structure of
an optimal solution can be determined. Finally, Section III-G
describes an approximation algorithm that can be used when
the cost of finding an optimal solution is prohibitive. For all al-
gorithms the channel allocation and segment sizes progression
can be calculated offline and their computational complexity
therefore does not affect the performance of the clients. Table I
summarizes notation.

TABLE I
NOTATION FOR NON-LINEAR BROADCAST

Symbol Definition
K Total number of server channels (segments)
r Segment transmission rate

(in units of media playback bit rate)
sj Number of channels that a client of typej can

concurrently listen to
B Server bandwidth
J Total number of client types
Le Total media playback length of media portione

ne Total number of server channels (and segments)
allocated to media portione

le,i Total media playback length of segmenti on
media portione

Pj Set of all media portions along the path selected
by client typej

E Set of all media portionse in the media file
(E = ∪J

j=1Pj )
τj Deterministic startup delay of clients of typej
wj Weight used for clients of typej

tj(k) Time by which a client of typej completes
download of segmentk along path selectionPj

lj(k) Total media playback length of segmentk along
path selectionPj

prevj(k) Index of the preceding segment received over
the same reception channel as segmentk along
path selectionPj

tm Protocol threshold time
m Protocol threshold index

A. Assumptions

As stated in Section II, this paper consider the class of
periodic broadcast protocols in which a (constant bit rate)
media file is partitioned intoK segments and each segment

is repeatedly broadcast on a separate channel at a fixed rate
r times the media playback rate; thus the server bandwidth
requirementB = K × r. Clients download each segment of
the media file in its entirety before playback of its media data
begins.

We assume that the non-linear media file under consider-
ation consists of a total ofE linear media portions, each of
lengthLe. Further, each client typej (1 ≤ j ≤ J) is assumed
to be associated with a path selectionPj , consisting of a
sequence of|Pj | media portions. Note that path selections may
overlap, and furthermore, have different total media playback
durations.

Fig. 1 illustrates simple non-linear media file structures.
Fig. 1(a) represents a video with two alternative endings as
a tree with height two. The edges of the tree represent the
various media portions and the tree structure defines the order
in which these portions may be received. Fig. 1(b) represents
a case in which there aren possible beginnings,n different
endings, and all clients share the middle portion.
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Fig. 1. Example Non-linear Media Structures

In addition to a path selectionPj , it is assumed that each
client of type j has a reception bandwidth ofbj = r × sj ,
allowing it to concurrently download onsj channels. We
assume that the path selectionPj and client bandwidthbj are
known at the time of the client request. Given this information,
the protocol provides each client with a startup delayτj

and a schedule for receiving the required segments, which
guarantees that each segment along a path is received by its
playback time. Of interest is the problem of determining the
segmentation and client download schedules which minimize
the weighted startup delay over all clients

∑J
j=1 wjτj , where

wj is the weight given to the startup delay experienced by
clients making path selectionj. This weight could reflect, for
example, the fraction of total requests for the media file that
are generated by clients of typej, requesting pathPj . We
consider only segmentations in which segments do not cross
portion boundaries. Relaxing this restriction would yieldpro-
tocols requiring the multiplexing of data from different paths
on the same channel, and/or fragmented use of transmission
resources, as in the protocols proposed in [16].

B. Mathematical Formulation

Under the assumptions described in Section III-A, the seg-
ment size progression for the Optimized Non-linear Broadcast
protocol can be obtained by solving a large set of Linear
Programs (LPs) and selecting the best solution. Each LP, with
structure defined by constraints (3)-(8), is for a particular
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number of server channels (and segments)ne allocated to each
portion e, as well as a unique order in which clients of each
type receive the segments of their path. Thene values must
satisfy the following constraints:

∑

e∈E

ne = K (1)

ne ∈ N+, ∀e (2)

Note that there are a total of
(

K−1
|E|−1

)

unique choices of the
{ne} values that satisfy these constraints.

Further, given such a partitioning of the server bandwidth
among the media portions, the segments needed to be re-
trieved along each path can be retrieved using many different
client schedules. While a client selecting pathPj , may in
some cases benefit from receiving the segments along this
path out of order, it is never advantageous for the segments
retrieved over the same reception channel to be retrieved
out of order. Therefore, given a client withsj reception
channels, theKj =

∑

e∈Pj
ne segments along pathPj can

be received according toS(sj , Kj) different schedules, where
S(sj , Kj) = (1/sj!)

∑sj

i=0(−1)i
(

k
i

)

(sj − i)Kj is a Stirling
number of the second kind. WithJ client types, each of
the

(

K−1
|E|−1

)

allocations of server channels to portions requires
∏J

j=1 S(sj , Kj) different LPs to be solved.

The inputs to each LP are the set of portionsE in the
non-linear media structure, their individual lengths (Le’s), the
number of server channels allocated to each portion (ne’s),
the number of server channels (K) and their transmission
rate (r), the number of client classes (J) and their individual
characteristics (sj , Pj ’s) and weights (wj ’s), as well as the set
of segments received over each reception channel (prevj(k)’s),
for each of theJ paths. Here,prevj(k) denotes the index
of the preceding segment received over the same reception
channel as segmentk (and equals zero if there are no earlier
segments scheduled on the same reception channel as used for
segmentk). The outputs from each LP are the media playback
lengths of the segments (le,i’s), and the startup delay for each
client type (τj).

To simplify the LP formulation, we lettj(k) denote the time
by which a client of typej completes download of segment
k, and lj(k) denote thekth segment along path selectionPj ,
where segments are enumerated from 1 toKj . In practice,
for arbitrary non-linear media structures, a segmentk and the
previous segment received over the same channelprevj(k)
can easily be obtained using a mapping between(j, k) and
(e, i) pairs, as well as the channel each segment is received.

The LP for each configuration can be described as follows:

Minimize:

J
∑

j=1

wjτj (3)

Subject to:

tj(0) = 0, ∀j (4)

tj(k) = tj(prevj(k)) +
lj(k)

r
, ∀j, 1 ≤ k ≤ Kj (5)

tj(k) ≤ τj +

k−1
∑

k′=1

lj(k
′), ∀j, 1 ≤ k ≤ Kj (6)

ne
∑

i=1

le,i = Le, ∀e (7)

le,i, τj , tj(k) ≥ 0, ∀e, i, j, k (8)

The objective function in equation (3) assigns a weightwj to
the startup delay experienced by clients making path selection
Pj . Constraints (4) and (5) assume that clients having fully
retrieved a segment immediately start downloading the next
segment scheduled over the same reception channel. A client
of type j listens tosj concurrent channels, if possible, and
is fully served when it has downloadedKj =

∑

e∈Pj
ne

segments. Constraint (6) specifies that a client must always
fully download segmentk before completing playback of
segmentk− 1. Further, the first segment must be downloaded
prior to beginning of playback, that is within timeτj of the
client request. Constraint (7) ensures that the combined media
duration of the segments along any media portion is equal
to the media duration of that portion. Finally, constraint (8)
ensures that quantities are non-negative.

C. Deferred Path Selection

While this paper focuses on the case in which clients are
assumed to make their path selection at their arrival instance,
alternative protocols can be designed which allow the clients to
defer their path choices. This section describes how the model
can be applied to the case in which clients may defer to some
extent their path selection decisions until the time at which
data from the next segment must start to be retrieved. Such
protocols do not require clients to pre-fetch data from multiple
future media portions in parallel, and in the case where the
client reception bandwidth is not much greater than the play
rate clients typically will be able to defer their path choices
substantially. We note that protocols which require clients to
retrieve data from multiple media portions in parallel result in
much less efficient bandwidth usage [16].

Consider a client of typec, defined by the number of
channelss(c) it can receive in parallel and the first media
portion it would like to obtain. Such a client may have multiple
path choices; each path choicej is associated with the smallest
possible startup delayτj . With at least one path choice being
eliminated whenever a client picks a startup delay smaller than
the largest startup delay required by any path selection with
that same initial media portion, all path choicesj with the
same initial media portion must accommodate for the same
startup delay. Assuming a clientc is given a startup delay
τ(c), this observation can be handled by adding the additional
constraints thatτj = τ(c), whenever path choicej has the
starting point that definesc. Finally, the objective function
must be modified to

∑

w(c)τ(c), wherew(c) is the weight
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given to clients of typec. All other constraints remain the
same. Note that for the case in which the media structure
corresponds to a tree and all clients have the same download
capacity the objective function reduces to a single startupdelay
τ .

D. Characteristics of Optimal Solutions

Optimal periodic broadcast protocols for non-linear media
can differ greatly in their basic characteristics from those for
linear media.3 In particular, even for the context where clients
have homogeneous reception capacities, optimal protocols
may employ out-of-order segment retrieval, non round-robin
retrieval of segments on the client reception channels, and
(even for channel rates greater than the media playback rate)
non-monotone segment length progressions.

Fig. 2 shows the optimal segment size progression and client
download schedule on each of the two reception channels
(RC1 and RC2) for a simple scenario with the same tree
structure as previously described in Fig. 1(a). Here, each media
portion is assumed to be of the same length, the server has a
bandwidth of six times the playback rate, and the client has
bandwidth to listen to two channels, each transmitting at the
playback rate (i.e.,L1 = L2 = L3, K = 6, s = 2, r = 1).
For this case it is optimal to allocate only a single server
channel to each leaf portion (which is downloaded as a single
segment) but to start downloading the respective leaf segment
at the time of the first download completion. This schedule
allows playback to begin at the download completion of the
first segment. With the first segment being of half the size of
all the other segments of the first media portion, this allocation
results in a startup delay of 1/14 (measured in units of the total
playback duration).

As shown in the figure, the optimal client schedule employs
out-of-order retrieval and does not schedule the segments
retrieved over the reception channels in round-robin order
(i.e., every second segment is not scheduled on the same
channel). Although segment lengths are monotonically non-
decreasing in the above example scenario, in many cases this
is not the case. For example, consider the media structure
illustrated in Fig. 1(b). Clearly, when the length of the shared
media portion becomes small the corresponding segment may
become smaller than the segments used for the other media
portions.

Another example with non-monotonically increasing seg-
ment sizes is a simple scenario in which clients select one
of two paths, each consisting of the same media portions
A and B, differing only in the order these media portions
are played out. Assume both path choices are given equal
weight (w(A,B) = w(B,A)), the length of the media portions
are the same (LA = LB), K = 6, s = 2, and r = 1. In
this case, it is optimal to allocate3 channels to each media
portion, and use the optimal segment size progression of linear
media for each of the two portions individually. With this
segment size progression the segment sizes of the second
and third segment of each media portion are two and three

3See Section II for a description of the characteristics of optimal periodic
broadcast of linear media.

(a) Server Allocation (b) Client Schedule

Fig. 2. Optimal Server Channel Allocation and Client Schedules (L1 =

L2 = L3, K = 6, s = 2, r = 1)

times the size of the first segment, resulting in a startup delay
equal to 1/12 (measured in units of the playback duration).
Thus, the segments retrieved by a peer are not monotonically
non-decreasing in size. Also, this segment size progression
causes any schedule for which the clients fully utilize their
download channels until all segments are fully downloaded
(and segments are scheduled back-to-back) to be constructed
such that clients either retrieve segments for the second media
portion out of order (e.g., clients start download of the sixth
segment before beginning download of the fifth), or in non-
round-robin order (e.g., clients download the fourth and fifth
segment over the same channel).

Although optimal performance may not be achievable with
round-robin schedules in some cases, perhaps in the cases of
interest there is always a round-robin schedule that yieldsnear-
optimal performance. To investigate this question, relatively
simple scenarios similar to the above tree (more specifically
those discussed in Sections IV-A and IV-B) were considered.
For each scenario an optimized version of the round-robin
schedule (obtained using a modification of the solution tech-
niques described in Section III-C) was compared with its
corresponding optimal schedule (obtained using the techniques
described in Sections III-C, III-D, and III-E). Among these200
scenarios, 46 cases were found where the weighted startup
delay with the best round-robin schedule was more than 5%
higher than with the optimal schedule, 20 cases were found
where the performance difference was more than 20%, and 5
cases were found where the performance difference was more
than 50%.

E. Pruning Methods

Exhaustive search of the configuration space is typically
infeasible. This section develops rules for pruning the search
space. These rules are based on checking whether the weighted
startup delay with the current best configuration is no greater
than a lower bound with some set of alternative configurations,
in which case the latter need not be considered further. In
particular, we use a lower boundτ lb({ne}) on the weighted
startup delay possible with a given allocation{ne} of server
channels to portions.

Through the sharing of common media portions clients
impact both the segment sizes along their own path, as well
as those along the paths of other client types. The lower
bound discussed in this section ignores such dependencies
and determines the best possible segment size progression
for each client type independently. More specifically, given
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an allocation{ne} the lower bound is calculated as:

τ lb({ne}) =

J
∑

j=1

wjτ
lb
j ({ne}), (9)

whereτ lb
j ({ne}) denotes a lower bound on the startup delay

of client type j when these clients are considered in isola-
tion (i.e., the performance of other client types is given no
consideration).

There are many possible ways to obtain a lower bound
τ lb
j ({ne}). For the special case where a path consists of a

single media portion, optimal segment sizes (and thus a tight
lower bound on client delay) can be obtained as described
in [11]. Section III-E1 discusses how a lower bound can be
obtained for a client typej with sj = 2 (i.e., clients have two
reception channels). Section III-E2 discusses more generally
applicable bounds. With all bounds considering each client
type j in isolation, the indexj is omitted throughout the
remainder of this section.

1) Lower Bound for Two Reception Channels: We first
consider the case in which the path of the client type under
consideration consists of two media portions of durationLe1

and Le2
with ne1

and ne2
segments, respectively. Similarly

as for the case of a path with just a single media portion,
the startup delay can be minimized by using maximally
sized segments (for both media portions). However, there is
sometimes an advantage to beginning reception of the second
media portion before downloads of all segments of the first
media portion have been initiated, resulting in out-of-order
segment retrieval.

The client reception schedule is specified by giving the time
at which each segment is “scheduled” (i.e., the time at which
the client starts to download it) and the reception channel on
which reception is scheduled. With maximally sized segments,
any segments scheduled before the first segment of the second
portion can be scheduled on alternating channels. Assuming
the first segment of the second portion is scheduled at the
completion of themth segment (0 ≤ m < ne1

), the firstm
segments are scheduled in round-robin fashion while the next
ne1

− m segments (belonging to the first media portion) are
scheduled sequentially over the other channel (in parallelwith
the first segment of the second media portion). Finally, thene2

segments of the second portion are best scheduled in round-
robin fashion (as this allows their sizes to be maximized). This
yields:

l(k) =







(t(k) − t(m))r, if k = ne1
+ 1

(t(k) − t(k − 1))r, if m + 1 < k ≤ ne1

(t(k) − t(k − 2))r, otherwise
(10)

With minimum possible startup delay at least one seg-
ment must have a slack of zero, where the slack of a seg-
ment is defined as the difference between its playback time
(τ +

∑k−1
k′=1 l(k′)) and its download completion time (t(k)).

Hence the minimum startup delay (that allows all segments
to be received in time for their individual playback) can be
determined byτ = maxk[t(k) −

∑k−1
k′=1 l(k′)].

Note that the smallest startup delayτ1
m to satisfy all seg-

ments of the first media portion increases as the timet(m)

at which the client starts downloading data from the second
media portion moves earlier, while the corresponding startup
delayτ2

m to satisfy all segments of the second media portion
decreases ast(m) decreases. In the following discussion we
assume that the completion timet(m) of segmentm (as well
as the completion time of any earlier segment downloaded
over the same reception channel as segmentm) is constrained
by a variabletm, such thatt(m) ≤ tm. With maximally sized
segments this restriction allows us to express the completion
times as follows:

t(k) =







0, if k ≤ 0

min[tm, τm +
∑k−1

k′=1 l(k′)], if k ≤ m, m−k
2 ∈ Z

τm +
∑k−1

k′=1 l(k′), otherwise
(11)

To find the optimal startup delay, allm (0 ≤ m < ne1
)

must be considered. For each possible value ofm, the optimal
startup delayτm can be obtained using a case-based algorithm.
This algorithm first checks if either of the two special cases
of tm = 0 andtm = ∞ provides an optimal solution. Letτ0

m

and τ∞
m denote the smallest possible delay for each of these

two cases.
First, consider the case oftm = ∞. If this case is optimal,

it is optimal to use maximally sized segments to deliver the
first media portion, equalizing their slack to zero. Assuming
this is the case,τ∞

m can be obtained by solving the equation
system (10), (11) for the segments of the first media portion,
with tm = ∞ and the constraint that the sum of all segment
lengths of the first portion must beLe1

. This equation system
can easily be solved in the same way as with linear media
[11]. This startup delayτ∞

m is achievable if the value ofm
and the optimal segment size progression of the first media
portion (most importantlyt(m) and t(ne1

)) allows the entire
second portion to be retrieved in time of its individual segment
playback times (i.e., using maximally sized segments for the
second portion as necessary). If achievable, we consider the
startup delayτ∞

m as a candidate solution.
Second, consider the case oftm = 0 (implying m = 0 in

the absence of zero sized segments). If this case is optimal,
it is optimal to start retrieving the second media portion
immediately at the client’s arrival. Assuming this is the case,
τ0
m can be obtained by solving the equation system (10), (11)

for the segments of the second media portion, witht(m) = 0
and t(ne1

) = Le1
/r and the constraint that the sum of all

segment lengths of the second media portion must beLe2
.

This startup delayτ0
m is achievable ifm and the optimal

segment size progression of the second media portion allows
each segment of the first portion to be retrieved in time of
their individual playback times (i.e., using maximally sized
segments using a single reception channel). If achievable,we
consider the startup delayτ0

m as a candidate solution.
Finally, if neither of these special cases provide an optimal

solution an intermediate value oftm, provides an optimal
solution. This corresponds to using maximally sized segments
for all segments except those of the first media portion whose
size is capped owing to the value oftm. Such a solution can
be obtained by solving the equation system (10), (11) with the
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additional constraints that:
ne1
∑

i=1

le1,i = Le1
,

ne2
∑

i=1

le2,i = Le2
. (12)

Fig. 3 summarizes our algorithm. We note that this al-
gorithm can be generalized to cases with more than two
media portions. Here, it is always optimal for the firstmi

(0 ≤ mi ≤ nei
) segments of each media portion to be retrieved

in round-robin order, with the remainder of the segments
being retrieved sequentially. Only considering a single client
schedule in isolation, the optimal segment order is found
by computing the optimal segment size progression for each
combination ofmi values, and then picking the solution with
the smallest startup delay. Note that for a given set ofmi

values the preceding segmentprev(k) can be determined.

for eachm = 0 .. (ne1
− 1)

if solutionτ∞

m is feasible for the second media portion
τm = τ 1

m

else if solutionτ 0
m is feasible for the first media portion

τm = τ 2
m

else
τ is the solution to (10),(11),(12) with0 ≤ tm <∞
τm = τ

τmin =minmτm

Fig. 3. Single Path with Two Portions

In addition to using the above lower bounds when pruning
possible server channel allocations, it is important to note that
the above lower bounds onτm also can be used to prune
certain combinations of client schedules from the set of client
schedules considered for a given server channel allocation.
In fact, most of our experiments use an inner pruning rule
which prunes candidate LPs that correspond to a combination
of client schedules that could not improve on the current
candidate solution (even if the client types were considered
independently).

2) General Case: As the proposed pruning approach can
employ any valid lower boundτ lb

j ({ne}) of the startup delay
for a client typej, given a channel partitioning{ne}, there are
numerous other lower bounds that can be used. For example,
consider allocatingk segments to the firstm media portions.
Clearly, with segments not allowed to cross portion boundaries
the achievable startup delay when ignoring portion boundaries
(and considering them media portions as a single composite
portion) can never exceed the best achievable startup delay
when considering these portion boundaries. Therefore, one
possible bound is to consider the startup delay considering
media only up until each portion boundary, when ignoring
the preceding portion boundaries. While such bounds take
the client reception bandwidth into account, tighter bounds
can be obtained by taking all portion boundaries into con-
sideration simultaneously. One brute force approach to obtain
such (tight) lower bounds is to use LP formulations for each
path (individually). While this may seem costly, it may in

fact significantly reduce the search space (as there are many
possible dependent client schedule combinations to consider
for each valid channel partitioning). Here we use only pruning
rules that do not require additional LPs to be solved.

It should further be noted that the effectiveness of all prun-
ing rules significantly benefits from a good initial candidate
solution, provided by the approximation algorithm described
in Section III-F, for example.

F. Known Optimal Solution Structures

For the special case wheresj = 2 andr ≥ 1, and the media
has a tree structure, we conjecture that there exist optimal
client reception schedules in which clients of typej:

• retrieve all segments of the respective leaf portion in
round-robin fashion;

• retrieve some initial number of segments of the root por-
tion in round-robin fashion and the remaining segments
of the root portion sequentially (over the same reception
channel); and

• for each intermediate portion, retrieve some initial num-
ber of segments sequentially (over the same reception
channel), some additional number of segments in round-
robin fashion, and the remaining segments sequentially
(over the same reception channel).

The first of these properties can easily be shown because only
peers taking pathPj will access the segments of this leaf
portion. Therefore, the segment sizes can easily be optimized
with respect to that client type alone, and the minimum number
of segments needed to satisfy a given startup delay can always
be achieved using maximally sized segments. Such schedules
are by construction round-robin whenr ≥ 1. The second
property is proven in the Appendix, while the third property
is left as a conjecture.

Having proven the first two properties, we focus on a non-
linear structure consisting of a single root portion (which
all clients obtain) and a number of leaf portions (among
which each client selects one). For such structures one out
of nroot schedules is always optimal for each client typej,
wherenroot is the number of segments allocated to the root
portion. These schedules are distinguished by which segment
precedes the first segment of the second media portion; i.e.,at
which segment completion time a client skips ahead and starts
downloading the first segment of the leaf portion. Assuming
the first reception channel to complete download of its last
segment from the root portion does so after having completely
downloaded segmentmj (0 ≤ mj < nroot) the optimal
schedule is determined as follows:

prevj(k) =































0, if k = 1
0, if k = 2, 1 ≤ mj

0, if k = nroot + 1, mj = 0
mj , if k = nroot + 1, mj > 0
k − 1, if mj + 1 < k ≤ nroot

k − 2, otherwise

(13)
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G. Approximation Algorithm

This section introduces a heuristic algorithm that can be
used to effectively find server channel allocations, segment
sizes, and client reception schedules that achieve near-optimal
weighted startup delays for arbitrary non-linear media struc-
tures. This algorithm employs an outer loop that heuristi-
cally picks candidate allocations of server channels. For each
such candidate allocation, another heuristic search is used
to determine the segment download schedule that should be
used by each client type. For each candidate configuration
(consisting of a server channel allocation and a set of client
download schedules) the optimal weighted startup delay and
segment lengths are obtained by solving an LP. The following
subsections describe each of these search heuristics. The
accuracy and performance of the approximation algorithm are
discussed in Section IV-C and Section IV-D.

1) Server Bandwidth Allocation Heuristic: As noted in
Section III-C, there are

(

K−1
|E|−1

)

possible server channel alloca-
tions. This number quickly becomes very large as the numbers
of channels and portions increase. We employ local search
heuristics to reduce the search space, as shown in Fig. 4.

During each iteration of the algorithm in Fig. 4, a portion
is identified for which the greatest improvement in weighted
client startup delay is obtained when the portion is allocated
an additional server channel, and a second portion is identified
for which the least inflation of the weighted client startup
delay is obtained when this portion is allocated one fewer
channel. A “neighbor” allocation is obtained by switching one
server channel between these two portions. If such a neighbor
improves over the current candidate solution, the candidate
solution is replaced and the localized search resumes. Other-
wise, all possible neighbor allocations that can be obtained
by the switching of a single channel are considered. If the
best such neighbor improves on the current candidate solution,
the candidate solution is replaced and the localized search
resumes; otherwise, the algorithm terminates.

While any valid vectorn can be used to initialize the
search, the number of candidate solutions the guided local
search algorithm must consider can be significantly reduced
by using a more promising starting vector. For the numerical
results presented in Section IV, we use a greedy extension of
the optimized periodic broadcast protocol developed in prior
work [11] for linear media files.

2) Client Scheduling Heuristic: As previously discussed,
for each possible server channel allocation, there are a large
number of client schedules that potentially could provide
optimal solutions. This section proposes a search heuristic
that significantly reduces the number of schedules that are
considered.

The schedules considered include schedules with a restricted
form of out-of-order segment retrieval, in which a reception
channel may “skip ahead” to a later portion of the media
file, even though there are one or more segments from the
current portion that have not yet begun download. For each
client type, however, we consider only schedules such that:
(1) the segments received on each client reception channel are
received in the order in which they occur in the client path (as
would be true in any optimal schedule); (2) the time from the

(1) Initialize vectorn∗ (i.e., choose initial channel allocation)

(2) Search client schedules (as described in Section III-G2)
with fixed vectorn∗

Let τ∗ denote the optimal weighted delay of best candidate
(3) ∀e: search client schedules (as in Section III-G2)

with n← n∗, ne ← n∗

e + 1
Let τ+

e denote the optimal weighted delay of best candidate
(4) e+ ← argmaxe(τ∗

− τ+
e )

(5) ∀e: search client schedules (as in Section III-G2)
with n← n∗, ne ← n∗

e − 1
Let τ−

e denote the optimal weighted delay of best candidate
(6) e− ← argmine(τ−

e − τ∗)
(7) Search client schedules (as in Section III-G2)

with n← n∗, ne+
← ne+

+ 1, ne− ← ne− − 1
Let τ ′ denote the optimal weighted delay of best candidate

(8) if τ ′ < τ∗ then τ∗ ← τ ′, n∗ ← n; Goto (3)
(9) ∀e+, e−: search client schedules (as in Section III-G2)

with n← n∗, ne+
← ne+

+ 1, ne− ← ne− − 1
Let τ ′ denote the optimal weighted delay of best candidate

(10) if τ ′ < τ∗ then τ∗
← τ ′, n∗

← n; Goto (3)
(11) output candidate (∗) and terminate

Fig. 4. Guided Local Search Algorithm

beginning of the first reception of a portion’s segments until
the last such reception can be divided into two periods, the
first during which the set of reception channels downloading
segments of the portion is added to over time (with none
of these channels “skipping ahead” to a later portion), and
during the second of which deletions occur to this set as
channels move on to subsequent portions; (3) the segments
of each portion are allocated in round-robin order, beginning
with the first segment of the portion, to the (time varying) set
of reception channels receiving segments from that portion; (4)
a reception channelc may “skip ahead” from some portione
to a later portion, only if all channels that began receptionof
a segment frome earlier thanc have already skipped ahead
to e or to an even later portion; and (5) the order in which
reception channels that do not “skip ahead” complete receiving
data from a portion that is not the end portion of the path, and
move on to the next portion, is the same as the ordering of
the last segments they downloaded.

Given this class of client schedules, our search heuristic
starts with an initial guess of promising segment schedules
and then perturbs the schedules until no improvements are
possible. Such an initial guess can either be obtained usinga
pure round-robin schedule for each client type or by using
similar schedules to the client schedules used in the most
promising candidate solution obtained so far. In each iteration,
the algorithm attempts to improve the schedule of every client
type one-by-one. For each client type, the algorithm considers
neighboring schedules that allow one reception channel to be
somewhat more aggressive or conservative. With the above
class of schedules, there are at most2s (typically less)
ways of making the schedule for each portion more or less
aggressive, respectively. Starting at the first media portion the
algorithm considers neighboring schedules until the schedule
either allows for an improvement in the weighted startup delay,
or achieves the same weighted startup delay using a schedule
that allows the download of later media portions to resume
earlier (i.e., is a more aggressive schedule). If no changesare
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made to the schedule for any of the client types the search is
terminated; otherwise, the search continues.

IV. N UMERICAL RESULTS

This section presents our numerical results. Without loss
of generality, we measure bandwidth in units of the media
playback bit rate, and normalize startup delays by the total
playback duration of the selected path. For example, a startup
delay of 0.01 means that the delay until playback can begin
is 0.01 times the path playback duration. Numerical results
are presented here only for scenarios in which the paths of all
client types have equal duration.

Section IV-A considers the scalability of optimized broad-
cast protocols, while Section IV-B focuses on the impact of the
weights. Throughout both these sections only media structures
for which exact optimal solutions can be obtained are consid-
ered. Section IV-C evaluates the accuracy of the approximation
algorithm described in Section III-G. Section IV-D illustrates
use of the approximation algorithm for more general scenarios.

A. Scalability

We first consider the performance with the simple tree
structure illustrated in Fig. 1(a) ands = 2. To obtain the
optimal solution we use both the pruning rules defined in
Section III-E and (whenr ≥ 1) the simplifying characteristics
observed in Section III-F. Again, we note that the effectiveness
of the pruning approach is highly affected by the order in
which candidate solutions are considered and a good initial
candidate is highly beneficial. For our numerical experiments
we initialize our search using a greedy extension of the
optimized periodic broadcast protocol developed in prior work
[11] for linear media files. For example, for a variation of
the structure shown in Fig. 1(a) with five branches rather
than two, this approach requires 39 and 70 LPs to be solved
whenB = 20 andB = 40; in contrast, an exhaustive search
require 11,628 and 575,757 allocations of server channels to be
considered (and a much larger number of LPs to be solved),
respectively. While the number of LPs is roughly the same
for these two values ofB, we note that the larger example
requires much longer processing time as the number of channel
allocations (and service schedules) that must be pruned is
much greater for this case.

Fig. 5 shows that linear increases in server bandwidth
result in exponential decreases in startup delay. This is a
characteristic property which previously had been observed
for periodic broadcast protocols delivering linear media files
(e.g., [11]). Note that for cases withr < 1 we are limited
to scenarios with smaller numbers of server channels. Fig. 6
shows how the size of the initial shared media portion impacts
the startup delay and the amount of server resources allocated
for this initial root portion. With the exception of the case
where the performance is entirely constrained by the root
portion and each leaf portion is assigned only a single server
channel, the startup delay increases roughly exponentially
with the percentage of the media file that is not shared
among the clients. It should, however, be noted that the
startup delay sometimes decreases within regions for which

the same channel allocation is optimal. Further, because of
increasing segment sizes, the root portion typically requires
more server resources per unit of data served than the other
media portions. Finally, Fig. 7 shows that the startup delay
increases exponentially as the branching factor is increased,
increasing the number of possible paths. The flattening of the
lines for B = 10 andB = 15 corresponds to a region in the
parameter space in which each leaf portion is allocated onlya
single channel and the leaf portions become the constraining
portions. Reducing the number of channels allocated to the
initial media portion therefore has a small effect on the startup
delays.

B. Impact of Weights

Fig. 8 shows how the path weights influence the optimal
periodic broadcast schedule of the non-linear media file.
Again, the results are for the media structure shown in Fig. 1(a)
with s = 2; the length of the non-shared portion of each
path is chosen to be equal to 80% of the total file data along
that path and the relative weight ratiow1/w2 is varied three
orders of magnitude. Fig. 8(a) shows the startup delay as a
function of the relative weight given to each path selection
for two scenarios (with a server bandwidth ofB = 12 and
B = 16, respectively). Fig. 8(b) shows the number of channels
allocated for each media portion for the case ofB = 12. As
expected, typically the leaf portion associated with a client
type given very small weight is allocated only a single channel,
while the other leaf portion is allocated significantly more
server channels. As the weight given to the less weighted path
increases the number of server channels allocated to each leaf
portion becomes more balanced. The observed abrupt changes
in startup delay result from changes in the number of server
channels allocated to each portion.

While we omit results for different server channel rates
(r) and for different ratios of shared and non-shared media,
our results show that the impact of the weights is larger, and
has more intermediate solutions, when the shared portion is
small relative to the non-shared portion. This is because these
scenarios allow more server channels to shift from the low
weight path to the high weight path.

C. Accuracy of the Approximation Algorithm

To quantify the accuracy of the approximation algorithm
the startup delays of the solutions obtained using the approx-
imation algorithm were compared with the optimal solutions.
This section considers the scenarios discussed in Section IV-A
and IV-B, including the omitted experiments in Section IV-B
(with different client reception rates as well as a few experi-
ments in which the root portion is of the same size as the leaf
portion). Out of these 200 scenarios, the approximation algo-
rithm only failed to find the optimal solution in 3 cases. These
cases have increased weighted client startup delay of roughly
5%, 11%, and 18%, respectively. Looking more closely at
each of these three cases, the approximation algorithm gets
stuck in a local minimum whenever the localized search
heuristic fails to find neighboring allocations which provide
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Fig. 5. Scalability: Server Bandwidth (media in
Fig. 1(a);L1 = L2 = L3, w1 = w2, s = 2)
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Fig. 8. Impact of Weights (media in Fig. 1(a);L2 = L3 = 4L1, s = 2, r = 1)

improved performance (without moving multiple segments
simultaneously).

While the fraction of scenarios for which the algorithm fails
to find optimal solutions may be different for other structures,
scenarios, and/or initialization algorithms, we do not expect
the relative increase in startup delay (with respect to optimal)
to become worse as the size of these basic structures increases.
In fact, assuming a reasonable initial channel allocation,larger
structures may reduce the relative increase in startup delay.
While larger structures have more states (which potentially
correspond to local minimums) we note that these states
typically have many more neighboring states that may help
the algorithm progress towards the optimal solution.

D. Performance on More General Non-linear Media Struc-
tures

The remainder of this section uses the approximation algo-
rithm to consider a number of example scenarios for which the
current pruning rules do not allow us to obtain exact optimal
solutions. Fig. 9 shows the impact of client heterogeneity.We
consider a scenario in which there are low and high reception
rate clients, and where clients select a path consisting of the
root portion and a different leaf portion of the media structure
illustrated in Fig. 1(a), with all media portions of the same
duration, yielding four client types. The server has a bandwidth
of B = 10, with K = 20 andr = 0.5. The figure shows results
for low and high reception rate clients having bandwidths of
1.5 (s = 3) and 2 (s = 4), as well as 1 (s = 2) and 4 (s = 8).
The startup delay of each of the two client types with the same
reception rate is given the same optimization weight. Note that

when a small weight is given to high bandwidth clients the
startup delay is the same for both client types. However, with
more weight given to high bandwidth clients, the performance
of high bandwidth clients is improved, at the expense of low
bandwidth clients.
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As a second example, we consider a scenario in which
two client types access the same four media portions, but
in reverse order of each other. This could correspond to a
customized newscast, for example. Fig. 10(a) shows how the
startup delay of each client type is impacted by its relative
weight, for two different example cases. In the first case both
client types have a bandwidth of 2, while in the second case
both client types have a bandwidth of 1.5. Note the strong
impact the weights have on the startup delay. Fig. 10(b) shows
the number of segments allocated to each media portion for the
second example case. As expected, more channels are typically
allocated to the media portion at the beginning of a client
type’s path. Further, as illustrated by the large differences in
the server bandwidth allocated to portion 1 and 4, and between
that allocated to portion 2 and 3, the number of channels
allocated to each media portion is strongly skewed in favor
of the client type given a larger weight.
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Fig. 10. Two Directional Media Structure with Four Media Portions
(L1 = L2 = L3 = L4, B = 10, r = 0.25)

Similar to Fig. 7, Figs. 11-13 illustrate the impact of allow-
ing more path selections, using only a fixed set of resources.
The media files used for these experiments correspond to (i)
a symmetric binary tree with a common initial portion, (ii) a
symmetric tree of height three with a common initial portion,
and (iii) the topology illustrated in Fig. 1(b) with clientsof
type j selecting thejth initial as well as thejth final portion.
In all cases, all portions are the same duration. Although the
scales are different, we note that the first data point in each
figure corresponds to having a single path selection and the
last data point having 32 different path selections.

To handle large media structures we again use the approx-
imation algorithm described in Section III-G. This radically
reduces the number of LPs that must be solved. For example,
when B = 12.5, r = 1/8 (implying K = 100), ands = 16,

for a binary tree of height 5 (with 31 edges) an exhaustive
search requires2 · 1025 different channel allocations to be
considered (and a much higher number of LPs to be solved).
Using the localized guided search algorithm the number of
channel allocations is reduced to103, and the number of LPs
to 3 · 106, where each LP consists of103 constraints.4

When discussing the allocation for larger structures it should
also be noted that, for scenarios in which clients have a
download bandwidth that exceeds the play rate, the constrain-
ing portions will typically be located close to the starting
point(s) and portions further away typically will be much
less constrained. Therefore, the performance of the protocol
is typically dependent on how well the initial portions are
allocated channels. Further, we expect the convergence times
of the search algorithm to be faster the more skewed the
optimal channel allocation is (e.g., in scenarios where clients
have much larger client bandwidth than the play rate).

Comparing Figs. 11-13, we note that the startup delay
degrades much faster if additional path options are added to
the beginning of the file than if such options are added later
in the file. This is a consequence of the fact that earlier media
portions typically require more server resources.

Whereas the full approximation algorithm significantly re-
duces the number of LPs that must be solved, we note that
modifications to this algorithm easily can be applied to further
reduce the number of LPs that need to be solved. This may
be desirable for larger structures for which the number of
constraints in each LP formulation is large. Table II illustrates
the performance results using a modification in which the
client schedule search heuristic only is applied when the
localized guided search reaches a minimum; otherwise, the
localized guided search does not invoke the client scheduling
heuristic (and instead solves a single LP for each neighboring
candidate allocation).

For a set of random non-linear media structures, Table II
presents the startup delay, the number of constraints in each
LP formulation, and the number of LPs that need to be solved
using the above modified heuristic.5 In this example, a server
with bandwidthB = 250, K = 250, andr = 1 is delivering
a non-linear media file consisting of|E| = 100 equally-sized
media portions. Clients haves = 2 and randomly select one
out of J = 50 path choices; each given equal weightwj =
1/J . Each path consists of a random sequence ofq media
portions and has a playback duration equal to one (implying
that the length of each media portion isLe = 1/q).

For all cases considered, our modified approximation al-
gorithm always (as desired) finds a solution in which the
minimum of one channel is allocated to any portion that is
not part of any of theJ paths. While the random structures
considered here are more complex than those considered

4If using an initialization in which all portions have as evena number of
channels allocated to them as possible (rather than our regular initialization
vector) the number of LPs that must be solved increases by a factor of 2.
While this factor is highly variable it appears that this factor remains within
a factor 5 for the experiments presented in Fig. 11 and typically obtains a
solution with the same startup delay, suggesting that a goodinitial vector is
beneficial, but not crucial, to the performance of our approximation algorithm.

5Due to details of the solver, the number of constraints reported here does
not include variable definitions such as equation (2) and (8).
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Fig. 11. Impact of Tree Height (binary tree with
a common initial media portion; all portions the
same size)
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Fig. 12. Impact of Tree Width (symmetric tree of
height three with a common initial media portion;
all portions the same size)
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Fig. 13. Impact of Fanout Factor (media in Fig.
1(b); all portions the same size)

previously in this section, it should be noted that the solver
used to solve each LP typically runs out of memory when the
number of constraints in these calculations exceeds roughly
1.6 · 104. Therefore, the approach discussed here is limited
to structures with no more constraints than the structure with
q = 64. Of course, a stronger LP solver would extend the
range of problems that can be considered.6

When considering these results, it should be noted that the
startup delays are relatively insensitive to the number of path
choices. For example, while each LP usingJ = 100 or J =
200 has roughly 2 or 4, respectively, times the number of
constraints as forJ = 50, the startup delays are very similar.

TABLE II
RANDOM NON-LINEAR STRUCTURE

Path Length (q) Startup Delay Constraints LPs Solved

1 5.2 · 10−2 6.2 · 102 2.0 · 104

2 4.6 · 10−2 8.0 · 102 1.9 · 104

4 2.4 · 10−2 1.3 · 103 2.0 · 104

8 8.5 · 10−3 2.4 · 103 2.1 · 104

16 5.4 · 10−3 4.3 · 103 2.1 · 104

32 2.3 · 10−3 8.3 · 103 2.1 · 104

64 1.4 · 10−3 1.6 · 104 2.1 · 104

V. CONCLUSIONS

This paper has addressed the problem of devising optimized
periodic broadcast delivery protocols for non-linear media.
We developed an optimization model based on solution of
potentially large numbers of linear programs, together with
an efficient approximation algorithm for cases in which exact
solutions of the optimization model are infeasible. Use of
a weighted average of client startup delays as our objective
function was found to enable effective control of the relative
quality of service provided to clients with differing reception
capacity and/or chosen playback path.

We found that optimal periodic broadcast protocols for non-
linear media can differ greatly in their basic characteristics
from those for linear media. Even for the context where clients
have homogeneous reception capacities, optimal protocols
may employ out-of-order segment retrieval, non round-robin

6For larger structures, we expect that the characteristics of the optimal
solution of smaller structures can be used to design efficient heuristic
algorithms. Such algorithms remain future work.

retrieval of segments on the client reception channels, and
(even for channel rates greater than the media playback rate)
non-monotone segment length progressions. Nonetheless, we
were able to employ pruning of the model solution space, and
exploit special structure in the optimal solution for a particular
class of scenarios, to find optimal solutions in many cases. Our
(generally-applicable) approximation algorithm yieldedsolu-
tions that were either optimal, or within 20% of optimal, in all
cases considered for which comparison with the optimal was
possible. Future work includes new protocol design algorithms
that are applicable for even larger non-linear media structures,
which build on the insights of the characteristics of the optimal
solutions.
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APPENDIX

This appendix provides a proof of the second property of the
optimal solution structure in Section III-F. More specifically,
assuming thatsj = 2, r ≥ 1, and the media file has a
tree structure, we want to show that there exists optimal
client reception schedules for which clients of typej retrieve
some initial number of segments of the root portion in round-
robin fashion and the remaining segments of the root portion
sequentially (over the same reception channel).

Under these constraints, it is never advantageous for clients
to start downloading segments of the root portion out-of-order.
Therefore, there always exists an optimal solution in which
the download schedule for each client typej ensures that
tj(kA)−l(kA) ≤ tj(kB)−l(kB), wheneverkA ≤ kB. Restrict-
ing our attention to segment size progressions and schedules
satisfying this condition, we show that such solutions always
can be modified into a solution with no greater startup delay
for which each client schedule also satisfies the additional
constraint thattj(kA) ≤ tj(kB). By construction, any schedule
satisfying both these properties satisfies the properties outlined
in Section III-F.

Our proof relies on induction on the number of segments
k for which the schedules have been modified to ensure that
both tj(kA) ≤ tj(kB) and tj(kA) − l(kA) ≤ tj(kB) − l(kB),
for all kA ≤ kB ≤ k and1 ≤ j ≤ J . Clearly, fork = 1 this
property is true without any changes to the segment lengths or
client schedules. Assuming the above properties are true for
all segments up to and including segmentk, we now claim
that the sizes of segmentsk andk + 1 of an optimal schedule
with tj(kA) − l(kA) ≤ tj(kB) − l(kB), for all kA ≤ kB can
be modified such that the properties are true for all segments
up to and including segmentk + 1.

For any client typej, segmentsk and k + 1 are either
retrieved over the same or over different reception chan-
nels. With tj(kA) ≤ tj(kB), for all kA ≤ kB ≤ k, and
tj(kA) − l(kA) ≤ tj(kB) − l(kB), for all kA ≤ kB ≤ k + 1,
any client typej which receives segmentsk and k + 1 over
different channels must have received all previous segments
in round-robin fashion. Therefore, the schedules of all client
types receiving segmentsk andk + 1 over different channels
are identical up to and including (at least) segmentk + 1.
In contrast, the schedules of client types that receive these
segments over the same channel may differ.

Consider first the client types which receive segmentsk and
k+1 over different channels. The desired property holds with-
out altering schedules or segment lengths iftj(k) ≤ tj(k+1).
However, if tj(k) > tj(k + 1) we must adjust the lengths of

these two segments. To avoid changing the deadlines of any
other segments (either before or after segmentsk andk + 1)
the segment sizes of segmentk andk+1 are adjusted such that
their deadlines are exchanged. This corresponds to decreasing
the size of segmentk by ∆l = r(tj(k) − tj(k + 1)) and
increasing the size of segmentk + 1 by the same amount. By
induction, completion times are non-decreasing and therefore
lnew
j (k) = lj(k) − ∆l is always non-negative. Given that

segmentk originally was retrieved in time of its playback,
both segmentk andk+1 will be retrieved in time for playback
(using the new schedule).

In addition to changing the sizes of these two segments we
also change the reception channel over which any segment
indexedk + 2 or higher is retrieved, such that any segment
previously scheduled on the same channel as segmentk
instead is scheduled on the same channel as segmentk + 1
(and vice versa). This ensures that all later completion times
are preserved. With all segments retrieved by their original
deadlines, the new schedule (of each client type receiving
segmentk andk +1 over different channels) always achieves
at least the same startup delay as the original schedule.

Now, consider the impact the above change of the segment
sizes of segmentk and k + 1 has on all other schedules, in
which k andk+1 are scheduled (back-to-back) over the same
channel. Clearly, only the slack of segmentk andk+1 will be
affected by this change. Letτj,k = tj(k)−

∑k−1
i=1 li denote the

minimum startup delay required to deliver segmentk in time
of its playback time. Using this definition, the corresponding
startup delay constraints associated with segmentsk andk+1
are equal to

τnew
j,k = (tj(k) − ∆l/r) −

k−1
∑

i=1

li ≤ τj,k (14)

and

tnew
j,k+1 = (tj(k) + lk+1/r) −

k−1
∑

i=1

li + (lk − ∆l) ≤ τj,k. (15)

The last inequality uses the fact that∆l ≤ (lk − lk+1) ≤
(lk − lk+1/r), when r ≥ 1. With neither of the segments
requiring an increase in the startup delay, the above properties
are true fork + 1. This completes the proof.


