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§ Linköping University, Sweden

‡ University of Saskatchewan, Canada
SS NICTA, Australia

Abstract—One highly-scalable approach to content delivery is
to harness the upload bandwidth of the clients. Peer-assisted
content delivery systems have been shown to effectively offload
the servers of popular files, as the request rates of popular
content enable the formation of self-sustaining torrents, where the
entire content of the file is available among the peers themselves.
However, for less popular files, these systems are less helpful
in offloading servers. With a long tail of mildly popular content,
with a high aggregate demand, a large fraction of the file requests
must still be handled by servers. In this paper, we present
the design, implementation, and evaluation of a dynamic file
bundling system, where peers are requested to download content
which they may not otherwise download in order to “inflate”
the popularity of less popular files. Our system introduces the
idea of a super bundle, which consists of a large catalogue of
files. From this catalogue, smaller bundles, consisting of a small
set of files, can dynamically be assigned to individual users. The
system can dynamically adjust the number of downloaders of
each file and thus enables the popularity inflation to be optimized
according to current file popularities and the desired tradeoff
between download times and server resource usage. The system
is evaluated on PlanetLab.

I. INTRODUCTION

Characterization studies of file popularity [1]–[5] have

shown that there typically is a long tail of mildly and less

popular content. Companies like Amazon (books) and Apple

(music) have leveraged this long tail of niche content to in-

crease sales of more popular items as well. Efficiently serving

the long tail can have significant monetary impact, and may

directly impact the bottom line of many companies. With peer-

assisted approaches being an attractive content distribution

solution for organizations with limited server and/or bandwidth

resources, an important problem is how to best leverage the

upload contributions of peers to serve a large collection of

files, including both popular and less popular files.

Peer-assisted approaches help offload the original content

servers. By splitting each file into many small pieces, each

piece can be downloaded from different peers and/or servers.

The approach allows flexible distribution paths, based on

current piece availability, and is highly effective for popular

content, for which the request rates enable the formation of

self-sustaining torrents, where the entire content of the file is

available among the peers themselves [6], [7]. On the other

hand, the approach does not efficiently serve the contents in

the long tail, for which the request rates are not sufficient

for the corresponding torrents to be self-sustaining, and the

contents must instead be served primarily using server (or

seed) bandwidth.

Bundling has been proposed to improve the content avail-

ability, and increase the set of peers that can provide upload

bandwidth to other peers downloading the same content [8].

With bundling, a set of contents are grouped (bundled) into a

single file which is made available for download. Thus, peers

downloading a bundle containing the desired file(s), effectively

help inflate the popularity of the other files in the bundle.

Both static [8], [9] and dynamic [7] bundling approaches

have been proposed. With static bundling, a pre-determined

file collection is grouped together by the publisher. In contrast,

with dynamic bundling, peers may be assigned complementary

content (files or parts of files) to download at the time they

decide to download a particular file. This additional flexibility

provides many advantages. First, dynamic bundling can adapt

to current popularities and avoid wasting download resources

in cases when the content is popular and popularity inflation

is not necessary for the purpose of content availability. With

static bundling, however, peers are forced to download all the

content, resulting in increased download times, even when

this does not benefit the system. Dynamic bundling also

allows peers downloading the same popular file to help in the

distribution of different less popular files. This is an important

property as file popularities typically are highly skewed.

In this paper, we present the design, implementation, and

evaluation of a dynamic file bundling system. Our system

is implemented using the mainline BitTorrent source code,

and builds upon the BitTorrent specifications. We focus on

developing a dynamic bundling system while only making

incremental changes to the BitTorrent source code. This

presents interesting design challenges as much of BitTorrent’s

communication and file handling policies (such as disk writing

and piece validation) rely heavily on all peers in the same

swarm sharing exactly the same content and having a common

indexing of particular data blocks. In contrast, a dynamic so-

lution should allow peers to effectively share content between

peers that have been assigned different bundles from a set of

files hosted by the tracker.

Our system introduces the idea of a super bundle, which
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consists of a large catalogue of files. From this catalogue,

smaller bundles, consisting of a small number of files, can

dynamically be assigned to individual users. We refer to this

smaller file collection as the peer’s individual bundle. The

use of dynamic assignment of individual bundles enables the

relative file availabilities to be adjusted. Our system leverages

tracker information about peer participation in the different

files to make informed decisions about which files should

be included in each peer’s individual bundle. Of course, the

larger each super bundle is the more flexibility is given to

the dynamic bundling policies assigning individual bundles to

clients. Architecting a system where bundling decisions are

made from an arbitrary set of files hosted by the tracker is left

for future work.

At a high level, the primary modifications to the mainline

client include modifications to peer-to-tracker communication,

the addition of a bundle file selection mechanism at the track-

ers, a generalized piece selection rule, and optimizations to

the piece disk writing function. First, we modified the peer-to-

tracker communication and how the tracker handles incoming

HTTP requests from the peers, including the introduction of

a new bundle negotiation event. Second, we implemented

two bundle file selection policies for determining which files

should be bundled, which take the current file popularity into

account. Third, we modified the piece selection rule and the

actions taken when receiving HAVE messages in different

peers states (depending on if the peer is choked or unchoked,

for example) to give priority to the pieces from the requested

file and ensure that each peer only expresses interest in the

pieces from within its assigned bundle. Finally, we changed

the piece writing sequence to disk, to accommodate for the

changes to the scope of our modified piece selection rule

that only downloads pieces from a peer’s assigned bundle

(containing a subset of all potential pieces of the super bundle).

Without these disk writing modifications, the downloads can

become very slow and in some cases not complete.

In this work, we do not attempt to determine the best

possible dynamic bundling policy. Instead we focus on the

system design, present a proof-of-concept implementation, and

evaluate the general system performance using two example

policies for dynamic bundle selection. Our system is evaluated

on PlanetLab. Using both steady-state and time-varying sce-

narios, the operation of our design is verified and the perfor-

mance of the example policies is evaluated. Our system shows

significant improvement in the download times of less popular

files, compared to a non-bundling implementation. Our work is

novel in that no previous work has developed and/or evaluated

a working dynamic bundling system. Throughout the paper

we provide insights on lessons learned while undertaking this

challenge.

The remainder of the paper is organized as follows. Section

2 discusses related work. Section 3 presents our system design.

System validation and performance results are presented in

Section 4. We conclude the paper with a discussion of the

lessons learned and future work directions.

II. BACKGROUND AND RELATED WORK

This section provides a brief overview of content distribu-

tion, peer-to-peer systems, and the BitTorrent protocol.

Content distribution and peer-to-peer: Content delivery

is responsible for a large fraction of today’s Internet traffic.

Content delivery over the Internet has typically relied on

dedicated servers and data centers. To offload the origin

server(s) and to provide enhanced quality-of-service, a variety

of techniques such as replication [10] and peer-to-peer [11]

systems have been proposed. With replication, clients are

typically directed to one of many geographically distributed

servers that share the load of processing client requests. This

approach is taken by CDNs such as Akamai. With peer-to-peer

techniques, clients may contribute to the total service capacity

of the system by helping other clients. This can further reduce

the load of the original server.

BitTorrent: Perhaps the most promising peer-to-peer tech-

nology for content delivery thus far is BitTorrent [11]. By

splitting files into small pieces, BitTorrent allows pieces to

be downloaded from multiple peers in parallel, significantly

improving the file-sharing efficiency [12]. BitTorrent-like ap-

proaches have also been used successfully for streaming [13].

A BitTorrent client typically downloads a file by first

obtaining a .torrent file from a Web server. The .torrent file has

information about the tracker(s) that maintain state information

about the peers currently downloading the file; this set of

peers is referred to as a swarm. In a swarm there may be

both leechers (which currently are downloading the file) and

seeds (which have a complete copy of the file). The .torrent

file also contains information that allows the client to validate

the correctness of the downloaded pieces, as well as the info

hash value for the file. The info hash is a unique identifier

for the file and can be used in communications with both the

tracker and with other peers. Each peer typically establishes

connections to a large set of peers with which it can then

exchange file pieces. This set of peers is typically referred to

as the peer’s peer set. For efficiency, at each point in time, a

peer typically only uploads pieces to a smaller subset of its

peer set [14].

Content availability: While efficient for popular content,

the BitTorrent system exhibits the content availability prob-

lem [15]–[17]. In particular, swarms with fewer simultaneous

file-sharing participants experience performance degradations

with respect to download times [6], [18]. With a long tail of

less popular files [1] this can be a significant problem.

There has been some preliminary work studying this prob-

lem, without providing specific solutions. One of the most

promising solutions is to request that peers help in the down-

load of other files [7], [8], [16], [19]. To the best of our

knowledge, the work by Menasche et al. [8], who apply a

queuing model and static bundling experiments to illustrate

the problem, and a simulation-based evaluation of dynamic

bundling policies by Carlsson et al. [7] are closest to our

current work. We are not aware of any works that design,

implement, and evaluate a prototype system.



III. SYSTEM DESIGN

This section describes the design of the Super Bundle

system. A preliminary version of the design was reported in

a work-in-progress paper [20].

A. Design Overview

Our system design had three primary goals. First, the system

should allow clients to assist in the delivery of files other than

those they request. Second, the system should be flexible and

be able to dynamically assign files to peers for the purpose

of assisting other peers. Finally, the changes to the BitTorrent

client should be kept at a minimum and allow for incremental

deployment. Our clients and trackers must therefore gracefully

interact with regular peers and trackers.

Our system introduces the idea of a super bundle, which

consists of a large catalogue of files. Clients request individual

files from this super bundle. In addition, based on commu-

nication with the tracker, peers are instructed to download

additional files from the super bundle. The subset of super

bundle files assigned to a peer is referred to as an individual

bundle. Our tracker adjusts individual bundles as required

by the implemented policy. For instance, the tracker can

dynamically adjust the bundles to adapt to the relative file

availabilities. In contrast with static bundling techniques [8],

our system can adapt to changes in demands.

Our implementation builds upon the mainline BitTorrent

structure and specifications and makes revisions as necessary.

To enable an efficient system that can make informed decisions

about which files a new peer should serve in addition to its

requested file, a number of BitTorrent components must be

modified. The primary modifications include changes to peer-

to-tracker communication, the addition of a bundle file selec-

tion mechanism at the trackers, a generalized piece selection

rule, and optimizations to the piece disk writing function.

• The communication protocol between the local peer and

the tracker must be revised. (We use “local” peer to refer

to the peer on which our BitTorrent software is running.)

For each peer, the tracker should be able to create an

individual bundle consisting of the file the peer wants to

download and the other files it must download according

to the tracker’s bundle selection policy.

• The tracker’s functionality will change, with addition of a

bundle selection policy to determine which files constitute

a peer’s individual bundle.

• The piece selection policy and actions taken when HAVE

messages are received must be revised. Peers should only

download files that are part of their individual bundle.

• The piece disk writing algorithm must be revised. The

piece priority in the disk writing algorithm must be

modified so that the pieces of interest can be written to

the disk with high priority.

Overall, our design will supplement the current system and

will not affect the mainline BitTorrent system mechanism.

Of course, the clients could easily be extended to include

additional mechanisms to prevent free-riding or be equipped

with software (provided by the content provider, for example)

that monitors the peers’ participation. The following sections

discuss the first three of the aforementioned implementation

issues. The reader is referred to [21] for details. A preliminary

version of our design was also presented in a three page work-

in-progress paper [20].

B. Peer-to-Tracker Communication

BitTorrent relies on two types of communication protocols:

peer-to-tracker and peer-to-peer. The peer-to-tracker commu-

nication, described in this section, is done using the HTTP

protocol. Peers inform the tracker about which files they are

interested in (using the file info hash) and listening ports. The

tracker maintains information about current peer participation,

uses incoming messages to update its peer information, and

returns information about other downloaders to the local peer.

To ensure up-to-date information, communication is periodic.

Basic updates: The basic HTTP-based communciation be-

tween a peer and the tracker in the mainline BitTorrent system

has four “event” types: started, no event, completed,

and stopped. A peer sends a started message to the

tracker on beginning the download, and a completed

message on finishing a download. While downloading, the

peer uses the no event message to periodically update the

tracker. A stopped message is used when a peer is gracefully

shut down. These four messages and their corresponding

events have individual processing modules on the tracker. The

information in the messages is used to update the tracker’s

information about the participation in the swarms.

Bundle negotiation and selection: We introduce a new

bundle negotiation event and devote to it a separate

processing module and message exchange. A peer uses a

bundle negotiation message to expresses its interest in

one or more files. The modified tracker uses this information

together with information on other peers currently down-

loading the different parts of the super bundle, to determine

which additional files the peer should also download, creates

an individual bundle for the peer, and communicates this

information back to the peer.

The constituent files of each individual bundle are deter-

mined using a dynamic bundle selection policy. This policy

selects the supplementary bundle file(s) during the bundle

negotiation stage and is implemented in the processing module

for the bundle negotiation event at the tracker. To

facilitate dynamic bundling, the tracker maintains a mapping

of the files (within the super bundle) and the peers associated

with each of these files. For such record keeping, a new status

file is created and maintained on the tracker. The new status

file is updated when the started and stopped events are

received by the tracker. The file allows the tracker to easily

obtain the number of peers currently downloading or seeding

a specific file. For the purpose of our evaluation we will use

two basic example policies.



C. Peer-to-Peer Comunication

Peer-to-peer communication is used to exchange informa-

tion about which pieces peers have downloaded, as well as

exchange the pieces themselves.

Communication overview: The Peer Wire Protocol (PWP)

is used for communication. A peer establishes a TCP con-

nection with each peer in its peer set. After connection

establishment and a successful PWP handshake, the peers can

exchange piece information. Blocks of pieces are uploaded

and downloaded over these connections. Different blocks of

the same piece can be obtained from different peers. After

download of a complete piece, a peer assembles the blocks

into a piece and sends a HAVE message to all its neighbors.

Unchoke policy: While peers maintain connections with all

peers in their peer set, for efficiency reasons, at each point in

time, the local peer typically only uploads pieces to a subset

of these peers. This subset is said to be unchoked and is

determined using BitTorrent’s rate-based tit-for-tat policy. By

giving upload preference to the peers that upload pieces to the

local peer at the highest rates, this policy provides incentive

to upload content to the local peer. To incentivize peers

downloading different contents to share pieces and ensure high

piece sharing efficiency, we apply the unchoke policy on the

entire bundle rather than on a per-file basis.

Piece selection policy: When unchoked, each peer must

select which piece to download next. At a high level, we

use a slightly modified version of BitTorrent’s rarest-first

policy, which gives preference to the pieces that are the least

replicated among the peers within the local peer’s peer set and

belong to the local peer’s individual bundle. We make use of a

piece index filter which requires minimal changes to the piece

selection policy. The peer simply requests and downloads only

pieces belonging to files in its bundle.

At a detailed level, the modifications to the piece selection

policy must take into account the status at the local peer when

it receives a HAVE message from the remote peer. In the case

that the local peer is choked when it receives a remote HAVE

message, applying our filter is trivial as we can pick the rarest

piece among the set of pieces that the peer is interested in and

the other peer has at the time the peer becomes unchoked.

On the other hand, if the local peer is already unchoked, the

default BitTorrent behavior is for the peer to directly request

the piece whose index is contained in the HAVE message

from the remote peer provided the peer does not already

have the piece. However, in our system the local peer may

not be interested in the piece (as it may not be part of its

individual bundle). We therefore modify this policy to be based

on interest.

D. Implementation

Our dynamic bundling system is built using the mainline

BitTorrent (version 3.3) source code. Although there have

been changes and improvement in later versions, version 3.3

provides the most clear structure among the open source

versions we examined. Version 3.3 includes all the main

features of BitTorrent and it strictly follows the BitTorrent

specification. This allows our high-level modifications to easily

be applied to later versions as well. Overall, our bundling

approach is relatively independent of the exact version of

the client software, and our choice of using version 3.3

for our experiments should not impact the relative bundling

performance in any significant way.

IV. DESIGN EVALUATION AND VALIDATION

A. PlanetLab Setup

PlanetLab is mainly used for academic research. The Plan-

etLab platform consists of computers distributed all over the

world. As of 2011, there were over 1,000 nodes at about 500

participating sites.1 Each PlanetLab project is assigned a slice,

which effectively provides access to a virtual machine on some

set of nodes/machines across the world.

In our experiments, a local Linux machine with a public IP

address served as the management host for the experiments,

as well as a tracker and seed.

We use PlanetLab tools such as CoMon2, pssh3, and

pslurp to distribute our software, manage experiments, and

collect results. The CoMon tool is used to obtain nodes

that satisfy desirable conditions. We use CoMon to obtain

information about the workload of each node. From the set

of lightly loaded hosts with good response time, we randomly

select a subset for our experiments. We use the pssh software

to push our modified source code to the selected nodes, and to

run commands remotely. Finally, we use pslurp to collect

the log files generated during experiments back to our local

host machine, where results are processed and analyzed.

B. Experimental Design

To evaluate the performance improvement with our super

bundle approach, we ran both steady-state and dynamic tran-

sient experiments. In all experimental setups, the peers tell

the tracker which file of the super bundle they are interested

in, and the tracker tells the peers which files to download.

In contrast to a regular BitTorrent system, each file now

corresponds to a part of a larger super bundle, and the tracker

keeps track of the number of downloaders of each file. In all

experiments, we assume that the peers leave the swarm as soon

as they finish downloading, without serving as a seed.

Bundling policies: We compare the performance of three

different tracker policies for creating individual bundles: (i) no

bundling, (ii) balanced bundling, and (iii) random bundling.

Approach (i) corresponds to the case where no bundling is

applied, and peers download nothing but the content they

are genuinely interested in. With the other two policies, any

peer requesting a file may also be asked to participate in the

distribution of one additional file, in addition to its requested

file. This file is selected from the super bundle such that there

exists at least one downloader but no more than some threshold

number of downloaders (e.g., 10). If no such additional file

1PlanetLab, http://www.planet-lab.org/
2CoMon software, http://comon.cs.princeton.edu
3Pssh software, http://www.theether.org/pssh/



exists, no additional file is assigned to the peer, and the peer

only downloads the file it initially requests. With the random

policy, the tracker picks an additional file at random. With the

balanced policy, the tracker picks the file that has the fewest

downloaders, with ties broken at random.

Experimental setup: Each experiment employs between

60-70 PlanetLab nodes, distributed across the world and

selected as described above. We use the same set of nodes

for each experimental comparison, and to reduce PlanetLab

node status variations, we finish each round of experiments

for comparison on the same day. As we are interested in the

download time characteristics of the above three approaches,

we ensure that each node has downloaded the .torrent file of

the super bundle, generated from all the files, prior to the

experiment. The .torrent file is created using 10 files, each

about 20 Mbytes. The size was selected to accommodate many

downloads per node, without reaching any bandwidth thresh-

olds set by PlanetLab. For all experiments, we use a single

seed and a single tracker, with both functions performed by

our local Linux host. Finally, to avoid external perturbations,

such as outside peers, we keep the torrent private.

For each experiment, we developed one or more control

scripts that we run in parallel on the different nodes. At each

node, the scripts determine when nodes should download a file,

and the duration of time between downloads. For the purpose

of our experiments, each peer always stops participating at the

time it has completed download of its requested file, at which

point it checks the correctness of the content and deletes all

its downloaded content (so that it will not have any content to

share at the beginning of its next file download).

During an experiment, we first start the tracker and the seed

on the local host, and then use pssh to invoke the script(s)

on the remote nodes. The scripts collectively control the

experiments, including how many rounds the PlanetLab hosts

should run the BitTorrent client software. At the end, the log

files are collected to the local host using pslurp, where they

can be further analyzed. The seed has an upload throughput

limit of 800 kBps. Other nodes in the experiments do not have

any imposed limit for upload or download throughput.

Performance measurements: Each BitTorrent client and

the tracker are instrumented to record various items of in-

formation. For each file download, the peers record statistics

such as download time, download and upload rate throughout

their download sessions, the time when each block of the file is

downloaded, as well as who provides this block. The nodes on

PlanetLab generally have unique public IP addresses, allowing

us to distinguish each node by its IP address (the IP address is

contained in BitTorrent messages). The control scripts generate

a log file that keeps track of the high-level statistics of what

is done by each node. For example, which file ended up being

downloaded, how long did it take, and how long did the node

sleep between downloads. At each point in time, the tracker

records how many peers participate in the download of each

file. At the end of each experiment, the log files and statistics

are collected to our local host, where we can analyze the traces.

We next present a selected set of analysis results.

C. Steady-state Download Delay Analysis

As a proof-of-concept analysis, we consider two simple

steady-state scenarios. In both scenarios, we have a single

super bundle containing one popular file and nine less popular

files. More specifically, we select the file popularity such that

the popular file is fifty times more popular than the other files.

In the first scenario, we let each node randomly choose its

interested file every time it begins to download. We call this

scenario random, steady state. In the second scenario, each

node is assigned a fixed file as its interested file for each of its

downloads. We call this scenario static, steady state. Clearly,

there will be more variability in the first of these scenarios.

Figures 1(a) and 2(a) show the download times for the

three policies, for each of our two scenarios, respectively.

For each file (labeled on the x-axis), we show the average

download time in seconds (y-axis). Figures 1(b) and 1(c)

show the download time distribution of the popular file and

the less popular files, respectively, for the random, steady-

state scenario. Figures 2(b) and 2(c) show the corresponding

distributions for the static scenario.

We note that the two bundling policies typically see sub-

stantially improved download times for the less popular files,

compared to the download times in the non-bundled exper-

iments. While this comes at the (small) cost of a slightly

increased download time for the popular file, we believe

that this improvement in the availability of the less popular

files (files 2 to 10) is desirable, as it significantly helps

offload the seed. This is caused by the popular file peers

helping other peers by downloading less popular files in the

super bundle, and thus offloading the seed. While neither the

average delay metric or the delay distribution provides a clear

winner between the balanced and the random bundle selection

policies, both policies significantly improve the download time

of the less popular content.

Comparing the two scenarios themselves, we note that much

of the differences in download times between the two scenarios

(particularly without bundling) is due to the random scenario

having a larger fraction of active peers that have requested the

less popular files. In the static scenario there will on average

only be a fraction 9/59 of the peers downloading these files.

In contrast, in the random scenario, the longer download times

of these files will cause this fraction to be higher.

D. Steady-state Download Progress

Let us now have a closer look at one of our bundling poli-

cies. Figures 4(a) and 4(b) show the download progress using

the random bundling policy for peers downloading the popular

file and the less popular files, respectively. Corresponding

results without bundling are shown in Figures 3(a) and 3(b).

While the time to download a certain percentage of the file is

consistently better for the popular file, for both popular and

unpopular files the relatively evenly distributed spacings of the

curves suggests that the download progress for both types of

files is quite steady, when bundling is employed. (Note the

log-spacing of curves, as well as the log scale of the x-axis.)

However, the corresponding lines for the case in which no
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Fig. 1: Download time in the random, steady-state scenario.
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Fig. 3: Download progress without bundling. Download progress measured by the time it takes to download a certain percentage

of the file content.

bundling is applied (see Figure 3(b)) are much more squished

together for the less popular files, as peers initially may not

have any peers to download from, and the peers may have to

wait for the seed to help them out. The differences in download

progress for the popular file (see Figures 4(a) and 3(a)) are not

so obvious, due to the abundance of resources in the swarm.

E. Upload and Download Rates

For a closer look at what happens at the peers, Figure 5

shows the download rate as observed when using the random

bundling policy. While the download progress looks fairly

smooth, it is interesting to note that we still observe the first

piece problem and the last piece problem, as exemplified by

the lower download rate for peers in the beginning (5%) and

the end (100%) of their download, respectively [14], [22].

The first piece problem is due to peers at the beginning

of their download not yet having obtained pieces to exchange

with others, and that therefore must rely on optimistic unchok-

ing. For example, when a new peer participates in a swarm,

a purely rate-based unchoke algorithm will never choose the

new peer (without pieces to share). Thus, the new peers largely

rely on optimistic unchoking. With only a small fraction of
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Fig. 5: Download rate after a peer has made a certain download progress. (Random bundling policy)

the upload connections allocated for optimistic unchoking this

naturally leads to the low download rate at the beginning of

the download. As we can see, the 5% line in Figure 5 has

much lower download rate than others.

The last piece problem is due to peers at the end of their

downloads less likely to be unchoked, as few peers have

pieces they want. The closer to the end, the more evident

the problem becomes. We note that these differences are

observed for both types of peers. In contrast, if we take a

closer look at the upload rates of these peers, the upload

rate with which the peers can contribute, as expected, is

monotonically non-decreasing. This is illustrated in Figure 6.

As the download percentage increases, the peer upload rate

gets higher accordingly.

F. Dynamic Transient Experiments

To capture how the policies adapt to changing conditions,

we use a set of dynamic experiments, in which the file popu-

larity changes with time. As in our steady-state experiments,

we use two scenarios: one with purely random file requests, in

which the popular file is requested with higher probability than

the less popular ones, and one in which the files requested by

each node are statically assigned. The results for both cases

are similar, and for the purpose of evaluation, only results for
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the random bundling policy for the dynamic experiments.

the random scenario are presented here.

For this scenario, we use a total of 69 PlanetLab nodes. We

modify the script such that the request rate is time varying,

with a time granularity of the same order of magnitude as the

download time. In particular, we let the probability of selecting

the most popular file (file 1) be 60/69 with the exception

of the time interval between 1,200 to 2,400 seconds, during

which it is 40/69. During the corresponding time interval, the

probability of selecting file 2 increases from 1/69 to 21/69. For
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all other files, the probability remains fixed at 1/69. As a result,

there is a higher request rate during the time interval between

1,200 to 2,400 seconds for file 2. This allows us to see how

the download performance for file 2 changes over time, as the

popularity as well as the assignment of helper peers changes.

We keep the experiment running for at least 3,600 seconds

before killing the scripts. As before, the bundling policies

select files to help from the set of files that have between

1 and 10 peers currently downloading the file.

Figure 7 shows how the number of peers changes over time

for the random bundling policy. We note that our tracker-based

bundling policies are adaptive, and ensure that file 2 has a

reasonable number of downloaders both when it is popular

(between 1,200 - 2,400 seconds) and unpopular. While the

request rate changes by a factor of 20, the number of peers

changes by only a factor of 2-4.

The effect of the changes in popularity on the download

times can be seen in Figure 8, where we compare the download

time for different files. Results are shown for the two bundling

policies, as well as without bundling. The reported download

times are the average of the download times of the peers

arriving within a 250 seconds wide time window. For the most

popular file (file 1; popular/red line), the average download

time does not change much with the fluctuation of the number

of peers. The high selection probability of the most popular

file (40/69 for file 1 during the 1,200 to 2,400 second period

and 60/69 otherwise) guarantees its relatively stable download

rate. However, the increased popularity of the dynamic file

(file 2; dynamic/blue line) can lead to significant changes

in its download time. This can be seen without bundling

(Figure 8(a)). The file 2 download time during the 1,200 to

2,400 second period (dynamic/blue line) is much lower than

that before 1,200 and after 2,400 seconds.

In contrast, with the random bundling policy (Figure 8(b))

and balanced bundling policy (Figure 8(c)) the download

time is much more stable. For example, the bundling policy

adaptively adjusts the allocation of helper peers for file 2

download during the time interval when the file is more

popular, and it does not require such peers. For the cold files

3-10, the download time should not change too much because

they have the same selection probability throughout and this

can be seen for both bundling policies (Figures 8(b) and 8(c)).

Finally, we note that these dynamic results provide ad-

ditional examples of how the download times for the less

popular files can be improved with the help of bundling. This

is particularly evident by comparing the download times of file

2 during the times it is less popular (as well as the download

times of the other less popular files) for the cases with and

without bundling.

V. DISCUSSION AND CONCLUSIONS

In this work, we presented the design of a dynamic bundling

system along with a proof-of-concept implementation of the

design. We create super bundles of many files and let users

pick which files they want and request that they also help

out in the sharing of one or more additional files within

this bundle. The file(s) a user downloads in addition to the

user’s file of interest are determined dynamically. Dynamic

allocation of individual bundles allows the system to inflate

swarms based on measured demand for files and the desired

tradeoff (for example between server bandwidth and download

latency). While our super bundle approach allow for dynamic

bundling and adjusting the participation in the sharing of files,

we acknowledge that it has some limitations.

One shortcoming of the current implementation is that super

bundles must be statically created, and once a super bundle is

created additional files cannot be added to it. An ideal imple-

mentation would have a single giant super bundle that contains

all existing files, and to which files may be dynamically added.

For such flexibility to be achieved, a number of issues must

be addressed. Most importantly, peers must be able to easily

communicate interest and make piece requests among each

other regardless of which files they are downloading. Unfor-

tunately, the current mainline software makes this difficult to

implement when peers use different .torrent files in which the

relative piece indices for the same content may be different.4 In

4As an example, we have found that there are at least nine types of
mappings of piece indices in the system. Based on these mappings, we have
made initial experiments when peers are only allowed to have at most two files
per individual bundle. However, this alternative approach has been difficult to
generalize. The super bundle system allows larger individual bundles [21].
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Fig. 8: Download time for the random dynamic scenario. (Reported download times are the average download times of the

peers arriving within a 250s time window.)

addition to communication between peers, another challenge

is the piece disk writing algorithm which constrains the piece

writing sequence. Similar challenges are associated with disk

reads. In general, the current BitTorrent standard and software

are based on the assumption that all the peers in the swarm

have the same .torrent file, referencing the same pieces with

the same piece index sequence. These assumptions do not fit

the design of a fully dynamic bundling system, and hence

introduce more difficulties for modifying the source code.

Given the complexity of a fully generalized dynamic

bundling system, the super bundle system is designed such

that peers can be assigned individual bundles from a large

catalogue of files. The approach provides high flexibility and

our experimental performance evaluation is encouraging. To

the best of our knowledge this is the first implementation of

a dynamic bundling system. It provides concrete validation

of dynamic bundling as a solution to the content availability

problem in BitTorrent. The design only makes small changes

to current BitTorrent systems, makes use of the current sys-

tem structure and is compatible with the current BitTorrent

specification. We leave the fully dynamic bundling system

implementation and experiments for future work. Ongoing

work includes the mathematical modeling of which contents

in a large catalogue to bundle, and which not to bundle [23].
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