
Content Delivery using Replicated Digital Fountains

Niklas Carlsson

University of Calgary

Calgary, CA, Canada

ncarlsso@cpsc.ucalgary.ca

Derek L. Eager

University of Saskatchewan

Saskatoon, SK, Canada

eager@cs.usask.ca

Abstract—With a majority of Internet traffic being predicted
to be caused by content delivery, it is clear that content delivery
applications will consume much of the resources on the Internet.
This paper considers the problem of cost-efficient content deliv-
ery, in which the application incurs both a network delivery cost
(e.g., from cross ISP traffic or, more generally, operation/energy
costs at Internet routers) and costs at the servers (e.g., due to cost
of ownership, energy, or disk bandwidth). While the cost objective
and the absolute cost tradeoff may be different from case to
case, we argue that an architecture with distributed servers, each
using digital fountain delivery, may be an attractive candidate
architecture when considering the total content delivery cost.
Within the context of a simple system model, we then determine
optimal server selection policies for such an architecture, and
derive analytic expressions for their associated delivery costs. A
readily-implementable heuristic policy is proposed that is found
to achieve within 10% of the minimal cost. Finally, we show how
our results for content download can also be applied to streaming
video delivery.

I. INTRODUCTION

Content delivery applications consume a large fraction of

the total Internet bandwidth [1], both at the servers and

throughout the network. The problem of cost-efficient content

delivery, in which the application endures both a network

delivery cost and costs at the servers, is therefore becoming

increasingly important. Network delivery costs (e.g., from

cross ISP traffic or, more generally, operation/energy costs

at Internet routers) have traditionally been reduced through

replication techniques (e.g., [2]–[5]), in which multiple servers

(often geographically distributed as in a CDN, for example)

share the load of processing client requests and may enable

delivery from a nearby server. To reduce costs at the servers

(e.g., due to cost of ownership, energy, or disk bandwidth)

service aggregation techniques (e.g., [6]–[10]) have been pro-

posed that allow multiple client requests to be served together

more efficiently than if served individually.

Although service aggregation can yield high efficiency on

its own, a potential drawback of serving requests for particular

content at a common server is the cost of delivering the content

to a client far away from this server. In general, the content

delivery solution that minimizes the cost may entail use of both

replication of the content at geographically distributed servers,

with each of these servers using some service aggregation

technique. This paper focuses on server-based approaches that

use both replication and service aggregation. In particular, we

advocate a content delivery system with multiple servers, each

using digital fountain delivery. With digital fountains typically

erasure coded [6], [8], [11] content is cyclically delivered

whenever there is at least one client that has requested the

file and has not yet received all blocks.

In systems with multiple servers, each using digital foun-

tain delivery, a policy is needed for selecting the server(s)

from which each client receives service. Note that there

is a tradeoff between locality of service, and efficiency of

service aggregation. In particular, the network cost of serving

a request is minimized by a policy that selects the nearest

server, while server cost is minimized by directing all closely-

spaced requests for the same content to a common server.

An optimal policy for any particular system might be one

of these extremes, or an intermediate policy, depending on

workload parameters as well as on the precise characteristics

of the network and server costs associated with the system

under consideration.

In this paper, we formulate a simple system model that

enables analytic comparison of server selection policies that

are optimal within their respective class, as well as determi-

nation of a tight lower bound on content delivery cost. Our

results provide insights both with regards to the cost tradeoffs

and the performance that are achievable with different policy

classes and what policy complexity is needed to achieve close

to minimum delivery cost. Based on the insights from the

operation of the optimal (lower bound) policy, a readily-

implementable policy is proposed that is found to achieve

within 10% of this lower bound. Finally, we show how our

results for content download can also be applied to streaming

video delivery, through use of the Reliable Periodic Broadcast

(RPB) protocols [12]. These protocols divide the video file

into segments of increasing lengths, each of which is delivered

using a digital fountain. In systems in which the segments are

replicated at multiple servers, a server selection decision is

needed for each segment.

The remainder of the paper is organized as follows. Sec-

tions II and III present a case for using distributed fountains

and our system model, respectively. Section IV presents an

optimal (tight) lower bound policy that achieves the minimum

possible delivery cost and compares this lower bound to the

costs with three simple baseline policies. Motivated by the cost

differences between the baseline policies and the lower bound,

improved server selection policies are described and evaluated

in Section V. Section VI applies our results to streaming video

delivery. Related work is discussed in Section VII. Finally,

conclusions are presented in Section VIII.

II. THE CASE FOR DISTRIBUTED DIGITAL FOUNTAINS

We are interested in the scenario where clients are to receive

service without being subjected to any additional batching

delay. For this case, the most efficient service aggregation

technique in the absence of packet loss uses cyclic delivery.

Consider a large file stored on disk, to be delivered over a

network supporting only unicast communication, by a single

server. With cyclic delivery, while there is at least one client

that has requested the file and has not yet received all blocks,

the server retrieves the next file block (wrapping around if at

the end) from disk, and sends it to all such clients. In this

manner, server costs such as disk accesses can be amortized

over many requests. If multicast (IP or application level) is

available and employed this approach reduces network costs

as well.

The digital fountain technique is similar in that whenever a

block is transmitted, it is sent to all clients that have requested

the file, but with this technique the file is erasure coded [6],

[8], [11]. Erasure coding allows clients to recreate the original

content after having received as many (or slightly more,

depending on the erasure-coding technique) unique blocks as

there are blocks in the uncoded file. Thus, when packet loss

occurs, the respective client does not need to wait until the

server cycles around and transmits the lost packet(s) again.

For simplicity, in the remainder of this paper, we use the

term “digital fountain” to refer to either true digital fountain,

or to cyclic delivery of the uncoded file, with the choice among

these techniques dependent on the packet loss characteristics.

In addition to replication and service aggregation, we

note that peer-to-peer (e.g., [13]) techniques also provide a

scalable distribution solution. However, overall, server-based

approaches may enable greater control of the content, and

allow the use of service aggregation techniques for hot content,

as in the digital fountain technique, which can dramatically

reduce the total work required for servicing a request stream.

(Note that peer-to-peer techniques transfer work from servers

to peers, but may not reduce the total amount of work

performed [14].) Should reducing the total work become

increasingly important (e.g., due to energy consumption con-

siderations) we expect that server-based solutions will become

increasingly attractive compared to peer-to-peer solutions [15],

at least for the hot content for which service aggregation is

applicable.

Finally, with much recent attention being on sustainability

and energy efficiency, we note that a major issue in content

delivery is the energy cost of the required server resources.

With the emergence of “green” energy and “green” data

centers (e.g., zero-carbon data centers) located close to (or at

the site of) renewable energy sources, however, server-based

approaches have the advantage that they potentially can use

“greener” energy than that consumed by the peers in peer-to-

peer approaches. Further, there is considerable current work

on making power usage in servers and data centers more

“proportional” [16], [17]. For these reasons, as the totality and

the form of energy usage become more important, we expect

TABLE I: Notation
Symbol Definition

λi File request rate from the clients of group i; groups
indexed so that λi ≥ λj , for i ≥ j

λ Total request rate, summed over all client groups

L Amount of data that a client needs to receive to success-
fully reconstruct the requested file

M Number of client groups

N Number of servers

Ci Server i file delivery cost

C Total file delivery cost

c Remote access cost per unit of data received for all client
groups i and servers j, i 6= j

gi Average fraction of the file data that a group i client
receives from a remote server

b Fountain data rate

that server-based solutions will become increasingly attractive.

III. SYSTEM MODEL

We use here a simple model that allows us to focus on the

impact of the server selection policy, and in particular on the

tradeoff between choosing the nearest server or a common

server at which multiple requests may be served concurrently.

We consider delivery of a single representative file that is

replicated at N homogeneous servers1, each of which uses

digital fountain delivery. Clients are divided according to

network location into M groups, such that all of the clients

in a group can be considered to be at approximately the

same network distance from each server. For simplicity, in the

following it is assumed that M = N . Given this assumption,

the client groups and servers are indexed such that server i is

the nearest (the “local”) server for group i clients. Each server

j for j 6= i is called a “remote” server for this group.

Requests for the representative file from the clients of

each group i are assumed to be Poisson at rate λi, with the

servers/groups indexed from 1 to N in non-increasing order

of their request rates. Poisson arrivals can be expected for

independent requests from large numbers of clients, but have

also been observed in measurement studies of content delivery

systems with smaller numbers of clients (e.g., [20]). Note

that request burstiness is beneficial in systems using service

aggregation; so, for a fixed average request rate, the delivery

cost in systems with burstier request arrival processes typically

is lower than predicted by models assuming Poisson requests.

Denoting the fountain data rate by b, and assuming, for

simplicity, that clients need to receive a fixed amount of data

L to reconstruct the file, the file download time is equal to

L/b. The system metric of interest is the total file delivery

cost required to achieve this client performance. In the simple

model we use here, the costs are assumed to consist of only

the following three kinds:

- System costs that do not depend on the server selection

policy (for example, are fixed, or are dependent only on

1The model could be easily extended to reflect differences among the
servers with respect to relative “cost”, as might result from pricing differ-
ences [18], [19] or carbon cost.

the client request rates and file size), and can therefore

be neglected in our model.

- Server costs (associated with CPU, disk, and other com-

ponents) that increase linearly with the time a digital

fountain is active, and the data rate of the fountain,

independently of how many clients are receiving the

fountain transmissions.

- Network costs that represent the increased cost associ-

ated with receiving data from a remote server, assumed

linearly proportional to the amount of such data.

Given this assumption, the total file delivery cost C is defined

as the total average rate at which cost is incurred at the servers,

plus the total average rate at which remote access cost is

incurred, neglecting any cost component that does not depend

on the server selection policy. The average rate at which cost

is incurred at server i (Ci) is given (using normalized units)

by the fountain data rate b times the proportion of time the

digital fountain at server i is active. The remote access cost

incurred when a client from group i receives a fraction g of its

data from a server j is given by cijgL, where the constant cij

gives the network cost per unit of data received when server j
delivers data to a client from group i. Since we model only the

increased cost associated with receiving data from a remote

server, cii = 0. For simplicity, in the following it is assumed

that the cij for all i 6= j are identical, equal to some constant

c. It is also assumed that 0 < c < 1; if c ≥ 1, then it is always

optimal to simply choose the local server for each request.

Using the notation defined in Table I, this yields

C =
N

∑

i=1

Ci + (
N

∑

i=1

λigi)cL, (1)

where the first term corresponds to the policy-dependent server

costs, and the second term corresponds to the policy-dependent

network costs.

While the precise characterization of the various network

and server components of the total cost is complicated by

many factors (including the sharing of components with other

applications, splitting of costs among multiple organizations,

and different energy sources being more or less environmen-

tally friendly and/or costly), we believe that the above model

captures most first-order effects. Furthermore, we note that

the model has been found to capture the performance and

cost tradeoffs among different server selection policy classes

observed using more detailed network topology models [21].

IV. BASELINE POLICIES AND LOWER BOUND

A. An Optimal Tight Lower Bound Policy

In the context of the model of Section III, an optimal server

selection policy (i.e., one that achieves the minimum possible

file delivery cost) can be determined if complete knowledge

of the system state is assumed, as well as negligible overhead

for activating/deactivating fountains or switching service from

one server to another. Analysis of the delivery cost with such

a policy then yields a lower bound on the delivery cost that

would be possible with a realistic policy.

Consider some arbitrary point in time t, and denote the

number of group i clients that have requested the file but not

yet fully received it at time t by ni. If all of the ni are zero, no

fountain is active at time t; otherwise, there must be at least

one server with an active fountain. Suppose that the fountain

at some server j is active, and that ni > 0 for some i 6= j.

Cost is minimized if the group i clients receive service locally

(requiring the fountain at server i to be active), rather than

remotely (at server j, for example), if and only if ni > 1/c.

Based on the above necessary conditions of an optimal

policy, it can be shown that the following policy achieves the

minimum file delivery cost. At each time t, and for each i, the

fountain at server i is active if and only if either ni > 1/c,

or ni = maxjnj ≥ 1 and there is no k < i such that

nk = maxjnj . Group i clients receive service from server

i if its fountain is active, and otherwise receive service from

any remote server with an active fountain.

An optimality proof easily follows from the fact that the

remote access cost incurred by serving group i clients remotely

is greater than the cost of serving these requests locally (by

activating the local fountain) whenever ni > 1/c, and less than

the cost of serving these requests locally whenever ni < 1/c.

The total file delivery cost with the above policy, and thus

a tight lower bound on the delivery cost achievable with any

server selection policy, is given by

b
∑N

i=1

[

(1 − p(ni ≤ 1/c)) +
∑⌊1/c⌋

k=1 p(ni = k)

[

kc+

+ (1 − kc)
∏i−1

j=1 p(nj < k)
∏N

j=i+1 p(nj ≤ k)

]]

,

(2)

where p(ni = m) = (λiL/b)m

m! e−λiL/b. Here the first term

within the outer sum gives the server cost of the fountain at

server i being active, owing to there being more than 1/c
active group i clients. The first term within the inner big

brackets gives the remote access cost incurred by group i
clients receiving service remotely, when there are no more

than 1/c active group i clients. The second term within the

inner big brackets accounts for the case in which there are

no more than 1/c active group i clients, and yet the fountain

at server i is nonetheless active (implying that server cost is

incurred at server i, but no remote access cost owing to the

active group i clients).

B. Baseline Policies

We now consider three very simple baseline policies, and

compare the file delivery costs with these policies to that of

the lower bound given by expression (2).

• Individual delivery at local server: Perhaps the simplest

policy is to serve each request individually at the closest

server. Since there is no remote access with this policy

and each client receives data individually at rate b for

duration L/b from its local server, the total file delivery

cost is given by λL.

• Fountain delivery at local server: Similarly to the

previous policy, each request is served at the local server,

but now the servers use digital fountain delivery. Since

the download time for each client is L/b, the probability

of there being at least one active group i client (and

therefore of the fountain at server i being active) is

1 − e−λiL/b, and the total file delivery cost is given by

b(N −
∑N

i=1 e−λiL/b).
• Fountain delivery at single server: An approach that

minimizes the server cost, at the expense of potentially

high remote access cost, is to use a single server for all

requests. It is most efficient to pick the server whose local

client group has the highest request rate, which is server

1 with our indexing. This policy has a total file delivery

cost of b(1 − e−λL/b) + (λ − λ1)cL.

C. Performance Comparisons

In the following comparisons, without loss of generality

the unit of cost is chosen to be the server delivery cost for

a fountain delivering data at rate b for time L/b (the client

download time), and the unit of time is chosen to be L/b.

With these choices of units, b = 1 and L = 1. A request rate

of 2 with these units, for example, implies that there are two

requests for the file in the time it takes to download the file. We

will often show costs divided by the total request rate, giving

the average cost per request. If the total server delivery cost

per request, with our chosen units, is 0.5, for example, then on

average each active fountain is serving 2 clients concurrently.

Figures 1(a) and (b) show the average server cost and remote

access cost per request, respectively, as functions of the file

request rate from each client group, for the baseline policies

and the lower bound policy. These figures use our default

parameter settings of N = 16 servers (and client groups), a

remote access cost per unit of data received of c = 0.5, and an

equal request rate from all client groups (α = 0, where α is

the Zipf parameter that we will use for cases of heterogeneous

request rates). Comparing fountain delivery at the local server

to individual delivery at the local server, note that fountain

delivery begins to yield appreciable cost benefits at a request

rate from each client group of about 0.1. With the lower bound

policy, clients receive service from their local server when the

request rate is either very low or very high; at intermediate

request rates, some fraction of clients receive service at a

remote server so as to make better use of service aggregation.

Figure 1(c) shows the percentage increase in the total file

delivery cost with each of the baseline policies, in comparison

to with the lower bound policy, as functions of the request

rate from each client group. (Note that this corresponds to

comparing the relative differences of the combined costs

shown in Figures 1(a) and 1(b).) Note that both individual

delivery at the local server, and fountain delivery at a single

server, become highly inefficient for high request rates, owing

to high server costs and high remote access costs, respectively.

Fountain delivery at the local server is efficient for both low

and high request rates, but is significantly sub-optimal for

intermediate request rates.

Figures 2(a), (b), and (c) show the impact of alternative

parameter settings. Figures 2(a) and (b) show results for

scenarios with an equal request rate from all client groups

(λi = 1), and varying remote access cost and number of

servers (and client groups), respectively. Figure 2(c) shows

results for scenarios in which the client group request rates

are Zipf distributed, with the request rate λi from client

group i equal to Ω/iα, where the normalization constant

Ω = N/
∑N

j=1
1

jα . Note that with α = 0, all client groups

have the same request rate; for α = 4, in contrast, 92% of the

requests are from client group 1.

As shown in Figures 1 and 2, for each of the baseline

policies there are substantial regions of the parameter space

in which the policy yields a delivery cost much greater

than optimal. Although the lower bound policy can achieve

substantially lower cost than the baseline policies, it is also

substantially more complex, requiring full knowledge of how

many clients are active from each client group at each point in

time, and re-evaluation of server selection decisions whenever

the population of active clients changes. Motivated by these

results, the following section proposes improved policies and

evaluates their associated file delivery costs.

V. IMPROVED POLICIES

In this section we consider three policies for which the

associated delivery costs are expected to be lower than with

the baseline policies, and that also have substantially lower

overheads than the lower bound policy.

• Optimal static policy: Only knowledge of the client

group request rates λi (together with basic system pa-

rameters such as the number N of client groups and

servers, and the remote access cost per unit of data c) are

used to determine the server that will serve the requests

from each client group. The optimal static policy achieves

the minimum cost among all policies that make server

selection decisions independent of the system state.

• Optimal at-arrival policy: Immediately when a request

is made, it is decided which server the respective client

will receive service from, at each point during the client’s

download time of L/b. The optimal at-arrival policy

achieves the minimum cost among all such “at-arrival”

policies. Note that this policy uses knowledge of the

current global system state, as well as the request rates.

Owing to the information it requires for its server selection

decisions, the optimal at-arrival policy may be infeasible. It

is also inflexible once server selection decisions have been

made. A decision to use a remote server, for example, can

not be changed if there is a sudden burst of requests from the

same client group that would warrant activating the fountain

at the local server.

• Dynamic policy: The dynamic policy that we consider

allows server selection decisions to be changed dynam-

ically, as in the lower bound policy, but much less

frequently, and using considerably less state information.

The first two policies delimit the performance achievable

with their respective classes of policies. The dynamic policy

attempts to achieve the benefits of the more flexible approach

1

0.8

0.6

0.4

0.2

0

 0.001 0.01 0.1 1 10 100

S
e

rv
e

r
C

o
s
t

p
e

r
R

e
q

u
e

s
t

Request Rate of each Client Group

Individual; local
Fountain; local

Fountain; single
Lower bound policy

(a) Server cost

1

0.8

0.6

0.4

0.2

0

 0.001 0.01 0.1 1 10 100

R
e

m
o

te
 A

c
c
e

s
s
 C

o
s
t

p
e

r
R

e
q

u
e

s
t

Request Rate of each Client Group

Individual; local
Fountain; local

Fountain; single
Lower bound policy

(b) Remote access cost

100

80

60

40

20

0

 0.001 0.01 0.1 1 10 100

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Request Rate of each Client Group

Individual; local
Fountain; local

Fountain; single

(c) Relative difference

Fig. 1: Performance of baseline policies (c = 0.5, N = 16, α = 0).

100

80

60

40

20

0

10.80.60.40.20

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Remote Access Cost per Unit of Data

Individual; local
Fountain; local

Fountain; single

(a) Remote access cost per data unit (c)

100

80

60

40

20

0

128643216842

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Number of Servers

Individual; local
Fountain; local

Fountain; single

(b) Number of servers (N)

100

80

60

40

20

0

4211/21/41/81/16

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Load Skewness

Individual; local
Fountain; local

Fountain; single

(c) Load skewness (α)

Fig. 2: Impact of system parameters on baseline policies (default parameters: c = 0.5, N = 16, λ = N,α = 0).

to server selection used in the lower bound policy, while

reducing the state information needed.

The following three subsections describe in detail each of

the above policies, and present analyses of the first two. Cost

comparisons are provided in Section V-D.

A. Optimal Static Policy

Since static policies do not use information concerning

the system state, there is no advantage in such policies to

switching servers during a client’s download time. Thus, in

the optimal static policy, each request is served at a single

server. Further, in a static policy, either all requests from a

given client group are served by the same server, or server

selection is probabilistic. With Poisson requests from each

client group, request arrivals at each server will also be

Poisson, and therefore (with fountain delivery) the server cost

Ci is a monotonically increasing, concave function of the

request arrival rate at server i.
Since we assume cij = c for all i 6= j, the concave

increasing form of Ci implies that it is optimal to serve all

requests that receive remote service at the server with the

highest rate of requests from its local client group (i.e., server

1, given our assumed indexing). Also, it is optimal to serve

either all requests from a client group at server 1, or none, and

the former case can hold only if all requests from client groups

with equal or lower request rate are also served remotely.

Based on the above, in our optimal static policy there is

an index k(1 ≤ k ≤ N), such that all requests from group

i clients, for i ≤ k, are served at the local server, while all

requests from group j clients, for j > k, are served at server

1. The total file delivery cost with this policy is given by:

mink=1,2,...,N

[

b(1 − e
−(λ1+

∑

N

i=k+1
λi)L/b

)

+
∑k

i=2 b(1 − e−λL/b) + c
∑N

i=k+1 λiL

]

.

(3)

It is interesting to note that the optimal static policy has

some similarities with the lower bound policy. In particular,

the server whose local client group has the highest request rate

(optimal static policy) or highest number of currently active

clients (lower bound policy) serves (at least) its local clients,

as does any server whose local client group has a request rate

(optimal static policy) or number of currently active clients

(lower bound policy) greater than a threshold value.

B. Optimal At-arrival Policy

With an at-arrival server selection policy, at the time of a

client’s request it must be determined which server the client

will receive data from at each point during the client’s down-

load time. Denoting the time since the previous request arrival

by ta, it is necessary to determine: (1) which server’s fountain

should be scheduled to be active for the last min[ta, L/b] of

the download time, and (2) for each time instant at which the

fountain of the local server is not scheduled during the initial

max[0, L/b− ta] of the download time, whether this fountain

should now be scheduled for that time, or whether the new

request should receive service from a remote server whose

fountain is already scheduled at that time (such a server must

exist owing to the previous request).

1) Homogeneous Case: Consider first the case in which

all client groups have the same request rate λ/N . In this

case, it is clearly optimal to schedule the fountain of the local

server for the portion of the download time during which no

server’s fountain is already scheduled (the last min[ta, L/b]).
For each time offset t at which the local server’s fountain is not

scheduled, within the initial max[0, L/b− ta] of the download

time, it is optimal to schedule the fountain of the local server,

rather than to have the new request receive data from a

(remote) server whose fountain is already scheduled, if and

only if b ≤ bc(1+(λ/N)t), or equivalently t ≥ N(1−c)/(cλ).
Denoting the threshold value min[N(1 − c)/(cλ), L/b] by T ,

the above observations yield the following total file delivery

cost with the optimal at-arrival policy:

b

[

N(1 − e−(λ/N)(L/b−T)) + (e−(λ/N)(L/b−T) − e−λ(L/b−T))cλT

+e−λ(L/b−t)((1 − e−λT) + c(λT − (1 − e−λT))
N − 1

N
)

]

. (4)

This expression is derived as follows. Consider the state of

the system at an arbitrary point in time under the operation

of the optimal at-arrival policy. If there was at least one

request from client group i at an offset prior to the current

time in the interval [−L/b,−T], the fountain at server i will

currently be active, yielding the first term within the outer

parentheses. If there were no requests from group i but at

least one request from some other group j in [−L/b,−T] (and

thus the fountain at server j is currently active), any group i
requests that were made in [−T, 0] will currently be receiving

service from a remote server, yielding the second term within

the outer parentheses. Finally, if there were no requests from

any group in [−L/b,−T], one server’s fountain will currently

be active if and only if at least one request arrived in the

interval [−T, 0], and all requests that arrived in the interval

[−T, 0] from client groups other than that from which the first

such request arrived, will currently be receiving service from

a remote server.

2) Heterogeneous Case: For the general case in which

client groups may have differing request rates, the optimal

choice between receiving service from a remote server whose

fountain is already scheduled, or scheduling the local server’s

fountain, is determined according to the time offset t from the

beginning of the download time as in the case of homogeneous

client groups. For t ≥ Ti = min[(1 − c)/(cλi), L/b], it is

optimal to schedule the local server’s fountain; otherwise, it

is optimal to receive service from the remote server.

Unlike in the case of equal request rates, for new requests

from other than group 1 (that with the highest request rate)

it may not be optimal to schedule the local server’s fountain

for the portion of the client’s download time during which

no server’s fountain is already scheduled. Consider a newly-

arriving request from other than group 1, and a time offset

t > T1 from the beginning of the download time, at which

no server’s fountain is already scheduled. In this case, it is

optimal to schedule the local server’s fountain to be active at

time t if and only if b(1− e−λ1(t−T1))+ e−λ1(t−T1)bcλ1T1 ≤
bc(1+λit); otherwise, server 1’s fountain should be scheduled

instead. The left-hand side of this relation corresponds to the

expected cost associated with scheduling the local server’s

fountain for time t. This cost takes into account the possibility

that even if the local server’s fountain is scheduled to be

active at time t, server 1’s fountain may at the time of a

subsequent group 1 request arrival also be scheduled to be

active at time t. Consider now t ≤ T1. It is optimal to schedule

the local server’s fountain to be active at time t if and only

if bcλ1t ≤ bc(1 + λit); otherwise, it is optimal to schedule

server 1’s fountain instead. Combining these two cases yields

the condition

(1−eλ1(t−min[t,T1]))+e−λ1(t−min[t,T1])cλ1min[t, T1] ≤ c(1+λit).
(5)

It is straightforward to verify that this condition divides the

interval [0, L/b] into (at most) three regions: an initial region

in which the condition holds, a second region that may or may

not be present and in which the condition does not hold, and

(should the second region be present) a third region that may or

may not be present in which the condition again holds. Define

T ′
i and T ′′

i to be the boundary values separating the regions,

should all three exist, with T ′′
i < T ′

i ; note that we must have

T ′
i < Ti in this case. If just the first two regions exist, we

must have Ti = L/b. In this case define T ′′
i as the boundary

value separating these regions and define T ′
i = Ti (= L/b).

Finally, if only the first region exists, define T ′′
i = T ′

i = Ti.

Then it is optimal to schedule the local server’s fountain to

be active at time t for t ≤ T ′′
i and for t ≥ T ′

i , and server 1’s

fountain for T ′′
i < t < T ′

i .

Defining fi as the fraction of requests that are from client

group i, analysis of the above optimal at-arrival policy yields

the following expression for the total file delivery cost, for the

general case of heterogeneous client group request rates:

b
∑N

i=2{(1 − e−λi(L/b−Ti)) + (e−λi(L/b−Ti) − e−λi(L/b−Ti))cλiTi

+ e−λ(L/b−Ti)(1 − fi)c(λTi − (1 − eλTi))fi

+ ((e−λ(L/b−Ti) − e−λ(L/b−T ′

i
)) + (e−λ(L/b−T ′′

i
) − e−λL/b))fi

+ e−λ(L/b−T ′

i
)fic(λi(T

′
i − T ′′

i) + (1 − eλ(T ′

i
−T ′′

i
))(1 − fi))

+ (e−λ(L/b−T ′

i
) − e−λ(L/b−T ′′

i
))ficλiT

′′
i

+ e−λ(L/b−T ′

i
)eλ1(T

′

i
−T1)(1 − e(λ−λ1)(T

′

i
−max[T1,T ′′

i
]))λi(1−cλ1T1)

λ−λ1

+ (e−λ(L/b−max[T1−T ′′

i
]) − e−λ(L/b−T ′′

i
))fi(1 − cΩ)}

+b{(1 − e−λ1(L/b−T1)) + (e−λ1(L/b−T1) − e−λ(L/b−T1))cλ1T1

+ (e−λ(L/b−T1) − e−λL/b)f1

+ e−λ(L/b−T1)(1 − f1)c(λT1 − (1 − e−λT1))f1}
(6)

where

Ω = λ1max[T1, T
′′
i] + (

λmax[0, T1 − T ′′
i]

1 − e−λ max[0,T1−T ′′

i
]
− 1)f1. (7)

A derivation of this expression is outlined in the appendix.

In addition to delimiting the best achievable performance of

at-arrival policies, this policy also provides another baseline

against which more practical policies (that may or may not

allow server selection decisions to be changed after arrival)

can be compared.

C. Dynamic Policy

Similar to the optimal lower bound policy, our candidate

dynamic policy uses a threshold on the number of outstanding

requests from local clients in determining if a server’s fountain

should be activated. In contrast to the optimal policy, however,

an activated fountain stays active until there are no outstanding

requests from local clients, so as to reduce the frequency

with which clients must switch servers. Through exploration

and evaluation we have found a particular candidate dynamic

policy particularly promising. This policy is described next.

In our candidate dynamic policy, a new request from a group

i client is served locally at server i if and only if one of the

following conditions holds (note that no more than one of these

conditions can hold simultaneously): (i) server i’s fountain

is currently active, (ii) no fountains are currently active, or

(iii) there is some other server j whose fountain is currently

active, and serves at least 2(1−c)/c group i clients. If the last

condition holds, in addition to serving the new request locally,

those group i clients receiving data from server j switch to

server i (whose fountain is now activated).

Otherwise, the server j that is serving other group i clients

is chosen, if any; if there are none, the server j whose fountain

became active the most recently is chosen.

Finally, we use the following additional rule. Whenever a

group j client completes its download from server j’s active

fountain, if the only remaining clients receiving data from

server j are from groups other than group j, all of these clients

switch to server i∗, and server j’s fountain is deactivated.

Here, i∗ is the index of the client group with the maximum

number of clients receiving data from server j, with ties broken

according to the longest remaining required download time.

Note that this policy does not require knowledge of request

rates (or assumptions of Poisson request processes). Also, at

any point in time, all group i clients currently downloading

the file are downloading from the same server, simplifying the

collection of the state information needed for server selection

decisions. Fountain switching can be greatly reduced in com-

parison to the lower bound policy since an active fountain at a

server i is deactivated only when there are no remaining active

group i clients. Finally, note that when fountain switching

does occur, the new server is always a server with an inactive

fountain, which is then activated. This would allow easy use

of uncoded fountains, without requiring careful coordination

of all servers (as would be necessary with uncoded fountains

in the case of the lower bound or optimal at-arrival policies,

so as to ensure clients did not receive duplicate data blocks).

D. Performance Comparisons

Figures 3(a) and (b) show the average server cost per request

and the average remote access cost per request, respectively,

as functions of the request rate from each client group, for the

improved policies and the lower bound policy and using our

default parameter settings. Figure 3(c) shows the percentage

increase in the total file delivery cost with each of the improved

policies, in comparison to with the lower bound policy. In these

and subsequent figures, results for the candidate dynamic pol-

icy, for which we do not have exact analytic cost expressions,

were obtained by averaging the results from simulations of ten

randomly generated request sequences, each with 1,000,000

request arrivals. (Such simulations were also used to validate

the analytic cost expressions for the other policies.)

As seen previously in Figure 1(a) for the lower bound policy,

the portion of the server cost curve for each of the improved

policies where the server cost is increasing as the request rate

increases, corresponds to a region where the remote access

cost is decreasing (at a higher rate than the server cost is

increasing), as the policy increasingly favors local service.

Comparing the optimal at-arrival and the candidate dynamic

policy, the latter policy is seen to achieve a marginally lower

total file delivery cost at intermediate request rates, even

though it is a much simpler policy using less state information.

Figures 4(a), (b) and (c) show the impact of alternative

parameter settings. As in Figure 3, the candidate dynamic

policy achieves a somewhat lower total file delivery cost than

the optimal at-arrival policy, and this cost is within 10% of

the lower bound in all cases. (While we do not have exact

analytic expressions for the candidate dynamic policy, we note

that these results suggest that the total cost can be estimated

fairly well with the at-arrival and lower bound expressions.)

Finally, Figures 5(a) and (b) show the average number

of times a client switches servers during its download time,

and the average size of the group of clients that move to a

new server when a fountain switch occurs, respectively, for

a number of example scenarios. One of these scenarios uses

our default parameter settings, while in each of the others one

of the three primary parameters (c, N , and α) is increased

or decreased while the other parameters remain fixed. Note

that the average number of times a client switches servers is

typically significantly below one. When a switch does occur,

in most of the example scenarios typically only one or two

clients are involved, but in two scenarios (that with 64 servers,

and that with c = 0.3), larger groups of clients switch.

VI. STREAMING VIDEO DELIVERY

In this section we apply the cost model and policies

developed in the previous sections for content download,

to streaming video delivery. We use the Reliable Periodic

Broadcast (RPB) protocols [12], in which the video file to

be delivered is divided into segments of increasing lengths,

each of which is delivered using a digital fountain. As with

content download, the cost of delivering data long distances

over the Internet suggests that a minimal cost solution may

entail replication of each segment at multiple geographically

distributed servers. This leads to a server selection problem

analogous to that considered earlier, but now for each of

multiple video file segments.

1

0.8

0.6

0.4

0.2

0

 0.001 0.01 0.1 1 10 100

S
e

rv
e

r
C

o
s
t

p
e

r
R

e
q

u
e

s
t

Request Rate of each Client Group

Optimal static
Optimal at-arrival

Candidate dynamic
Lower bound policy

(a) Server cost

1

0.8

0.6

0.4

0.2

0

 0.001 0.01 0.1 1 10 100

R
e

m
o

te
 A

c
c
e

s
s
 C

o
s
t

p
e

r
R

e
q

u
e

s
t

Request Rate of each Client Group

Optimal static
Optimal at-arrival

Candidate dynamic
Lower bound policy

(b) Remote access cost

100

80

60

40

20

0

 0.001 0.01 0.1 1 10 100

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Request Rate of each Client Group

Optimal static
Optimal at-arrival

Candidate dynamic

(c) Relative difference

Fig. 3: Performance of improved policies (c = 0.5, N = 16, α = 0).

100

80

60

40

20

0

10.80.60.40.20

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Remote Access Cost per Unit of Data

Optimal static
Optimal at-arrival

Candidate dynamic

(a) Remote access cost per data unit (c)

100

80

60

40

20

0

128643216842

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Number of Servers

Optimal static
Optimal at-arrival

Candidate dynamic

(b) Number of servers (N)

100

80

60

40

20

0

4211/21/41/81/16

In
c
re

a
s
e

 i
n

 C
o

s
t

(%
)

Load Skewness

Optimal static
Optimal at-arrival

Candidate dynamic

(c) Load skewness (α)

Fig. 4: Impact of system parameters on improved policies (default parameters: c = 0.5, N = 16, λ = N,α = 0).

A. Protocol Description

The RPB protocols add efficient error recovery (through use

of digital fountain delivery of each segment) to the Optimized

Periodic Broadcast (OPB) Protocols [12]. The segment lengths

used in the OPB protocols are optimized so as to achieve

the minimum possible startup delay for a given total server

bandwidth usage, assuming that: (1) clients receive each

segment entirely before beginning playback of the segment,

and (2) each segment is continuously transmitted (e.g., on

its own multicast group), regardless of whether there are any

clients receiving it.

With OPB, the video file is divided into K segments (each

of which will be continuously transmitted at rate r), where

K is chosen depending on the desired total server bandwidth

usage. A new client immediately begins reception of the first

s segments. Once a segment has been completely received,

reception of the next segment that the client has not yet started

downloading, if any, is initiated. Playback can commence once

the first segment has been received. Each subsequent segment

is chosen to be as long as possible, subject to the condition

that the segment must be received prior to when its data is

needed for playback. Measuring r in units of the playback bit

rate, and denoting the length (playback duration) of segment

i by li and the total length of the video by L, this yields [12]:

lk =

{

l1 + r
∑k−1

j=1 lj , 1 < k ≤ s

r
∑k−1

j=k−s lj , k > s,
(8)

where l1 is selected such that
∑K

j=1 lj = L.

B. Optimality Discussion

Interestingly, we have found that OPB does not necessarily

achieve the minimum possible server bandwidth usage for

a given startup delay, when segment transmission is not

continuous; i.e., when transmission of a segment is stopped

if there are no clients receiving it. For example, consider

r = 1, s = 2, K = 4, and L = 1. Inserting these values

into equation (8), we note that the OPB segment lengths in

this case are 1
11 , 2

11 , 3
11 , and 5

11 , and the startup delay is 1
11 .

Consider now an alternative scheme in which the video file is

divided into six segments, the first 5 of length 1
11 and the last

of length 6
11 , and in which clients begin reception of the first

and last segments initially, begin playback after reception of

the first segment (yielding a startup delay of 1
11), and begin

reception of segment i (2 ≤ i ≤ 5) once reception of segment

i − 1 is complete. Although the server bandwidth usage with

OPB is lower than with this alternative scheme at high request

rates, the alternative scheme can have slightly lower server

bandwidth usage at intermediate request rates (at most, by

about 0.22%, at λ = 0.96), in the case where transmission of

a segment is stopped if there are no clients receiving it.

Although not guaranteed to be optimal when segment

transmission is not continuous, we have not been able to find

examples in which OPB is significantly sub-optimal. Thus,

we believe that OPB as extended by using digital fountain

delivery for each segment (i.e., as in the RPB protocols), is a

good candidate for cost-efficient streaming video delivery.

1.2

1

0.8

0.6

0.4

0.2

0

 0.001 0.01 0.1 1 10 100

F
o
u
n
ta

in
 S

w
it
c
h
e
s
 p

e
r

C
lie

n
t

Request Rate of each Client Group

Default (c=0.5, N=16, α=0)
c=0.3
c=0.7

N=4
N=64

α=1

15

12

9

6

3

0

 0.001 0.01 0.1 1 10 100

C
lie

n
ts

 p
e
r

F
o
u
n
ta

in
 S

w
it
c
h

Request Rate of each Client Group

Default (c=0.5, N=16, α=0)
c=0.3
c=0.7

N=4
N=64

α=1

(a) Fountain switches per client (b) Clients per fountain switch

Fig. 5: Fountain switching with candidate dynamic policy (default parameters:

c = 0.5, N = 16, λ = N,α = 0).

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1 1 10 100

C
o
s
t
p
e
r

S
e
g
m

e
n
t

Request Rate of each Client Group

First seg.
Second seg.

Third seg.
Fourth seg.

Fifth seg.
Sixth seg.

Fig. 6: Delivery cost for each segment

with RPB (K = 6, s = 2, r = 1) using

the candidate dynamic server selection

policy for each segment (c = 0.5, N =
16, α = 0).

100

80

60

40

20

0

 0.001 0.01 0.1 1 10 100

R
e
tr

e
iv

e
d
 R

e
m

o
te

ly
 (

%
)

Request Rate of each Client Group

First seg.
Second seg.

Third seg.
Fourth seg.

Fifth seg.
Sixth seg.

Fig. 7: Percentage received from a re-

mote server with RPB (K = 6, s =
2, r = 1) using the candidate dynamic

server selection policy for each segment

(c = 0.5, N = 16, α = 0).

10

8

6

4

2

0

10
-4

10
-3

10
-2

10
-1

10
0

T
o
ta

l
C

o
s
t

Startup Delay

λ/N=1000
λ/N=100

λ/N=10
λ/N=1

λ/N=0.1

Fig. 8: Tradeoff between startup delay

and delivery cost for RPB (s = 2, r =
1) using the candidate dynamic server

selection policy for each segment (c =
0.5, N = 16, α = 0).

50

40

30

20

10

0

 0.001 0.01 0.1 1 10 100

In
c
re

a
s
e
 i
n
 C

o
s
t
(%

)

Request Rate of each Client Group

K=6; b=2
K=12; b=2
K=6; b=1.5

K=12; b=1.5
K=6; b=1.25

K=12; b=1.25

Fig. 9: Cost increases when using RPB

(s = 2, b = rs) with the static optimal

server selection policy rather than the

candidate dynamic policy (c = 0.5, N =
16, α = 0).

C. Performance Evaluation

We now consider the delivery cost with a system using

RPB (with fountains being active only if there are clients to

serve), replication of each segment at multiple geographically

distributed servers, and the candidate dynamic server selection

policy for each segment. For simplicity, in these experiments

we assume that packet loss is negligible (i.e., the parameters

ak as defined in [12] are set to 1). Figures 6 and 7 show the

total delivery cost of each segment and the average percentage

of each segment that is received remotely, respectively, as a

function of the request arrival rate, for an example set of RPB

parameters. (The startup delay with this set of parameters,

using as before L = 1, is 1
32 .2) Note that for most of

the considered parameter space, the total delivery cost is

dominated by the delivery costs of the last (longest) segments.

An interesting observation is that the identity of the seg-

ments with the highest average percentage received remotely

is highly dependent on the request rate. For example, the

last (longest) segments have the largest average percentage

received remotely at low request rates, and the smallest at

2The segment lengths in this case are 1

32
, 2

32
, 3

32
, 5

32
, 8

32
, and 13

32
.

high request rates, while the first (shortest) segments have the

smallest average percentage received remotely at low request

rates, and the largest at high request rates. This is consistent

with the results shown for the candidate dynamic policy in

Figure 3(b), keeping in mind that the key parameter with

respect to the efficiency of fountain delivery is the average

number of requests arriving during the download time. Note

that the download time is longer for later segments, implying

that, for a fixed request rate, the average number of requests

arriving during the segment download time is greater for

later segments. This observation has obvious implications for

systems in which not all segments are replicated at all servers,

owing to storage limitations for example.

Figure 8 illustrates the tradeoff between startup delay and

total file delivery cost. Here, the startup delay is varied by

varying the number of segments K, resulting in varying total

file delivery cost. Note that dramatic reductions in startup

delay can be achieved with relatively small increases in

delivery cost.

Figure 9 illustrates that the server selection policy used for

each segment can have a substantial impact on the delivery

cost. Each curve shows the percentage increase in cost incurred

when using the static optimal policy, rather than the candi-

date dynamic policy, for a system using the specified RPB

parameters. Note that the cost increases exceed 30% in some

cases, suggesting that, as in the download context, there may

be significant benefit to using the candidate dynamic policy

rather than a static server selection policy.

VII. RELATED WORK

A. Cyclic and Digital Fountain Delivery

Considerable prior work has considered cyclic delivery,

and variants using erasure coding, as a method of achieving

scalable download of large files from a single server [6], [8]–

[10], [22]. With an “ideal” digital fountain [6], the server

transmits an unbounded stream of encoded data blocks, all

of which are distinct, and such that any collection of these

blocks equal in number to the number of blocks in the

uncoded file is sufficient, with minimal effort, for recovery

of the original data. Different erasure-coding techniques yield

different compromises with respect to these ideal properties;

i.e., with respect to cost, repetition of blocks, and how many

blocks must be received for file recovery [23]–[26].

Use of multiple cyclic delivery channels, or digital foun-

tains, has been proposed for the case in which clients have

differing rates at which they are able to receive data (e.g., [27],

[28]). Each client listens to a subset of these. By careful

selection of the order in which data blocks are transmitted on

each channel [22], [29], or use of erasure codes with long

stretch factors [26], receptions of the same data block on

different channels can be reduced or eliminated.

Parallel download has been proposed for scenarios with

multiple distributed servers, so as to eliminate the need for

server selection and to minimize download times [30], [31].

However, as each connection is associated with some over-

head, the advantages of parallel download may decrease as

the portion of clients using parallel download increases [32].

In this paper, we assume a single rate at which all clients

are to receive data. Under this assumption, cost is minimized

by choosing each fountain’s transmission rate as this single

rate, rather than choosing a lower rate and then using parallel

download. Each active client listens to only a single fountain

at each point in time, although in some of the server selection

policies that we consider a client may switch servers, possibly

multiple times, during its time in system.

B. Server Selection

Prior work on the server selection problem has assumed

individual rather than aggregated service [3]–[5], or has con-

sidered aggregated service but only in the specific context of

streaming video delivery and service aggregation techniques

appropriate to this domain [21], [33]–[35]. Within this latter

category, Almeida et al. [33] consider the problem of server

placement, as well as server selection and media stream

routing, with the objective of minimizing a weighted sum

of network and server bandwidth usage. They show that

use of service aggregation can result in optimal placement,

selection, and routing solutions that are very different from

those for systems without service aggregation. Carlsson and

Eager [21] use a system model similar to that employed here,

to compare classes of server selection policies for systems

in which multiple servers implement a batched video-on-

demand service. They conclude that server selection policies

using dynamic system state information can potentially yield

large improvements in performance, while deferred rather than

at-arrival server selection has the potential to yield further

substantial performance improvements for some regions of

the parameter space. To our knowledge, no prior work has

considered the server selection problem in systems using

digital fountain delivery at each server.

VIII. CONCLUSIONS

With content delivery (download and streaming) contribut-

ing to the majority of today’s Internet traffic, cost-efficient

content delivery is an important step towards better overall

resource usage (and/or a “greener” Internet). We consider

the problem of minimizing the total content delivery cost in

systems with distributed servers, each using digital fountain

delivery. Using a simple system model, that enables analytic

comparison of server selection policies, we formulate and

analyze policies that are optimal within their respective class,

including a tight lower bound policy. Based on the characteris-

tics of the lower bound policy, a readily-implementable policy

is proposed that is found to achieve within 10% of the lower

bound. Finally, we show how our results for content download

can also be applied to streaming video delivery.

IX. ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and

Engineering Research Council (NSERC) of Canada, and the

Informatics Circle of Research Excellence (iCORE) in the

Province of Alberta.

APPENDIX

This appendix outlines an analysis of the optimal at-arrival

server selection policy for the case in which the client groups

may have differing request rates. The optimal at-arrival policy

and the threshold parameters Ti, T ′
i , and T ′′

i are as defined in

Section V-B.

As in the case in which all client groups have the same

request rate, the analysis proceeds by considering the state of

the system at an arbitrary time t. Consider first a server and

client group i other than server/group 1. If there has been at

least one request arrival from client group i in the time interval

[t − L/b, t − Ti], server i’s fountain will be active at time t.
If there have been no requests from client group i but at least

one request from some other client group j in the time interval

[t−L/b, t−Ti] (and thus server j’s fountain is active at time t),
all requests that arrive from client group i in the time interval

[t−Ti, t] will be receiving service from a remote server at time

t. If there have been no requests from any client group in the

time interval [t − L/b, t − Ti] but at least one request in the

interval [t−Ti, t], and the first such request was from a client

group other than group i, all requests that arrive from client

group i in the time interval [t−Ti, t] will be receiving service

from a remote server at time t (note that the expected number

of such requests must be conditioned on there being at least

one request arrival, with the first such being from other than

group i). If there have been no requests from any client group

in the time interval [t − L/b, t − Ti] but at least one request

in the interval [t − Ti, t − T ′
i], or no requests from any client

group in the time interval [t − L/b, t − T ′′
i] but at least one

request in the interval [t − T ′′
i , t], and the first such request

was from client group i, then server i’s fountain will be active

at time t. The above corresponds to the first four terms within

the first set of curly brackets of equation (6).

The remaining case that has non-zero expected cost is where

there have been no requests from any client group in the time

interval [t−L/b, t−T ′
i] but at least one request in the interval

[t−T ′
i , t−T ′′

i], and the first such request was from client group

i. In this case, all requests that arrive from client group i in the

time intervals [t−T ′
i , t−T ′′

i] and [t−T ′′
i , t] will be receiving

service from server 1 at time t. Referring to equation (6), terms

six and seven in the first set of curly brackets correspond to

the remote access cost associated with these requests, while

terms eight and nine correspond to the server cost at server 1,

as incurred for these requests (while compensating for the fact

that the analysis for server 1 does not take these requests into

consideration), at the times during the intervals [t − T ′
i , t −

max[T1, T
′′
i]] and [t − max[T1, T

′′
i], t − T ′′

i], respectively.

The analysis for server and client group 1 follows a similar

approach. In the resulting analytic expression for the total file

delivery cost, as shown in equation (6), the terms for server

and client group 1 (within the second set of curly brackets),

neglect the fact that requests from other than client group 1

can cause server 1 to be scheduled; this is compensated for

with the last two terms for each server/client group i (within

the first set of curly brackets).

REFERENCES

[1] Sandvine, “2009 global broadband phenomena,” Tech. Rep., Oct. 2009.
[2] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of

Web server replicas,” in Proc. IEEE INFOCOM, Anchorage, AK, Apr.
2001.

[3] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” in Proc. IEEE INFOCOM,
Kobe, Japan, Apr. 1997.

[4] E. W. Zegura, M. H. Ammar, Z. Fei, and S. Bhattacharjee, “Application-
layer anycasting: a server selection architecture and use in a replicated
Web service,” IEEE/ACM ToN, vol. 8, no. 4, Aug. 2000.

[5] K. L. Johnson, J. F. Carr, M. S. Day, and F. Kaashoek, “The measured
performance of content distribution networks,” Computer Communica-

tions, vol. 24, no. 2, Feb. 2001.
[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain

approach to reliable distribution of bulk data,” in Proc. SIGCOMM,
Vancouver, Canada, Sept. 1998.

[7] C. Aggarwal, J. Wolf, and P. Yu, “On optimal batching policies for
video-on-demand storage servers,” in Proc ICMCS, Hiroshima, Japan,
June 1996.

[8] L. Rizzo and L. Vicisano, “A reliable multicast data distribution protocol
based on software fec techniques,” in Proc. HPCS, Chalkidiki, Greece,
June 1997.

[9] S. Rost, J. Byers, and A. Bestavros, “The cyclone server architecture:
Streamlining delivery of popular content,” in Proc. WCW, Boston, MA,
June 2001.

[10] K. V. Almeroth, M. H. Ammar, and Z. Fei, “Scalable delivery of
web pages using cyclic best-effort (udp) multicast,” in Proc. IEEE

INFOCOM, San Francisco, CA, Mar. 1998.
[11] L. Vicisano, L. Rizzo, and J. Crowcroft, “Tcp-like congestion control

for layered video multicast data transfer,” in Proc. IEEE INFOCOM,
San Francisco, CA, Apr. 1998.

[12] A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-Stukel,
“Scalable on-demand media streaming with packet loss recovery,” in
Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001.

[13] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. Workshop

on Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.
[14] J. Erman, A. Gerber, M. T. Hajiaghayi, D. Pei, and O. Spatscheck,

“Network aware forward caching,” in Proc. WWW, Barcelona, Spain,
Apr. 2009.

[15] S. Nedevschi, S. Ratnasamy, and J. Padhye, “Hot data centers vs. cool
peers,” in Proc. HotPower, San Diego, CA, Dec. 2008.

[16] L. A. Barroso and U. Hölze, “The case for energy- proportional
computing,” IEEE Computer, vol. 40, no. 12, Dec 2007.

[17] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu,
“Delivering energy proportionality with non energy-proportional systems
– optimizing the ensemble,” in Proc. HotPower, San Diego, CA, Dec.
2008.

[18] K. Le, R. Bianchini, M. Martonosi, and T. D. Nguyen, “Cost- and
energy-aware load distribution across data centers,” in Proc. HotPower,
Big Sky, MT, Oct. 2009.

[19] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Magg, “Cutting
the electric bill for Internet-scale systems,” in Proc. ACM SIGCOMM,
Barcelona, Spain, Aug. 2009.

[20] J. M. Almeida, J. Krueger, D. L. Eager, and M. K. Vernon, “Analysis of
educational media server workloads,” in Proc. NOSSDAV, Port Jefferson,
NY, June 2001.

[21] N. Carlsson and D. L. Eager, “Server selection in large-scale video-on-
demand systems,” ACM TOMCCAP, vol. 6, no. 1, Feb. 2010.

[22] Y. Birk and D. Crupnicoff, “A multicast transmission schedule for
scalable multirate distribution of bulk data using non-scalable erasure-
correcting codes,” in Proc. IEEE INFOCOM, San Francisco, CA,
Mar/Apr. 2003.

[23] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and
J. Crowcroft, “The use of forward error correction (fec) in reliable
multicast,” RFC 3453, IETF, Dec. 2002.

[24] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. Spielman, and
V. Stemann, “Practical loss-resilient codes,” in Proc. ACM STOC, El
Paso, TX, May 1997.

[25] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM CCR, vol. 27, no. 2, Apr. 1997.

[26] A. Shokrollahi, “Raptor codes,” Digital Fountain Inc., Tech. Rep.
DF2003-06-001, 2003.

[27] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc. ACM SIGCOMM, Stanford, CA, Aug. 1996.

[28] M. Luby, V. K. Goyal, S. Skaria, and G. B. Horn, “Wave and equation
based rate control using multicast round trip time,” in Proc. ACM

SIGCOMM, Pittsburgh, PA, Aug. 2002.
[29] S. Bhattacharyya, J. F. Kurose, D. Towsley, and R. Nagarajan, “Efficient

rate-controlled bulk data transfer using multiple multicast groups,” in
Proc. IEEE INFOCOM, San Francisco, CA, Apr. 1998.

[30] J. W. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror
sites in parallel: Using tornado codes to speed up downloads,” in Proc.

IEEE INFOCOM, New York, NY, Mar. 1999.
[31] P. Rodriguez and E. W. Biersack, “Dynamic parallel-access to replicated

content in the Internet,” IEEE/ACM ToN, vol. 10, no. 4, Aug. 2002.
[32] C. Gkantsidis, M. Ammar, and E. Zegura, “On the effect of large-scale

deployment of parallel downloading,” in Proc. WIAPP, San Jose, CA,
June 2003.

[33] J. M. Almeida, D. L. Eager, M. K. Vernon, and S. J. Wright, “Mini-
mizing delivery cost in scalable streaming content distribution systems,”
IEEE TMM, vol. 6, no. 2, Apr. 2004.

[34] Z. Fei, M. H. Ammar, and E. W. Zegura, “Multicast server selection:
Problems, complexity and solutions,” IEEE JSAC, vol. 20, no. 7, Sept.
2002.

[35] M. Guo, M. H. Ammar, and E. W. Zegura, “Selecting among replicated
batching video-on-demand servers,” in Proc. NOSSDAV, Miami Beach,
FL, May 2002.

