
Optimal and Efficient Merging Schedules for
Video-on-Demand Servers

Derek Eager Mary Vernon John Zahorjan
Dept. of Computer Science Computer Sciences Dept. Dept. of Computer Sci. & Eng.
University of Saskatchewan University of Wisconsin University of Washington

eager@cs.usask.ca vernon@cs.wisc.edu zahorjan@cs.washington.edu

1 INTRODUCTION
The simplest video-on-demand (VOD) delivery policy is to
allocate a new media delivery stream to each client request when
it arrives. This policy has the desirable properties of “ immediate
service” (there is minimal latency between the client request and
the start of playback, assuming that sufficient server bandwidth is
available to start the new stream), of placing minimal demands on
client capabilities (the client receive bandwidth required is the
media playback rate, and no client local storage is required1), and
of being simple to implement. However, the policy is untenable
because it requires server bandwidth that scales linearly with the
number of clients that must be supported simultaneously, which is
too expensive for many applications.

This focus of this paper is on how to reduce the server bandwidth
required through the design of efficient server delivery policies.
The solution we arrive at preserves the properties of immediate
service and simplicity of implementation, while decreasing server
bandwidth to the logarithm of the number of simultaneously
active clients. To achieve this, though, requires clients with
receive bandwidth twice the media playback rate, and some
amount of client local storage.

There has been considerable previous work on how to reduce
server bandwidth in VOD systems. The work we present is
inspired by the results in [5], which show that hierarchically
merging data delivery streams can achieve nearly the minimum
possible server bandwidth when clients have receive bandwidth
twice the media playback rate and some local storage. The
hierarchical stream merging approach is in turn inspired by
patching [3,9], dynamic skyscraper [4], and piggybacking [8]
approaches. Patching provides the “stream merging” mechanism
shown in Figure 1. Under stream merging, a later arriving client
joins the multicast stream delivering the media data to some
earlier client, buffering the data it receives until it is needed for
playback. Additionally, a patching stream (shown as a dotted line
in Figure 1) is allocated to the new arrival to allow it to begin
playback immediately. The patching stream terminates when it
reaches the data already buffered by the client from the earlier
stream, at which point the client completes playback using the

buffered data plus the data acquired by continuing to listen to the
earlier stream.

Dynamic skyscraper and piggybacking provide the notion of
performing merges repeatedly, leading to a binary tree merging
structure as shown in Figure 2.

�
��� �
��� �
��� �
��� �
��� �
��� �
��� 	
���

��� �
�
� � �

����� �
��� ����� �
���
 ��� � ��� � ��� � ��� �

Time

M
ed

ia
 F

ile
 P

o
si

ti
o

n

� � � � � � � � � � � � � � � �
� � � � � � ! " # � � � � �

� � � � � � � � � � � � � � � �
� � � � $ % � & � � � ' # � � � � �

#(� � ���)�*� �+�,$+��� � � ���
-.� � � /��,�

01��� '����
#+� � �����

Figure 1: Stream Merge Operation
(The client arriving at time 0.5 is allocated a patch stream until time 0.8,

from which it receives media data in the range 0.0 to 0.3. It also listens to
the existing multicast stream, obtaining data in the range 0.3 to 0.6. At

time 0.8 the merge is complete, the patch terminates, and the client listens
to the existing stream only.)

The key question we address in this paper is how to create an
efficient merge tree in this new environment, in which client
merging is provided by the mechanism illustrated in Figure 1 and
clients can snoop on any earlier multicast stream. That is, policies
are needed to determine which clients to merge with what others,
and in what order, to create a merge tree that minimizes the total
server bandwidth required to deliver the media data to those
clients.

2 OPTIMAL STREAM MERGING
The set of decisions made by a stream merging policy for any
particular set of client requests describes a merge tree. The cost
of a merge tree, measured in the total amount of data the server
must send to satisfy that set of clients, is simply the sum of the
projections of the line segments it contains onto the X-axis. For
example, the cost of the tree in Figure 2 is 1.9.

1 Throughout this paper we ignore the initial buffering required to help
smooth the irregular delivery times in shared networks, as this is policy
independent.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copyotherwise, or to republish, requires a fee
and/or specific permission.

Copyright (C) ACM 1999, Proc. ACM Multimedia ’99.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Time

M
ed

ia
 F

ile
 P

o
si

ti
o

n

Client A Client B Merge of A/B

Client C Client D Merge of C/D

Merge of A/B/C/D

Figure 2: Example Merge Tree

The optimal merge tree for a given set 1…M of client request
times can be computed using a dynamic program [1, 6]. The
dynamic program exploits the fact that the optimal tree for just the
client requests in the range (i…j) is formed by merging the
optimal trees over just the ranges (i…k-1) and (k…j), for some
i<k≤j. The cost of the merged tree is the sum of the costs of the
sub-trees, minus some “ fix-up” representing the savings obtained
by the additional merge operation. The tree shown in Figure 2 is
optimal for the given client request times.

The dynamic program used to compute optimal merge trees for a
known set of arrival times can be adapted to compute the
minimum cost tree to complete the set of active streams at each
arrival instant in a real system. For example, when client C
arrives in Figure 1, the dynamic program would dictate that C
should merge with B at time 0.5, and then the merged stream for
B and C should merge with A at time 0.75. When client D
arrives, the program computes the merges shown in the figure;
note that these merges can be implemented if client B has
continued to snoop on client A's stream during time 0.4 to 0.5.
(We make use of this idea in the next section.)

A significant problem with using the dynamic program at each
request arrival instant is that it requires time O(M3) and space
O(M2). Given that this approach is a heuristic in any case (since
the merge trees computed are optimal only if no further arrivals
take place), we are motivated to look for simpler ways to
determine merge trees that are likely to be “good” but not
necessarily optimal.

3 EARLY MERGING
Examination of optimal merge schedules largely supports the
intuitive hypothesis that, in building the merge tree, one should
merge the two neighboring streams that can be merged at the
earliest point in time, followed by the next such pair, and so on. It
can be shown, in fact, that this policy yields the optimal tree when
any set of three or fewer client requests is considered. However,
for four or more requests, there are occasional exceptions. Figure
2 is an example. Repeatedly following this heuristic of “early
merging” merges the arrivals at time 0.3 and 0.4, then that merged
stream with the arrival at time 0.5, and finally that merged stream
with the arrival at time 0.05. The cost of this tree is 1.95, versus
the optimal cost of 1.9. Nonetheless, this heuristic is attractive as

it is easy to implement and correctly captures an overwhelming
fraction of the merges that occur in the optimal trees.2

In order to implement the early merging heuristic, we follow two
principles. First, a client (or group of clients) should decide
which earlier stream to snoop on when it arrives or when it
merges with another stream, since listening to the earlier stream as
soon as possible will minimize the total server load required for
the merge to take place. Second, the client(s) should snoop on the
chosen earlier stream until either the merge is successful or
another (group of) client(s) preemptively merges with their patch
stream. This latter principle enables selection of near-optimal
merge pairs at the latest possible time with respect to client
arrivals.

A key point is that, regardless of which earlier stream is chosen as
the merge target, the decision can be undone by future client
requests – a new request arriving shortly after this one will merge
with it, “ resetting” the time at which those streams can begin
merging with earlier streams, and so perhaps altering the decision
of which such stream is the appropriate target. Note that resetting
implies that the group that is caught must "throw away” whatever
data it has accumulated by listening to an earlier stream up to the
merge point. While this may seem wasteful, it is not, because that
data must be retransmitted in any case to satisfy the clients that
caught up, since they have not accumulated this later data.

In the remainder of this section we describe three variants of the
early merging family that differ in which earlier stream is chosen
for an arriving client, or a newly merged group, to snoop on.
These variants differ in how aggressive they are in finding the
earliest possible merge (i.e., in the complexity of computing the
stream to listen to).

3.1 Earliest Reachable Merge Target
(ERMT)

In this variant of early merging, a new client or newly merged
group of clients snoops on the closest stream that it can merge
with if no later arrivals preemptively catch them. For example, in
Figure 2, client B will listen to the stream for client A, client C
will listen to the stream for client B, and client D will also listen
to the stream that was initiated for client B. D snoops on B's
stream because D cannot merge with C (since C will merge with
B at time 0.5), D can catch the merged stream for B and C, and
this is the earliest reachable merge target for D if no later arrivals
preemptively merge with D.

One way to compute the stream to snoop on is to “simulate” the
future evolution of the system, given the current merge target for
each active stream and the rule for determining new merge
targets, and assuming no future client arrivals. A more efficient,
incremental maintenance of the merge tree is also possible [6].
These approaches are not described here due to space constraints.

3.2 Simple Reachable Merge Target (SRMT)
The requirement of ERMT that all merge targets be the earliest
possible complicates the calculation of which stream to snoop on.
A simpler approach is to determine the closest reachable merge

2 Note that if client D arrives at time 0.44 instead of 0.5, the heuristic leads
to the optimal merge tree with similar structure to the tree shown in the
figure.

target if each currently active stream terminates at its current
target merge point (or at the end of the file if it has no current
target merge point). For example, if client D arrives at time 0.49
in Figure 2, D will snoop on the stream for client A, since D
cannot reach client B’s stream before its target merge point at time
0.55.

The SRMT is easily computed. For M currently active streams
numbered 1..M in order of earliest client arrival time, let Dj,i,
1≤j<i≤M, be the distance between streams j and i (i.e., position of
j minus the progress of i). Let T(j) be the known target stream for
each stream j<i. Stream i is assigned merge target k for which Dki

< DT(k),k and k is as large as possible, k<i.

SRMT overlooks some merges that ERMT finds. (For example, if
client D arrives at time 0.49 under ERMT, client D will snoop on
client B’s stream.) This happens because SRMT ignores the fact
that a new merged stream is created when two streams merge.
This simplifies the calculation of the stream to snoop on, but
results in some merge operations taking longer than necessary.

3.3 Closest Target (CT)
This scheme simply chooses the closest earlier stream still in the
system as the next merge target. In Figure 2, if client D arrives at
time 0.49, D would simply snoop on the stream initiated for C.

The merge targets computed by CT are not necessarily reachable,
even if no further arrivals occur. The reason is that the target
stream may itself merge with its target before it can be reached by
the later stream. When this happens, the later stream must select a
new merge target, again using the CT algorithm.

4 PERFORMANCE RESULTS
This section uses simulation to explore the performance of the
early merging policies defined in Section 3. The first question we
address is the extent to which the early merging characteristic is
essential for good performance. We do this by comparing our
policies to two hierarchical merging policies that do not have
early merging as a goal, and to optimal stream merging with a
priori knowledge of all client request arrival times.

Further experiments are carried out with ERMT as a
representative of the early merging family. We assess its average
server bandwidth requirement as a function of request arrival rate
and available client buffer space. Then, we provide performance
comparisons with the previously proposed dynamic skyscraper [4]
and optimized grace patching [2,7] techniques, considering server
bandwidth requirements as well as average client waiting times
and balking frequencies. We omit comparisons with
piggybacking because clients only receive on a single multicast
stream in a piggybacking system, which limits the attainable
performance gains.

Additional results, and details regarding our experimental
methodology, are given in [6].

4.1 Comparison with Optimal Stream Merging
Figure 3 compares the early merging policies with two “static
pairing” hierarchical merging policies. The Y-axis values are the
percent difference in average server bandwidth compared to the
optimal, offline stream merging schedule. The client request rate
N is expressed as the average number of requests that arrive per
unit of time (which is defined as the playback time for the file).

In this figure, we assume that clients have enough local storage to
buffer any data that is received ahead of schedule.

The static pairing policies are Static Tree (ST) and Hierarchical
Even-Odd (HEO). ST merges streams according to a complete
binary tree, based solely on the client arrival number. HEO [8]
sets the merge target of a stream to the next youngest still existing
stream, so long as that stream currently has no merge target.. (If it
does, no merge is scheduled.) In both cases, only merges that can
complete before the target terminates are scheduled.

0%

10%

20%

30%

40%

1 10 100 1000

Client Request Arrival Rate (N)

S
er

ve
r

B
an

d
w

id
th

 In
cr

ea
se

 R
el

at
iv

e
to

 O
p

ti
m

al

ST
HEO
SRMT
CT
ERMT

Figure 3: Performance Relative to Optimal Stream Merging

The key observations from this figure are:

• The early merging policies significantly outperform the
policies that do not include the early merging characteristic.

• All three variants of early merging have close to optimal
bandwidth requirements, leaving little room for
improvement.

• It appears to be more important to merge with the closest
streams (as in CT and ERMT) than to never listen to
unreachable streams (as in SRMT).

4.2 Server Bandwidth Requirements
Figure 4 shows the effect of client arrival rate and limited client
buffer storage on the average server bandwidth required per client
by early merging (as represented by the ERMT variant), for
delivery of a single file. Bandwidth requirements are expressed in
units of the playback rate. The results are obtained from a
simulation in which merges that would exceed the local storage
capacity of any client in the merging stream are not scheduled.

0

0 .2

0 .4

0 .6

0 .8

1

0% 10% 20% 30% 40% 50%

Availab le C lien t B u ffer S pace
(% o f file)

S
er

ve
r

B
an

d
w

id
th

 p
er

 C
lie

n
t

N =1

N =10

N =100

N =1000

Figure 4: Bandwidth Requirements of Early Merging

As illustrated in the figure, per client server bandwidth decreases
with increasing arrival rate, and total server bandwidth grows only
logarithmically in the client request rate (rather than linearly as
with unicast delivery). Buffer sizes on the order of 10% of the file
size are sufficient to achieve much of the performance gains.

4.3 Comparison with Previous Techniques
This section assumes clients have enough local storage to buffer
data as needed. As in [5], Figure 5 shows that the previously
proposed dynamic skyscraper [4] and optimized grace patching
[2,7] techniques require substantially greater average server
bandwidth to deliver a popular file than does early merging.

1

1.5

2

2.5

3

3.5

4

1 10 100 1000

C lient Request Arriva l Rate (N)

F
ac

to
r

In
cr

ea
se

 in
 S

er
ve

r

B
an

d
w

id
th O ptim ized

G race P atching

Dynam ic
Skyscraper

Figure 5: Previous Techniques Relative to Early Merging

0%

1%

2%

3%

4%

5%

0 0.05 0.1 0.15

Available Server Bandw idth per Client

M
ea

n
 C

lie
n

t
W

ai
ti

n
g

 T
im

e
(%

 o
f

fi
le

 p
la

yb
ac

k
d

u
ra

ti
o

n
) Optim ized Grace

Patching

Dynam ic
Skyscraper

Early M erging

Sum of Average
Required
Bandwidths

Figure 6: Mean Client Waiting Times

0%

2%

4%

6%

8%

10%

0 0.05 0.1 0.15

Available Server Bandw idth per Client

C
lie

n
t

B
al

ki
n

g
 F

re
q

u
en

cy

Optim ized
Grace Patching

Dynamic
Skyscraper

Early Merging

Figure 7: Client Balking Frequencies

Figures 6 and 7 consider systems with fixed available server
bandwidths, supporting requests for 20 equal-sized “hot” files
with a total request rate of N=2000. File request frequencies are
given by the Zipf(0) distribution. Figure 6 shows average client
waiting time, as a function of available server bandwidth, for each
of the techniques. Figure 7 shows balking frequencies when
clients don’ t wait, but rather give up if immediate service is not
possible. Note that waiting times increase rapidly when too little
server bandwidth is available, and that, for each technique, the
sum of the average server bandwidths required for immediate

delivery of each file defines an appropriate system operating
point. As illustrated in both figures, early merging provides
dramatically better performance than that provided by the
previous techniques.

5 CONCLUSIONS
This paper has proposed a family of “early merging” VOD
delivery policies that hierarchically merge delivery streams for a
given file using the heuristic of performing the earliest merge
first. Results show that early merging, unlike other hierarchical
merging policies, achieves performance close to optimal offline
hierarchical merging (in which all client request arrival instants
are known in advance). Furthermore, a very simple heuristic for
determining a target stream to snoop on (i.e., the closest earlier
stream still in the system), is sufficient to achieve nearly all of the
performance gain. Results also show that early merging greatly
outperforms the previously proposed dynamic skyscraper and
optimized patching techniques, with respect to both server
bandwidth required for immediate service and average client
waiting time or balking frequency for a fixed available server
bandwidth. Results in [5] show that not much further
improvement in performance is possible.

ACKNOWLEDGEMENTS
This work was supported in part by the NSF (Grants CCR-
9704503 and CCR-9975044) and NSERC (Grant

2436587:9;9<9;9<=;>@?BA:C

REFERENCES
[1] C. C. Aggarwal, J. L. Wolf, and P.S. Yu, "On Optimal

Piggyback Merging Policies for Video-On-Demand
Systems", Proc. ACM SIGMETRICS Conf., Philadelphia,
PA, May 1996.

[2] Y. Cai, K. A. Hua, and K. Vu, “Optimizing Patching
Performance”, Proc. MMCN’99, San Jose, CA, Jan. 1999.

[3] S. W. Carter and D. D. E. Long, “ Improving Video-on-
Demand Server Efficiency Through Stream Tapping” , Proc.
ICCCN’97, Las Vegas, NV, Sept. 1997.

[4] D. L. Eager and M. K. Vernon, “Dynamic Skyscraper
Broadcasts for Video-on-Demand”, Proc. MIS’98, Istanbul,
Turkey, Sept. 1998.

[5] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Minimizing
Bandwidth Requirements for On-Demand Data Delivery” ,
Proc. MIS’99, Indian Wells, CA, Oct. 1999.

[6] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Optimal and
Efficient Merging Schedules for Video-on-Demand Servers” ,
CSE TR# 99-08-01, U. of Washington, Seattle, Aug. 1999.

[7] L. Gao and D. Towsley, “Supplying Instantaneous Video-on-
Demand Services Using Controlled Multicast” , Proc. IEEE
ICMCS’99, Florence, Italy, June 1999.

[8] L. Golubchik, J. C. S. Lui, and R. Muntz, “Reducing I/O
Demand in Video-On-Demand Storage Servers” , Proc. ACM
SIGMETRICS Conf., Ottawa, Canada, May 1995.

[9] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast
technique for true video-on-demand services” , Proc. ACM
MULTIMEDIA’98, Bristol, U.K., Sept. 1998.

