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ABSTRACT

This paper considers the problem of providing users play-
ing one streaming video the option of instantaneous and
seamless playback of alternative videos. Recommendation
systems can easily provide a list of alternative videos, but
there is little research on how to best eliminate the startup
time for these alternative videos. The problem is motivated
by services that want to retain increasingly impatient users,
who frequently watch the beginning of multiple videos, be-
fore viewing a video to the end. We present the design, im-
plementation, and evaluation of an HTTP-based Adaptive
Streaming (HAS) solution that provides careful prefetching
and buffer management. We also present the design and
evaluation of three fundamental policy classes that provide
different tradeoffs between how aggressively new alternative
videos are prefetched versus the importance of ensuring high
playback quality. We show that our solution allows us to
reduce the startup times of alternative videos by an order
of magnitude and effectively adapt the quality such as to
ensure the highest possible playback quality of the video be-
ing viewed. By improving the channel utilization we also
address the discrimination problem that HAS clients often
suffer from, allowing us to in some cases simultaneously im-
prove the playback quality of the video being viewed and
provide the value-added service of allowing instantaneous
playback of the prefetched alternative videos.

Categories and Subject Descriptors

C.4 [Information Systems Organization]: Performance
of Systems; C.2.2 [Network Protocols]: Applications; H.5.1
[Multimedia Information Systems]: Video

Keywords

HTTP-based adaptive streaming (HAS); Bandwidth-aware
prefetching; Multi-video preloading; Seamless playback
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1. INTRODUCTION
Today’s users are highly impatient and frequently switch

movies or channels within a few minutes of viewing. For ex-
ample, analysis of 540 million video-on-demand sessions has
shown that users often view the beginning of a few videos (5
on average) before finally viewing one video to the end [6].
To retain users and help minimize the chance that users de-
cide to use competing providers, it is therefore important to
quickly provide these users with attractive alternative video
choices that they can view next. For example, a selection of
alternative videos could be presented to the user as thumb-
nails, or the user could be presented previews or ads when-
ever pausing playback. We argue that to maximize retention
rates, these alternative videos ideally should be proactively
preloaded or prefetched to the client in a manner that allows
the videos to be available for instantaneous viewing at the
time when the client decides to terminate playback of the
originally viewed video or to switch video to view.

While there is much work on recommendation algorithms
for determining the best set of alternative videos that the
user is likely to want to view next [7, 8, 28], there is a lack
of research on the best ways to prefetch these alternative
videos. In order to maximize the user perceived Quality
of Experience (QoE), such techniques must balance the im-
portance of high-quality uninterrupted playback against the
desire to allow instantaneous playback of the alternative
videos. This problem is both important and challenging,
as users often are highly heterogeneous with time-varying
bandwidth conditions and the alternative videos must be
carefully prefetched in parallel with the video being streamed
such as to ensure timely preloading of these videos, while at
the same time minimizing the impact on the streamed video.

In this paper we present the design, implementation, and
evaluation of an HTTP-based Adaptive Streaming (HAS)
solution that provides prefetching and buffer management
such as to ensure instantaneous playback of alternative videos
whenever a user selects one of the alternative videos or in-
terrupts playback. The use of HAS allows the quality of
both the streaming video (currently being viewed) and the
prefetched alternative videos (that are cached for potential
future viewing) to be adapted such as to make the best use
of the available bandwidth. Within our framework, carefully
designed prefetching policies are used to ensure interruption
free playback, while allowing the player different (policy de-
pendent) means to control when each alternative video is
expected to be ready for instantaneous playback.

Typical HAS players are designed to interrupt download
when the buffer is sufficiently full, as measured by an upper
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buffer threshold Tmax, for example, and not resume down-
load again until the buffer has drained to some lower buffer
threshold Tmin. While the use of an upper threshold Tmax

helps limit the wasted resources associated with users not
watching the full video, it has been shown that the result-
ing on-off behavior [5, 21, 24] can lead to poor performance
under conditions with competing traffic [3, 13]. Our solu-
tion carefully schedules prefetching during off-periods, ob-
taining improved download rates, while also ensuring that
the prefetching does not negatively impact the user playback
experience. In fact, we show that under some circumstances,
prefetching of alternative videos can even improve the play-
back quality of the streaming video itself.

It is likely that the criticality of preloading alternative
videos will differ both across services and between users
within a service. For example, for some users, timely preload-
ing of alternative videos may be very important such as to
allow seamless“video browsing”, whereas for other users that
are less likely to change videos, the preloading is simply a
value added service used occasionally.

Motivated by a diverse set of use cases, and user behav-
iors, within our framework, we present the design and eval-
uation of three fundamental policy classes used for multi-file
prefetching. The first two policy classes use opportunistic
prefetching only during off periods, but differ in how ag-
gressively they prefetch new alternative videos versus ensur-
ing that the prefetched videos are relatively evenly paced.
The third class uses strict prefetch deadline targets for when
the beginning of the different alternative videos should have
been prefetched. In bandwidth restricted scenarios, this
policy class must therefore sometimes trade a lower qual-
ity level of the streaming video for more reliable delivery
of the prefetched alternative videos. We use an optimiza-
tion framework to balance the importance of the different
deadlines associated with this policy. Within each policy
class, we consider both non-adaptive and adaptive quality
selection versions.

We implement a proof-of-concept solution on top of the
Open Source Media Framework (OSMF), within which we
combine the OSMF Ad insertion plugin (to allow playback of
multiple videos in the same video container) and a download-
manager extension based on Krishnamoorthi et al.’s [19]
branched video framework (that supports prefetching and
caching). Our implementation allows the user to seam-
lessly switch to viewing an alternative video with negligi-
ble startup delay, as soon as the player has prefetched the
beginning of the alternative video(s). Moreover, the use of
the ad plugin to stitch together multiple videos within a
single container and cache management allow the currently
played video to be quickly replaced by an already prefetched
video. In experiments assuming a 4 Mb/s link, for example,
the startup time of an alternative video (at lowest playback
quality) is reduced from about 6 seconds (without prefetch-
ing but using the ad plugin for faster playout) to 0.6 seconds
(needed to switch and load containers).

In summary, the primary contributions of the paper are
(i) a prefetching framework that simultaneously allows adap-
tive prefetching and playback of alternative videos, while ad-
dressing the on-off problem typically associated with HAS,
(ii) a novel proof-of-concept implementation that we show
implements effective prefetching policies and provides close
to instantaneous playback of alternative videos, and (iii) the
design and evaluation of three candidate policy classes, in-

cluding both non-adaptive and quality adaptive versions.
Our experimental results highlight and validate the basic
properties associated with the different policy classes and
characterize their performance tradeoffs.

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 set the context and describe our system frame-
work, respectively. We then define the policy classes and
their variations (Section 4), describe our system implemen-
tation (Section 5), and present our validation and perfor-
mance results (Section 6). Finally, related work (Section 7)
and conclusions (Section 8) are presented.

2. BACKGROUND
HTTP-based Adaptive Streaming (HAS) is the most pop-

ular means of providing streaming services today [2]. HAS
is client driven and allows the use of stateless Web servers
and caches. Typically, the players either use byte-range re-
quests or request each individual file “chunk” with a unique
URL [5]. The use of multiple files with different video qual-
ities, with aligned chunks, allows the player to adapt the
playback media streaming rate based on current buffer and
network conditions.

Commonly, the client-side scheduling of chunk requests
by HAS players results in on-off periods in the bandwidth
usage [24]. To understand why, note that players must bal-
ance the need to buffer sufficiently many chunks such as
to account for jitter and bandwidth variations against the
desire to avoid wasting unnecessary resources on clients ter-
minating playback early. For these reasons, HAS players
typically try to maintain some minimum desired buffer oc-
cupancy Tmin (measured in second of playback) without ex-
ceeding some maximum desired buffer occupancy Tmax. For
example, with the simplest policies, as used by the OSMF
player, for example, playback begins whenever Tmin data
is buffered and the player continues to make requests until
Tmax is reached. Then, the player does not make any new
requests until the buffer occupancy falls below Tmin again.
Similar on-off patterns have been observed with other

players [5,21,24]. One noticeable difference between players
is the size of the buffer thresholds. For example, among gen-
eral video streaming frameworks, OSMF uses much smaller
default values (Tmin/Tmax = 4/6) compared to Microsoft
Smooth Streaming (Tmin/Tmax = 12/30) [5]. Even more
extreme is the Tmax = 240 second buffer that Netflix tries
to maintain in steady state [14]. A larger buffer provides ad-
ditional protection against errors in rate estimation, and can
in some cases allow clients to recover from temporary net-
work outages. Note that OSMF may be designed for short
duration videos played on mobile devices, whereas Netflix
focuses on delivering full-length movies and TV shows. Yet,
despite the large differences in the desired buffer size, the
on-off behavior is common across the players.

Coupled with TCP congestion control mechanisms, the
on-off periods can result in clients not obtaining their fair
bandwidth share [13, 15]. To understand why, note that
the overall throughput of HAS depends on the underlying
end-to-end congestion mechanism of TCP. For example, con-
sider the case in which the congestion window timer times
out during an off period. In this case, the sender will reset
its congestion window to a predefined minimum and begin
slow-start at the start of the on-period. More generally, the
use of on-off periods can cause a user to pick a lower qual-
ity than it otherwise would, resulting in increasingly bigger



off-periods, thus allowing other users to grab a bigger band-
width share. This behavior is self-feeding and HAS users
can get increasingly smaller bandwidth share [13].1

In this paper, we present a novel system design that uti-
lizes the otherwise unused bandwidth during off periods to
prefetch the initial chunks of alternative videos. This allows
the player to simultaneously preload alternative videos and
maintain its fair bandwidth share.

3. SYSTEM OVERVIEW

3.1 Basic Approach
We assume that each user has been assigned a set of alter-

native videos that the content provider would like to preload
at the client. This list could include, for example, videos that
the user is likely to view next or ads that the provider may
want to show when the user pauses playback. We will refer
to the video being streamed as the streaming video, and the
videos to be preloaded as alternative videos. To allow instan-
taneous playback of an alternative video, its initial chunks
must be prefetched and cached locally on the client.

Our solution leverages HAS chunking and adaptivity. To
allow instantaneous playback of alternative videos, the ini-
tial chunks of these videos are downloaded in parallel with
the chunks of the currently streamed video. By prefetch-
ing the initial chunks of the alternative videos, the player
can allow the user to seamlessly switch between multiple
videos without enduring noticeable playback interruption.
To ensure interruption free streaming of the currently viewed
video, the video qualities of both the streamed video and of
the prefetched alternative videos are adapted based on cur-
rent conditions.

Our solution utilizes the off periods associated with typi-
cal HAS players to perform prefetching. Using opportunis-
tic and adaptive prefetching of the alternative videos during
time periods when connections otherwise would be idle al-
lows us to make use of the otherwise wasted bandwidth. By
eliminating off periods, the player also avoids TCP conges-
tion window timeouts and other throughput problems as-
sociated with the on-off pattern of typical HAS systems,
allowing the client to maintain its fair bandwidth share and
improve download speeds.

In Figure 1(a) we use example traces to illustrate how
prefetching of alternative videos can help improve the client’s
overall download throughput during on periods, and hence
also the playback quality of the streaming video itself. Note
that after the off period (during which the regular HAS
player would not be downloading chunks), there is a non-
negligible ramp-up period required by TCP before the regu-
lar HAS player reaches the original download rate, resulting
in a slower average download rate during the following on pe-
riod. This is clearly illustrated by the difference in the slope
of the cumulative download curves (Figure 1(b)) between
28 and 37 seconds. The higher download rate also results
in Tmax being reached sooner, illustrated by the streaming
video curve of our player plateauing three seconds before the
native HAS player without prefetching.

1While the impact of on-off periods differs between TCP
implementations, typically TCP enters slow start when the
idle period exceeds the RTO threshold. Section 6.7 takes a
closer look at the impact of TCP version and slow start.

3.2 Simple Prefetch Example
Figure 2 illustrates the operation of a basic “best effort”

prefetching policy that prefetches the first two chunks of
each of the two alternative videos. In this example there are
only two quality encodings, and the player downloads the
initial chunks of the alternative videos, at the lower quality,
whenever there would otherwise be an off period.

As with regular HAS, the client starts downloading the
first few chunks of the streaming video at a low quality and
then increases quality as network conditions permit. The
player continues to download chunks back-to-back until the
buffer occupancy reaches or exceeds Tmax. At this time,
rather than entering an off period, our modified player now
downloads the chunks of the alternative video, starting with
the first chunk of the first alternative video.

Chunks of the alternative videos are downloaded into a
separate cache and are not loaded directly into the player.
Therefore, the playback buffer is drained at exactly the same
rate as for a regular HAS player. The modified player con-
tinues downloading alternative chunks until the next ex-
pected completion time would be after the playback buffer
reaches Tmin. For example, in the case that the current
download rate is r and the current playback buffer is T , the
player should no longer initiate new downloads of alterna-
tive chunks whenever r(T −Tmin) is smaller than the size S
of the next alternative chunk. Instead, the player switches
back to downloading chunks from the streaming video, and
the download pattern is repeated.

4. PREFETCH POLICIES
All considered prefetch policy classes (Section 4.1) as-

sume an ordered list of alternative videos, but differ with
respect to how many chunks are downloaded of each alter-
native video, the timing of when alternative video chunks
are downloaded, and how strictly potential chunk deadlines
are applied. Variants of the policy classes (Section 4.3) are
defined based on their quality adaptation.

4.1 Policy Classes
Best-effort: This is the simplest policy class. When the

buffer occupancy reaches Tmax, the player starts download-
ing chunks of the alternative videos, and continues doing so
until it estimates the download rate to be insufficient to al-
low another such chunk download before the buffer falls be-
low Tmin. At this time, the player goes back to downloading
chunks of the streaming video. When given a prefetch op-
portunity, this policy always prefetches the first n chunks of
the alternative video next on the list of alternative videos,
one after the other. Here, n is a policy parameter controlling
how much of each video should be prefetched before being
presented as a preloaded alternative.

This policy class is well suited for network conditions
where the buffer size periodically reaches Tmax. Naturally,
Tmax is reached most frequently under high-bandwidth sce-
narios. However, interestingly, due to the quality adapta-
tion of typical HAS players, alternative chunks will also be
downloaded relatively frequently also under low bandwidths
scenarios, as long as the download rate exceeds the mini-
mum encoding rate. Perhaps the biggest downside with this
policy class is that it does not provide the content provider
with any control of how quickly new alternative videos are
prefetched. The following two policy classes address this
shortcoming.
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Figure 1: Transfer during ex-
ample experiment.

Figure 2: Prefetch framework
overview.

Figure 3: High-level comparison of
prefetching classes.

Token-based: This policy class provides greater con-
trol of the earliest time new alternative videos should be
prefetched, allowing the client to pace the rate that such
videos are prefetched. These policies download chunks from
the alternative videos at exactly the same instances as the
best-effort policies, but differ in how they decide from which
video to download next. To achieve an even pacing with-
out impairing the playback quality of the streaming video,
these policies implement a token-bucket approach in which
new video tokens are generated and placed in a queue ev-
ery ∆ seconds. Each token is associated with a new alter-
native video, and the player always downloads the first n
chunks of the video next in the token-bucket queue, unless
the queue goes empty, in which case the player continues to
select chunks of the video associated with the most recent
token. The policy parameter ∆ determines the pacing, and
n the minimum amount of prefetching of each video. With
∆ = 0, the token-based policy is equivalent to best-effort.

Except for a much more even pacing of alternative videos,
the performance of the token-based policies is the same as
for the corresponding best-effort policies. Both these policy
classes only download alternative video chunks when given
an opportunity to do so without adapting the downloads of
the streaming video, ensuring that the playback quality of
the streaming video is not negatively impacted.

Deadline-based: For some video browsing users [6], stall-
free switching between videos may be more important than
achieving the highest possible streaming rate of the currently
streamed video. To further prioritize the download of alter-
native videos and enforce an even pacing of the alternative
videos, the third policy class associates deadlines with each
alternative video and applies an optimization framework to
find the best tradeoff between video quality and ensuring
that the alternative videos are prefetched in time of their
respective deadlines.

For simplicity, we define relative playback deadlines, such
that the deadline of the next alternative video a always
occurs when ma chunks of the streaming video have been
played either since the deadline for the previous alternative
video or since playback began (in the case there are no prior
deadlines). At each such deadline the player is expected to
have downloaded the first n chunks of the alternative video.
Assuming that the ma chunks of the streaming video are
downloaded ahead of the n chunks of the alternative video,
we can now determine an optimized download schedule by

solving the following optimization problem:

maximize

ma+1∑

i=1

qsi l
s
i +

n∑

j=1

qaj l
a
j , (1)

subject to

tsi ≤ τ +

i−1∑

j=1

lsj , 1 ≤ i ≤ ma + 1 (2)

taj ≤ τ +

ma∑

i=1

lsj , 1 ≤ j ≤ n (3)

rsi (t
s
i − tsi−1) = qsi l

s
i , 2 ≤ i ≤ ma + 1 (4)

ra1 (t
a
1 − tsm+1) = qa1 l

a
1 , (5)

raj (t
a
j − taj−1) = qaj l

a
j , 2 ≤ j ≤ n (6)

The structure of this optimization model is similar to that
used by Krishnamoorthi et al. [19] to address a different
prefetching problem, concerning “branched video”. Here, qsi ,
lsi , and tsi are the quality, chunk size, and download comple-
tion time of the ith chunk of the streaming video; qaj , laj
and taj are the corresponding values for the next alternative
video. Furthermore, rsi and raj are the estimated download
rates for chunks i and j of the two videos, respectively, and
the startup delay τ is equal to the most recent deadline, or
the playback start of the first downloaded chunk.

The objective function (1) tries to maximize the playback
quality of the streaming video, conditioned on the individual
playback deadlines of the streaming video (2), the n alter-
native chunks being downloaded before their deadline (3),
and bandwidth flow conservation assuming that the n alter-
native chunks (5 and 6) are downloaded after the ma chunks
of the streaming video (4). This prioritization ensures that
the client does not experience unnecessary stall times for
the streaming video. However, as chunks from alternative
videos may be prefetched even when the player is not in an
off-period, it may potentially impair the playback quality of
the streaming video.

Whenever the deadline of an alternative video is passed,
we simply move on to the next deadline. Furthermore, in
the case that n chunks of the alternative video have been
downloaded but the deadline of the alternative video is not
passed, chunks from the streaming and alternative videos
are downloaded in round-robin order. This approach there-
fore paces the downloads of alternative videos and naturally
limits the workahead of the streaming video.



4.2 High-level Comparison
Figure 3 presents a high-level comparison between the

three policy classes. In this example, we have assumed
n = 2 and that the prefetched chunks are of the lower of
two qualities. We note that the best-effort policy consis-
tently downloads the first two chunks of each alternative
video, whereas the token-based policy uses exactly the same
opportunities to build up a larger buffer (workahead) for the
video associated with the tokens generated thus far. This
illustrates the differing policy tradeoffs between prioritizing
pacing the prefetching of new alternative videos (potentially
building up additional workahead for the current video that
the client may be more likely to start viewing) and prefetch-
ing the largest possible set of alternative videos.

The biggest differences are observed for the deadline-based
policy class. In contrast to the first two policy classes, this
policy class uses deadlines to enforce downloads of alterna-
tive videos. Of course, this can come at the expense of the
streaming video itself. For example, in Figure 3 the more ag-
gressive prefetching required to meet the download deadlines
of the alternative video chunks results in earlier downloads of
these chunks and the playback buffer of the streaming video
does not reach Tmax until after the first such deadline. Note
also that the more aggressive use of prefetching results in
tighter buffer conditions. As seen in our experimental re-
sults (Section 6), this often results in the streaming video
being streamed at a lower overall average quality compared
to with the other two policies.

4.3 Fixed vs. Adaptive Prefetching
Thus far, for each policy class, we have described a simple

policy variant that always prefetches chunks of the alterna-
tive videos at the lowest quality. We call these policy vari-
ants lowest quality. We also consider variants that adapt the
quality of the alternative chunks based on the current buffer
conditions and download rates. With our adaptive quality

variants the quality of each prefetched chunk is selected at
the time of the download request. At this time, the client
greedily maximizes the quality of the next prefetched chunk,
based on the estimated bandwidth and conditioned on the
download being completed before the buffer occupancy falls
below Tmin and any other download deadline constraints
associated with the deadline-based policy, for example.

5. SYSTEM IMPLEMENTATION
We have implemented a prototype of our system on top

of the OSMF framework. Although the general policies de-
scribed here are applicable to any HAS system, one advan-
tage of the OSMF framework is that it is open source and
we can share our implementation with the research com-
munity.2 To simplify the head-to-head comparison of the
prefetching policy classes, and to help ensure that our re-
sults are not determined by some quirk of OSMF, we use
a somewhat simplified rate switching algorithm which does
not leverage OSMF specific rules such as DroppedFPSRule or
EmptyBufferRule. This algorithm consistently determines
the quality of the next chunk as the highest chunk encoding
rate that is lower than 0.8 times the current estimated band-
width. An EWMA on the chunk download rates with α=0.4
is used to estimate the current download rate. The specific

2Our data, source code, and system framework are available
at http://www.ida.liu.se/~nikca89/papers/mm15.html.

rate switching algorithm used was found to not significantly
impact the relative policy comparisons.

The prefetching policies are implemented in a separate
HTTPDownloadManager class that we incorporate in the OSMF
framework. To facilitate seamless playback of multiple sep-
arate videos within the same container (e.g., to show snip-
pets) we leverage the OSMF Ad insertion plugin.

Multi-file prefetching: Our HTTPDownloadManager class
is responsible for (i) estimating download rates, (ii) updating
buffer occupancies, (iii) regulating on-off periods, and (iv)
managing the download schedule of chunks from the stream-
ing video and alternative videos. This class integrates with
the original OSMF libraries, thereby facilitating transpar-
ent operations between the original and custom components
of the player. Chunks which are downloaded by this class
are placed in the browser cache. When initiating playback
of an alternative video these chunks are then requested by
the player, resulting in a browser cache hit, from which the
chunks can be quickly retrieved and subsequently played.

Browser cache: In our experiments, we make use of
the browser cache as a temporary store for prefetched data
rather than holding this data internally within the player.
This circumvents limitations within the OSMF platform.
For our experiments we place the browser cache on the RAM
as it provides the fastest retrieval times. In the case a larger
cache is needed, the cache may also be placed on the hard
disk. The difference between these two configurations was
verified to be minimal in our system.

Multi-file playback: The OSMF Ad insertion plugin
was originally designed to play advertisements without hav-
ing to load a new player/webpage each time, and allows
multiple separate videos to be played within the same video
container. We modified this plugin to allow different videos
to be seamlessly stitched together at the time instance when
the user selects to view the alternative video.

User interaction: There are multiple ways for the al-
ternative videos to be displayed to the user. First, the user
can be presented with a list of alternative videos that cur-
rently have been prefetched and are available for instanta-
neous playback. As new alternative videos are prefetched,
they are added to the list. Second, when the streaming
video is paused, the container can be replaced with a dif-
ferent instance of the video player, which plays one or more
alternative videos. In this case, upon completion, playback
of the original streaming video is automatically resumed.

The plugin also supports overlaying videos to be displayed.
In this case, both the streaming video currently being viewed
by the user, and one or more alternative videos can be dis-
played simultaneously in the same container. Other content
providers may want to just display a thumbnail image or ex-
ample frame of the alternative video. In this paper, we focus
on the performance aspects of our framework, and leave user
interface design issues for future work.

6. VALIDATION AND PERFORMANCE

6.1 Experimental Setup
Our experiments have been performed using a high-speed

LAN. Dummynet [26] is used to control available band-
widths and round-trip times (RTTs). Our videos are hosted
on a Windows 7 machine running Flash Media Server (FMS)
4.5 on top of TCP Reno. We also cross validate our results
with FMS running on a Linux machine with TCP CUBIC



and TCP Reno as the congestion control algorithm. The
client machine runs Windows 7 and the player is embed-
ded on a webpage within a Mozilla Firefox version 25.0.1
browser. The streaming video is the Big Buck Bunny video,
each chunk is four seconds long, and has been encoded at
1,300 Kb/s, 850 Kb/s, 500 Kb/s and 250 Kb/s. The alter-
native videos are encoded using the same parameters.

In the following experiments, we present results which
show how different policies perform under different network
conditions. For all experiments we use two servers. One
server hosts all the videos and the other hosts large files that
are downloaded in parallel to generate between one and four
competing flows. Dummynet runs on the end hosts.

To evaluate the impact RTTs have on the performance
of the policies we keep the RTTs for the competing flow(s)
fixed, while running experiments with different RTTs be-
tween the client and the streaming service. By running ex-
periments with different number of competing flows, we can
capture the bandwidth degradation while experiencing in-
creased competition [13, 15]. In our default experiments we
use a single competing flow. Both the video flow and the
competing flow experience an RTT of 150ms, as motivated
by the average ping latency observed from our university
network to the top-million websites (per Alexa.com).

To capture both good and bad network conditions for the
encodings and setup above, we evaluate the system for dif-
ferent shared available bandwidths, with 4,000 Kb/s being
our default bandwidth. In our experiments, we also take a
closer look at the impact of the buffer size and TCP version.

Our instrumented player continually records information
about player states and events to a log file. These log files are
then processed to generate our results. Unless specifically
mentioned, in each experiment the streaming video plays
for 90 seconds and each experiment is repeated 20 times.

We also include results using the naive OSMF player with-
out any modifications, which does not do any prefetching of
alternative videos, to provide a baseline for comparison. The
prefetch policies are all implemented using this as a baseline.

6.2 Playback Initiation of Alternative Videos
Before comparing prefetching policies, we show the poten-

tial impact of prefetching on the startup times of alternative
videos. For this purpose we compare the startup delays of
an implementation that does not perform any prefetching
with one that has already prefetched the videos.

In both cases, when the user initiates the playback of an
alternative video, the currently streaming video is paused,
removed from the playback container, and a new player in-
stance is created and added to the container. The player
then initializes parameters using the manifest file (assumed
available to the player), and then places a request for the
first chunk of the alternative video. In the case the chunk
has been prefetched it typically takes our player less than 0.1
seconds to load this chunk from the cache, resulting in a to-
tal startup time of 0.6 seconds (with a standard deviation of
0.15 seconds). In contrast, for the case without prefetching
the chunk must first be downloaded from the origin server
which takes considerable time. For example, in our default
scenario (with B = 4, 000Kb/s, RTT = 150 ms, and one
competing flow) we had a startup delay of 5.8 (σ = 2.3) sec-
onds, an order of magnitude larger. With B = 2, 000Kb/s
the startup delay without prefetching was 10.0 (4.1) seconds,
and with B = 8, 000Kb/s was 3.6 (1.4) seconds.

While these delays due to downloading the first chunk of
the alternative video at first may seem larger than the down-
load of a typical chunk during playback, it is important to
remember the state of the system when the client selects to
play a different video. In the case the chunk must be re-
trieved from the origin server, one of two different scenarios
typically takes place. First, if there is an ongoing down-
load the client must either make the request over the same
connection as the ongoing download (requiring some wait-
ing time before the download can begin) or open up a new
parallel connection (in which case the client typically must
endure connection establishment, slow start, and simulta-
neously share the bandwidth with the original connection).
Which of these cases takes place is determined by the OSMF
download manager, but both result in non-negligible delays
as even the lowest-quality chunks typically consist of more
than one hundred 1,500 byte packets. While the download
typically is faster in the case there is no ongoing download,
this case also requires substantial startup delays, especially
if having to endure slow start due to timeouts, for example.

6.3 Policy Comparison, Default Scenario
Some of the qualitative differences among the policies are

captured by the cumulative distribution function (CDF) of
the time stamps at which the different policies have down-
loaded the first two chunks of the different alternative videos.
Figure 4 shows the CDFs of the lowest quality policy vari-
ants for our default scenario with B = 4, 000Kb/s, RTT =
150ms, Tmin/Tmax = 8/12, and a single competing flow
(also with an RTT of 150ms). The results for the adaptive

quality variants are qualitatively similar.
Note that while the first CDF with the best effort pol-

icy and that with the token-based policy are similar (as the
policies are identical to this point), their characteristics dif-
fer substantially for later alternative videos. The best effort

policy quickly tries to download as many alternative chunks
as possible. In contrast, the token-based policy paces itself,
and downloads a few extra chunks of each video. For this
policy a new token was released every 20 seconds, starting
at time 0. Most even is the pacing of the deadline-based pol-
icy. For this policy a deadline was placed every 20 seconds,
starting at time 20s. For the default scenario considered
here none of the policies experienced playback stalls.

As noted previously, the deadline-driven pacing of the
deadline-based policy class comes at the cost of a some-
what lower playback quality than for the other policies.
Figure 5 quantifies these playback quality differences, and
includes results for both the lowest quality and adaptive

quality policy variants. The figure shows the percentage of
time the streaming video is playing at different video encod-
ings, as well as the quality of the chunks of the alternative
videos downloaded. We note that the best-effort and token-

based policies achieve slightly higher playback quality for
the streaming video than the naive player, whereas there
are only small differences in the playback quality observed
for the deadline-based policy class. This difference is due
to the optimization framework’s need to take into account
tighter deadlines to ensure small stall probabilities for the
deadline-based policies.

6.4 Impact of Network Conditions
We next take a closer look at the impact of the available

bandwidth (B), round-trip time (RTT ), and the amount of
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Figure 4: CDF of prefetch completion times for alternative videos under default scenario (B = 4, 000 Kb/s).

 0

 20

 40

 60

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

F
ra

c
ti
o

n
 o

f 
ti
m

e
 (

%
)

Encoding rate (Kbit/s)

Naïve (without prefetching)
Best effort, lowest

Best effort, adaptive
Token−based, lowest

Token−based, adaptive
Deadline−based, lowest

Deadline−based, adaptive

(a) Playback rate streaming video

 0

 20

 40

 60

 80

 100

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

250
500

850
1300

F
ra

c
ti
o

n
 o

f 
ti
m

e
 (

%
)

Encoding rate (Kbit/s)

Best effort, lowest
Best effort, adaptive

Token−based, lowest
Token−based, adaptive
Deadline−based, lowest

Deadline−based, adaptive

(b) Chunk encoding rate alternative video
Figure 5: Encoding rates under default scenario.

competing traffic. For this analysis we consider (a) the aver-
age stall probability, (b) the playback rate for the streaming
videos, and (c) the average encoding rate for the alternative
videos downloaded. While we have omitted the number of
stalls and stall duration, the Pearson correlation coefficients
between the stall probability and these two metrics are 0.94
and 0.71, respectively, for the cases we observe stalls.

Shared available bandwidth: As expected, all policies
adapt the streaming quality based on the available band-
width (Figure 6(b)), and for the adaptive quality variant
also the chunk quality is adapted (Figure 6(c)).

Referring to Figure 6(b), we can also see that the player
performance of all policies (with one competing flow) flat-
tens out somewhere between 6,000 and 8,000 Kb/s shared
available bandwidth, and that not much additional perfor-
mance is gained beyond this point, as the client achieves
close to the maximum encoding rate of 1,300 Kb/s.

Naturally, with the best effort and token-based policies,
prefetching will only take place when there is sufficient band-
width to fill the buffer. In contrast, the deadline-based policy
prioritizes downloading the initial chunks of the alternative
videos by their respective deadlines at the cost of somewhat
lower streaming quality (Figure 6(b)).

In general, the stall probabilities (Figure 6(a)) are low or
zero, except for the low-bandwidth scenario (with B = 1, 000
Kb/s). The higher stall probabilities for the case when
B = 1, 000 Kb/s are in large part due to the lack of lower

qualities (below 250 Kb/s) causing a smaller error margin,
and the coarser chunk granularity at this bandwidth caus-
ing a higher penalty of selecting the wrong quality. In this
scenario, many of the stalls occur due to clients switching
to a higher quality (typically from 250 Kb/s to 500 Kb/s,
with all policies having an average playback rate, in this
case, of between 259 and 277 Kb/s) and then not getting
the next chunk in time, due to a (temporary) degradation
of the download speed (e.g., due to the competing flow).

While non-negligible when B = 1, 000 Kb/s, the stall
probabilities of the best effort and token-based policies are
comparatively (slightly) lower than those of the naive player.
The higher stall probabilities for the deadline-based policy
(40%) observed for this scenario are due to very tight con-
ditions. For example, to meet the first deadline, more than
28s of video must be downloaded in 16s, and the competing
flow hogs much of the shared bandwidth and complicates the
bandwidth prediction used in the optimization framework.
This shows that the policy is somewhat optimistic for these
circumstances, and that prioritizing the alternative videos
under conditions with limited and variable available band-
width can come at the cost of increased stall probabilities.

While we expect that the results could be improved with
the help of better prediction algorithms for the available
bandwidth, the use of bigger buffers, or by increasing the
distance between download deadlines of alternative videos,
clearly, giving too high priority to the alternative videos
may not be ideal in these constrained (and hard-to-predict)
cases. In such cases the simpler token-based approach may
be preferable.

Finally, for all of the bandwidths, the adaptive-quality pol-
icy variants are able to download the alternative videos at
a much higher quality than the lowest-quality variants (Fig-
ure 6(c)), without negatively impacting the streaming qual-
ity of the streaming video as measured by the stall probabil-
ities (Figure 6(a)) and the playback encoding rate of the
streaming video (Figure 6(b)) These results suggest that
these relatively simple adaptive-quality variants do a good
job adjusting to the current network conditions.

Round-trip times: TCP throughput is greatly impacted
by RTTs. We run experiments for different RTTs (between
50ms and 250ms) for our application, while keeping the RTT
of the competing flows fixed at 50ms. The results in Figure 7
shows that the policies in general adapt well to the varying
network conditions, adjusting the streaming playback rate
(Figure 7(b)) to maintain low (typically zero) stall probabil-
ities (Figure 7(a)).

As expected, there is a clear decrease in the playback rate
(Figure 7(b)) of the streaming video as the RTT of the video
application increases. This trend matches well with the in-
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Figure 6: Impact of the shared available bandwidth.
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Figure 7: Impact of the round-trip times (RTTs).

verse relationship typically observed between TCP through-
put and RTTs. For the case for which we observe stalls, note
that the stall probabilities of all policies are similar or lower
than for the naive player. This is particularly encouraging
for the adaptive-quality variants which are able to download
alternative videos at a higher quality (Figure 7(c)) than the
lowest-quality variants without sacrificing playback quality
of the streaming video (Figure 7(b)).

Competing flows: The effective bandwidth share of the
application decreases with increasing numbers of competing
flows traversing the bottleneck, giving similar results (omit-
ted) to those seen with decreasing available bandwidth in
Figure 6. Our prefetching policies adapt by adjusting the
playback quality, and with the adaptive variants also the
encoding of the alternative videos.

Alternative videos downloaded: Another important
consideration when selecting which type of policy to use is
the number of alternative videos that the policy is able to
download (in the case of the deadline-based policy, by their
individual deadlines). Figure 8 shows this metric for the first
90 seconds of our experiments.

As expected, the best-effort policy typically downloads the
first two chunks of more alternative videos than the other
policies; the differences being particularly apparent when
considering the lowest-quality variants. For the other poli-
cies the lowest-quality and adaptive-quality variants are able
to complete approximately the same number of preloads.
Given the higher quality seen with adaptive-quality (Fig-
ures 6(c) and 7(c)), these results may suggest that the adaptive-
quality variants are more attractive than the corresponding
lowest-quality policies.

6.5 High-bandwidth Variation Scenarios
We have also evaluated the different policies under real-

world commuter traces with widely varying available band-

widths, collected while using different modes of transport in
Oslo [25]. The ferry trace has an average bandwidth B of
2,026 Kb/s and a standard deviation (σ) of 1,020. The bus

trace has B = 2,031 Kb/s and σ = 432; the metro trace has
B = 1,014 Kb/s and σ = 470; and finally the tram trace has
B = 1,082 Kb/s and σ = 286.

Among these traces, the ferry trace is perhaps the most ex-
treme as the available bandwidth varies widely depending on
the distance to land. The variation is high also for the metro
trace. For these two traces, all policies (including the naive
player) have stall probabilities above 75%. The deadline-

based policies also suffer from significant stall probabilities
(around 50%) for the tram trace. For all other policies and
scenarios we observe only negligible stall probabilities. In
general, as for the previous scenarios, both the best-effort

and token-based policies are able to achieve similar or better
performance than the naive player, while also prefetching
alternative videos for instantaneous playback. This is ex-
amplified by the playback encoding rates shown in Figure 9.

6.6 Buffer Size
HAS clients make use of a playback buffer to accommo-

date for network jitter and short-term variations in the avail-
able bandwidth. The typical buffer size varies between appli-
cations, playback device, and in some cases also on the net-
work in which the application and device are deployed. We
have validated our conclusions for Tmin/Tmax = 4/6, 8/12,
8/16, 12/24, 12/30 (seconds). Note that as Tmax − Tmin

increases in these configurations, there will be fewer off-
periods, but of greater duration (equal to 2, 4, 8, 12, and
18 seconds, respectively). While we observed much fever
stalls for bigger buffer sizes, the relative performance across
policies and against the naive player are consistent with the
results presented earlier in the paper. (Figures omitted.)
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Figure 8: Number of alternative videos with at least two chunks.

 0

 500

 1000

 1500

Ferry Bus Metro Tram

A
v
e
ra

g
e
 p

la
y
b
a
c
k
 r

a
te

 (
K

b
it
/s

)

Trace location

Naïve (without prefetching)

Best effort, lowest

Best effort, adaptive

Token−based, lowest

Token−based, adaptive

Deadline−based, lowest

Deadline−based, adaptive

Figure 9: Streaming encoding rate
in trace-driven scenarios.
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Figure 10: TCP version comparison.

6.7 Slow Start and TCP Configurations
The performance under competing traffic also varies be-

tween TCP versions. The impact of off periods is particu-
larly apparent in cases when slow start is invoked after the
off periods, or the congestion window, due to other reasons,
takes more time to reach its fair-share bandwidth.

To understand the impact of TCP slow start and con-
gestion control in general, we compared the performance of
four alternative TCP implementations: (i) Reno on Win-
dows, (ii) Reno on Linux, (iii) CUBIC on Linux, and (iv) a
modified version of CUBIC on Linux that retains its window
size during off periods. We note that the three first versions
by default reduce the number of segments that the server
can send at a time whenever the flow has remained inactive
for duration that is longer than a timeout threshold.

While the performance improvements achieved by the best-
effort and token-based policies are largest with the two Reno
implementations, our conclusions are consistent across TCP
implementations. Both these policies consistently give the
same or better performance than the naive player. For ex-
ample, Figure 10 shows the average playback rate for the
default scenario (with B = 4, 000 Kb/s). Here, the best-

effort policy achieve average improvements in the playback
rate (relative to the naive player) of 20.5% and 8.1% with the
two Reno implementations, respectively, 5.1% with CUBIC,
and 2.6% using CUBIC without slow start. Not surpris-
ingly, the smallest improvements are seen when using CU-
BIC without slow start. These observations are expected
as CUBIC ramps up faster than Reno, but not as quickly
as the CUBIC implementation that avoids slow start after
inactive periods. The prefetch policies, on the other hand,
effectively avoid off periods altogether.

7. RELATED WORK
Playback stalls and frequent quality switches have been

shown to have the most significant impact on user satisfac-
tion and video abandonment during playback [10, 11]. The

HAS player adaptation algorithm plays an important role
here [5]. Inaccuracies in the rate estimations [17] and inter-
action with other competing flows [3, 13] have been found
to negatively impact the performance of many HAS players.
TCP is often part of the problem, as clients may be forced
to resume the download from slow start after an idle period.
Although observed as a problem already for traditional web
workloads [22], this feature remains the default in several
TCP implementations.

For long duration content, others have suggested that rate
estimates are only important for the initial transient period,
when building up a playback buffer, and that buffer-based
policies that track changes in buffer size can be used in
steady-state [9,14]. Rather than looking at the steady-state
period of such large-buffer and long-duration video systems
we consider preloading during the transient period, when
users are more likely to switch to an alternative video.

In order to be fair to multiple competing clients, server-
based traffic shaping has been proposed [4]. Other solutions
have relied on optimized chunk scheduling, bandwidth es-
timation, and quality selection that ensures fair and stable
playback characteristics [15].

Prefetching has long been used to improve Web perfor-
mance [23], but has also been applied in the context of HAS-
aware proxies that preemptively try to download chunks that
the clients are likely to download next [18]. Others have
observed that some players may re-download chunks that
have already been downloaded, at a higher quality [27]. In
this paper, we show how careful prefetching can be used to
improve HAS performance, by stabilizing the client’s band-
width share and simultaneously allowing preloading of al-
ternative videos, but do not consider policies that use the
extra bandwidth to re-download chunks at higher quality.
Combining these ideas could be interesting future work.

Many recommendation algorithms and systems have been
proposed, including to determine which video a user is likely
to want to view next [7, 8, 12, 28]. In addition to client-side
recommendations, video recommendations have also been
used to improve cache efficiency [20].

While both the prefetching framework and the implemen-
tation to allow quick preloading of alternative videos are
novel, we are not the first to combine multiple videos into
a seamless playback experience. For example, Johansen et
al. [16] use a modified player to combine video snippets based
on tagged videos and user search queries into a single person-
alized video stream. Krishnamoorthi et al. [19] implement
an OSMF-based client that is able to provide seamless play-
back of interactive branched video. The DASH specification
also allows ad insertion into live and VoD streams [1].



8. CONCLUSIONS
This paper presents the design, implementation, and eval-

uation of a HAS-based framework that uses careful prefetch-
ing and buffer management to preload the initial chunks
of alternative videos. We show that our design and imple-
mentation allows prefetching and instantaneous playback of
prefetched alternative videos without any playback quality
degradation of the currently streamed video. To capture a
wide range of objectives, three classes of prefetching policies
are designed and evaluated.

The design, characteristics, and performance of the three
policy classes (i.e., best-effort, token-based, and deadline-

based), and their variations (i.e., lowest-quality and adaptive-

quality), are compared against each other and the naive
player on top of which they are all implemented. As the
policy classes are designed with different objectives, these
comparisons provide insights into desirable policy choices for
providers with different objectives. Perhaps most encourag-
ing is the performance of the token-based, adaptive-quality

policy. This policy (i) allows the download of alternative
videos to be relatively well paced for a wide range of network
conditions, (ii) nicely adapts the quality of the prefetched
chunks based on the current conditions, and (iii) provides as
good, and often better, playback quality as the naive player,
as exemplified by similar stall probabilities and better play-
back encoding rate. The best-effort, adaptive-quality policy
performs similarly except does not pace alternative video
downloads. Finally, the deadline-based policies trade some
of the playback quality of the streaming video for prefetch
deadlines and more even pacing.

Much of the improvements in bandwidth utilization and
streaming performance shown in this paper are achieved by
leveraging the off periods typically observed with HAS play-
ers. In this paper we have leveraged rate estimates to decide
when and at what quality to download chunks of the alter-
native videos. Recent work has suggested that in steady
state buffer-based policies (rather than rate-based policies)
should be used to adapt the playback quality [14]. Future
work will consider such generalizations.
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