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Abstract. Sensor network applications commonly require sensor data
to be periodically collected. Aggregation protocols can make this process
considerably more efficient. This paper considers the problem of devising
aggregation protocols for applications that must achieve as “real-time” a
view of the monitored area as possible, entailing a high sampling rate and
a low data collection delay, at the possible cost of some modest amount of
data loss. We examine in particular broadcast-based protocols that min-
imize the number of packet transmissions, relying on multipath delivery
rather than ARQ for reliability, and consider the question of whether such
protocols can achieve lower collection delays and support higher sampling
rates than conventional aggregation protocols. Our results suggest that
broadcast-based protocols can yield significantly improved performance
in some scenarios, when sensor data can be aggregated into packets of
size that is independent (or largely independent) of the number of values
being aggregated.

Key words: sensor networks, aggregation protocols, performance eval-
uation

1 Introduction

Sensor networks consist of a potentially large number of sensor nodes capable
of capturing measurements of their immediate environment, together with one
or more “sink” nodes at which sensor data can be collected. Data collection
may be either periodic [1][2][3][4], as in environmental monitoring applications
for example, or as needed (aperiodic) [5][6][7] in response to exceptional events.
We consider here the case of monitoring applications that must achieve as “real-
time” a view of the monitored area, at a single sink node, as is possible. For this
purpose, periodic data collection is required, with a high sampling/collection
rate and a low data collection delay.

The efficiency of data collection can be vastly improved by aggregating the
sensor data received at intermediate nodes into fewer numbers of packets, as
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this data is being forwarded to the sink [1] [2][3][4][5][6]. By reducing the num-
ber of transmitted packets, aggregation can reduce energy usage, increase the
achievable data collection rate, and (owing to reduced network contention) de-
crease the data collection delay. Aggregation may be achieved in an application-
independent manner by simply concatenating (possibly in compressed form) the
sensor values received from multiple sensors in one packet [8]. Alternatively,
aggregation may make use of application semantics, such as when only the max-
imum sensor reading is required; in this case, only the largest value need be
forwarded [1].

Existing protocols for data collection using aggregation (“aggregation pro-
tocols”) may be classified as either asynchronous or synchronous and according
to whether they use unicast or broadcast communication [1][2][3][9][10][11]. The
former distinction concerns how a node determines when to wait for additional
data from upstream nodes, and when to send downstream an aggregate packet
containing whatever data it has received up until then. In TAG, for example, a
synchronous approach is used, in which all nodes i network hops from the sink
forward their (aggregated) data to their parent nodes in the aggregation tree
during interval d− i of each “round” of communication, where one set of sensor
readings is collected each round, and where d is the maximum number of hops
from the sink [1]. In contrast, with asynchronous protocols, each node adaptively
determines when to send versus when to wait based on its local history of past
packet receptions from upstream nodes.

Most prior aggregation protocols use unicast transmission, with reliability
achieved using an acknowledgement/retransmission (ARQ) facility, as provided
by the link layer for example. The prior work concerning aggregation protocols
using broadcast transmission has focused on protocol mechanisms for “duplicate
sensitive” aggregation [9][10], in which the sink must never receive multiple ag-
gregates including the same sensor value (or the same share of a sensor value, if
“value splitting” [1] is employed).

We focus on protocol mechanisms that broadcast-based protocols can employ
to maximize the achievable sampling/collection rate and minimize the collection
delay with some modest amount of data loss, and the question of whether such
protocols can achieve better performance in these respects than unicast-based
protocols. It is assumed acceptable for the sink (and intermediate nodes) to re-
ceive multiple aggregates including the same sensor value, either because aggre-
gation is duplicate insensitive (e.g., only the maximum sensor value is needed),
or duplicates can be filtered (each aggregate is a concatenation of sensor values).

Both synchronous and asynchronous broadcast-based aggregation protocols
are developed. They take advantage of the fact that multiple downstream nodes
may be potential receivers of a single broadcast transmission, and of the ability
of a node to listen to transmissions from neighbouring nodes so as to determine
which (if any) have included that node’s broadcast data in their own transmis-
sions. The latter ability is used as a substitute for acknowledgements: in addition
to the reliability improvement that arises from potential multipath delivery to
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the sink, we also achieve improved reliability through use of two-phase protocols
in which a node may repeat (once) its broadcast.

We compare unicast-based protocols and the new broadcast-based proto-
cols mostly using simulation. Rather than assuming some particular aggregation
function, two extreme cases are considered. In one of these, it is assumed that
sensor data can be aggregated into packets of size that is independent of the
number of values being aggregated. In the other, required packet size is as-
sumed to increase linearly with the number of values included in the aggregate.
The first case applies with duplicate-insensitive aggregation functions such as
“maximum”. The first case would also clearly apply with duplicate-sensitive
aggregation functions such as “average”, were it not for our assumption that
it is possible to recognize and filter out duplicates that have been included in
multiple aggregates. Which of these two cases more closely reflects reality may
depend on the extent to which sensor values and identifiers can be encoded in
highly-compressed form in the aggregates.

We find that for a fixed required packet size, broadcast-based protocols are
able to support higher sampling/collection rates with lower collection delays,
than unicast-based protocols. The performance improvements are particularly
pronounced for synchronous aggregation. When the required packet size is as-
sumed to increase linearly with the number of values included, however, we find
no significant performance advantage with broadcast-based protocols.

The remainder of the paper is organized as follows. Sections 2 and 3 re-
view the synchronous and asynchronous unicast-based protocols, respectively,
on which our new broadcast-based protocols are based, and then describe the
new protocols. Section 4 presents simulation results evaluating the performance
of the new protocols in comparison to that of the unicast-based protocols. Section
5 provides initial experimental results. Section 6 concludes the paper.

2 Synchronous Aggregation

With synchronous aggregation protocols, all sensor nodes at the same distance
(number of hops) from the sink are given the same interval of time in which to
transmit, within each round of communication. Nodes farther away from the sink
are given earlier transmission intervals, so as to allow their data to be aggregated
with that of nodes closer to the sink before these latter nodes make their own
transmissions. We first briefly describe the unicast-based synchronous protocol
on which our new broadcast-based synchronous protocol is based, in Section 2.1,
and then describe the design of the new protocol in Section 2.2.

2.1 Unicast-based

The unicast-based synchronous protocol is a variant proposed in previous work[3]
of the original synchronous aggregation protocol as used in TAG [1]. Aggregation
is performed over a tree rooted at the sink. Sensor readings are made periodically
with period duration t. Nodes at different tree levels are assigned to different
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transmission intervals within each round of communication (i.e., collection of
one set of sensor values) based on their distances to the sink. It is assumed that
each node i knows its hop count hi to the sink and the maximum hop count H
in the tree, and accordingly chooses its transmission interval within each round.

Let I denote the interval duration. In each round j, node i picks a random
value rj

i between 0 and λI, 0 ≤ λ ≤ 1, aggregates the data it has received for

this round, and sends out its packet at time T0 + t(j − 1) + (H −hi)I + rj

i . Here
it has been assumed that all nodes agree on the same base time T0 defining the
beginning of the first round. It has been found that randomizing transmissions
over λI yields better performance than when all nodes at the same tree level
attempt to transmit at approximately the same time, and that setting λ to 0.8
yields good performance over a wide variety of network configurations [3].

As described previously, we make no assumptions regarding the type of aggre-
gation that is performed (application-independent, duplicate-sensitive, duplicate-
insensitive, etc.), but rather attempt to model a range of scenarios in our per-
formance experiments through consideration of two extreme cases with respect
to how packet size grows with the number of aggregated values.

2.2 Broadcast-based

In our broadcast-based synchronous aggregation protocol, nodes are organized
into a ring topology [11], as shown in Fig. 1. The sink is the only node that is
located in ring 0, nodes one hop away from the sink are in ring 1, etc. As in
the unicast-based protocol, nodes in different rings are allotted different time
intervals within each round of communication for their transmissions. As before,
the duration of the period between sensor readings is denoted by t, and the
interval duration by I.

Ring 0

Ring 2

Ring 1
Sink

Ring 2

Ring 1

Ring 3

T0 Tt

Ring 3

First phase of the interval Second phase of the interval

Sink

Fig. 1. Synchronous Broadcast-based Aggregation
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Unlike the unicast-based protocol, in our broadcast-based protocol each in-
terval is divided into a first and second phase with durations αI and (1 − α)I,
respectively. Each node (except for the sink) broadcasts a packet containing
(possibly aggregated) sensor data during the first phase of its interval in each
round. Nodes may also make a second broadcast during the second phase, as de-
scribed below. Each broadcast packet includes a bit vector indicating the nodes
whose data is aggregated in the packet. Nodes aggregate all of the data they
have received from broadcasts for the current round (including broadcasts from
neighbouring nodes in the same ring), for their own broadcasts.

Specifically, in each round j, node i picks a random value r1j

i between 0 and
(α−0.1)I, aggregates the data from the broadcasts it has received for this round,
and makes its own first broadcast at time T0 + t(j−1)+(H −hi)I + r1j

i . Node i

then picks another random value r2j

i between 0 and (1−α−0.1)I. A broadcast is

made in the second phase of the round, at time T0+t(j−1)+(H−hi)I+αI+r2j

i ,
if, by this time, node i has not heard a broadcast transmission from some other
node in ring i that has included node i’s data (owing to the other node having
heard node i’s first broadcast, prior to its own first broadcast). Similarly to the
unicast-based protocol, randomizing the transmissions within each phase yields
better performance than when all of the nodes in the same ring attempt to
transmit at approximately the same time.

The second broadcasts are important to improve reliability. For nodes with
few neighbours, or nodes that are the last, among the nodes in the same ring, to
make their first phase broadcast, a second broadcast increases the likelihood that
their data is received by at least one node in the next ring. We have found that
this two-phase strategy can reduce the overall end-to-end loss rate significantly,
at minimal additional cost in terms of numbers of transmissions.

3 Asynchronous Aggregation

With synchronous aggregation, the time interval during which each node trans-
mits is statically determined. In contrast, in the asynchronous aggregation proto-
cols considered here each node adaptively determines when to transmit based on
its history of past packet receptions from its children in the aggregation tree. We
use the unicast-based “adaptive asynchronous” aggregation protocol proposed
in previous work [3] as a basis for our new broadcast-based asynchronous aggre-
gation protocol. The former protocol is reviewed in Section 3.1, while Section
3.2 describes the design of the new broadcast-based protocol.

3.1 Unicast-based

In each round of the unicast-based asynchronous protocol, a timeout is set at
each non-leaf node establishing the maximum time the node will wait to receive
packets from its children in the aggregation tree. The timeout value is determined
adaptively, based on the timings of packet receptions from the child nodes in
the previous rounds. The node transmits its packet (aggregating its own data
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with whatever it has received from its children) either when packets have been
received from all children, or when the timeout expires. Note that the choice of
the timeout is critical: a long wait until timeout may cause excessive delay, while
substantial data loss may be incurred if the timeout occurs too soon, since in
this case packets may arrive too late to be aggregated (and will be dropped).

As before, we assume all nodes agree on the same base time T0 defining the
beginning of the first round. Each node i picks a random value ri between 0
and R, where R is a protocol parameter, and at time T0 + ri unicasts a packet
containing its sensor data for the first round to its parent.

In each subsequent round j, each node i that is a leaf in the aggregation tree
sends its sensor data at time T0 + ri + (j − 1)t, where t denotes, as before, the
duration of the period between sensor readings. Each non-leaf node transmits
a packet containing aggregated sensor data when it has received packets from
all of its children for round j, or when its timeout for that round has expired.
Timeouts are established as follows. Let Lj

i denote the time at which a non-leaf
node i receives the last packet for round j from its children in the aggregation
tree. (Note that “last packet” means the last received packet; some packets sent
by the children may not be received, owing to communication errors.) Let TOj

i

denote the timeout for round j at node i (i.e., the time at which node i will
transmit if packets have not yet been received for round j from all of node i’s
children). After the first round, the timeout at node i for round two is set to
TO2

i = L1
i + t. After each subsequent round j, j > 1, the timeout for round j +1

at node i is set according to the following rules:

1. If node i received packets for round j from all its children prior to time TOj

i ,

its timeout for round j+1 is set to TOj+1

i = (1−δ)(TOj

i +t)+δ(Lj

i +t+e). The
parameter δ is used to implement an exponential weighted moving average,
so as to control how quickly a node reacts to changes in network conditions.
Parameter e allows for transmission variance.

2. If the timeout for round j expires before node i receives packets from all of its
children, its timeout for round j +1 is tentatively set to TOj+1

i = TOj

i + t. If
node i receives one or more packets for round j from its children subsequent
to the expiry of its timeout for that round, it updates TOj+1

i to Lj

i + t. The
packets that arrive too late to be aggregated are simply dropped because
only up-to-date values are of interest in real-time monitoring.

It is important to randomize the transmission times of leaf nodes to avoid
congestion at the beginning of each round. Parameter R controls the duration
of the randomization interval. The adaptive protocol achieves improved perfor-
mance by adjusting the value of R so that it is kept within a certain range,
as measured relative to the average data collection delay D. Intuitively, if R is
“large” relative to D, a substantial portion of the delay D may be due to the
randomization delay at the leaf nodes. In this case, it may be advantageous to
reduce R. If, on the other hand, R is “small” relative to D, R might be fruitfully
increased, so as to better spread out the transmissions of the leaf nodes.

Specifically, the data collection delay for each round j is measured at the
sink as the time duration from the start of the round (T0 + (j − 1)t), until the
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sink has received the last packet for round j. The average data collection delay
is measured as D = αD +(1−α)D∗, where D∗ is the latest measurement of the
data collection delay, and α is a smoothing factor that determines the weight
given to the old value. The adaptive protocol attempts to keep the value of R/D
in the interval [β−∆,β+∆], where β and ∆ are protocol parameters. When R/D
moves out of this range, the value of R is updated (and sent by the sink to all of
the sensor nodes) as follows. If R/D < β − ∆, R is updated to R = D(β + ∆).
If R/D > β + ∆, R is updated to R = D(β − ∆).

3.2 Broadcast-based

In the unicast-based synchronous aggregation protocol used in TAG, aggregation
is performed over a tree structure, with one parent for each node except the
sink [1]. The authors observe that a node could potentially transmit to multiple
parents, each one hop closer to the sink, depending on the density of the network,
and propose a “value splitting” aggregation protocol in which each node may
have two parents. In the broadcast-based protocol proposed in this section, nodes
may similarly have two parents1, but the same sensor value (rather than only
distinct shares of a sensor value) may be aggregated at each parent and forwarded
on up the tree. Such multipath routing can yield improved reliability, but requires
that nodes be able to receive multiple aggregates including the same sensor value,
either because aggregation is duplicate insensitive, or because aggregation is
performed in such a way that it is possible to recognize and filter out duplicates.

As with our broadcast-based synchronous protocol, each node (excepting the
sink) broadcasts either once or twice during each round. Each broadcast may
include not only data from its children, but also data overheard from broadcasts
from other neighbours in the tree. Each broadcast packet includes a bit vector
indicating the nodes whose data is aggregated in the packet. A non-leaf node
makes its first broadcast during a round either when it has received the data
from each of its children (either directly from a broadcast by that child, or
indirectly via a broadcast from some other child), or upon timeout. Timeouts
are established in a similar manner as in the unicast-based asynchronous protocol
described in Section 3.1. A second broadcast is made if the node does not hear
a broadcast transmission from any other node that includes its data, or if it
receives additional data from its children, before a second timeout occurs.

As in the unicast-based protocol, each node i (other than the sink node)
picks a random delay ri between 0 and R, where R is a protocol parameter that
is adapted so as to keep the ratio of R to the average data collection delay D
within a certain range, as defined by protocol parameters β and ∆. At time
T0 + ri, node i broadcasts a packet containing its own data for the first round.

In each subsequent round j, each leaf node i makes its first broadcast at
time T0 + ri + (j − 1)t, aggregating its own data and any other data it has
overheard from other broadcasts. Let Aj

i denote the time at which a non-leaf

1 When a node has only one neighbour closer to the sink it can choose a sibling that
has multiple neighbours closer to the sink as its second parent.
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node i receives all of the data from its children for round j that it will receive
during this round. Let Lj

i denote the time at which non-leaf node i receives the
last of the first broadcasts from its children for round j that it will receive during
this round. Note, Aj

i may not equal Lj

i . Let TOj

i denote the timeout for the first
transmission of round j at node i. We set TO2

i = L1
i + t.

After each round j, j > 1, TOj+1

i is set as follows:

1. If node i received the data for round j from all of its children prior to time
TOj

i , its timeout for round j +1 is set to TOj+1

i = (1−δ)(TOj

i + t)+δ(Aj

i +
t + e), similarly as in the unicast-based asynchronous protocol.

2. If the first transmission timeout for round j expires before node i receives
the data from all of its children, its timeout for round j + 1 is tentatively
set to TOj+1

i = TOj

i + t. If node i receives one or more first-time broadcasts
for round j from its children subsequent to the expiry of its timeout for that
round, it updates TOj+1

i to Lj

i +t. Data from these packets has been received
too late to be aggregated in node i’s first broadcast for round j, but can be
included in node i’s second broadcast.

As noted above, following the first broadcast, a second broadcast is made
if the node does not hear a broadcast transmission from any other node that
includes its data, or if it receives additional data from its children, prior to a
second timeout. The second timeout is set to a time duration e following the
time of the first broadcast.

4 Simulation-based Performance Evaluation

4.1 Goals, Metrics, and Methodology

The performance of the unicast-based and the broadcast-based protocols is eval-
uated through ns2 simulation. The primary performance metrics are: (1) the
end-to-end loss rate (the ratio of the number of sensor readings not included in
the aggregates arriving at the sink to the total number of readings the nodes
generate), (2) the maximum data age (t plus the average data collection delay
D), a measure of how “stale” the data received at the sink from one round can
become, before that for the next round is received, (3) the average number of
MAC layer packet transmissions per round (for unicast, including both ACK and
data packet transmissions), and (4) the average number of bytes transmitted per
round. The last metric yields insight into relative energy usage.

The sensor fields are generated by randomly scattering nodes in square areas.
The sink is located in the center of the network. The physical layer packet loss
rate is specified as a simulation input parameter. The uniform random error
model is used for all experiments. An 802.11 MAC layer is simulated for unicast-
based protocols, without RTS/CTS [12], with a transmission range of 40 meters
and rate of 2Mbps. Different maximum numbers of MAC layer retransmissions
are simulated for when the sender fails to receive an ACK. The same transmission
range and data rate are used for the broadcast-based protocols in the simulations.
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The protocols are evaluated with both fixed and increasing packet sizes. Fixed-
sized packets are 52 bytes. Otherwise the packet size grows linearly with the
number of values aggregated in the packet at a rate of 4 bytes per value.

4.2 Principal Performance Comparison

Fig. 2 and Fig. 3 show the performance of the synchronous and asynchronous
aggregation protocols, respectively, with our default system protocol parameter
settings. The different points on each curve are generated by varying the sam-
pling period duration t, and measuring the resulting maximum data age and
end-to-end loss rate. For synchronous aggregation, the interval duration is set
to t divided by the maximum hop count to the sink. The initial value for R is 0
for the asynchronous protocols.

Previous work shows that for asynchronous unicast-based aggregation, all
parameters except R can be fixed to certain values that yield good performance
for a broad range of network configurations [3]. Through experimentation, we
find that the same conclusion holds for asynchronous broadcast-based aggrega-
tion as well. In all the simulations whose results are reported here, e is fixed
at 0.03 seconds and 0.02 seconds for asynchronous broadcast-based aggregation
with increasing packet size and fixed packet size respectively. For asynchronous
unicast-based aggregation, e is set to 0.15 seconds for increasing packet size and
0.1 seconds for fixed packet size. Parameter β is fixed at 0.7, 0.6, 0.7 and 0.5 for
asynchronous unicast-based aggregation with fixed and increasing packet size,
and asynchronous broadcast-based aggregation with fixed and increasing packet
size, respectively. Other common parameters for both asynchronous unicast-
based and broadcast-based aggregation, δ, α, and ∆ are fixed at 0.05, 0.875, and
0.15 respectively. Figures showing the impact of the parameters are omitted due
to space limitations.

For each specific t, we measure the end-to-end loss rate and the maximum
data age of the protocols and plot the results in the figures. As t gets smaller, the
end-to-end loss rate starts to grow as more packets are lost because of collisions.
For synchronous aggregation, the interval duration gets shorter as t decreases.
When the interval is too small, nodes in the same ring cannot make their trans-
missions within their own transmission interval. Packets that arrive after the
receiver sent out its partial aggregate are not aggregated, and the end-to-end
loss rate increases sharply. With asynchronous aggregation, not only does the
loss rate increase sharply when the sampling rate is too high, but the maximum
data age also increases, since nodes increase their timeout values (and therefore
their delays before sending their aggregates) to reflect the late arrival times of
packets that have been retransmitted. This explains why the curves turn sharply
and move to the upper right corner in Fig. 3.

The figures show that both synchronous and asynchronous broadcast-based
aggregation are outperformed by their unicast-based counterparts for increasing
packet size. For fixed packet size, broadcast-based aggregation is able to achieve
lower maximum data age than unicast-based aggregation. Comparing Fig. 2 and
Fig. 3, it appears that a broadcast-based approach may be most promising for
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Fig. 2. Synchronous Unicast-based and Broadcast-based Aggregation (160 nodes,
250m×250m, 20% physical layer loss rate)

0.1%

0.5%

1%

5%

10%

20%

 0  0.5  1  1.5  2

en
d-

to
-e

nd
 lo

ss
 r

at
e

maximum data age (in seconds)

broadcast asynch.
unicast asynch., up to 3 retransmissions
unicast asynch., up to 4 retransmissions
unicast asynch., up to 8 retransmissions

(a) Increasing Packet Size

0.1%

0.5%

1%

5%

10%

20%

 0  0.5  1  1.5  2

en
d-

to
-e

nd
 lo

ss
 r

at
e

maximum data age (in seconds)

broadcast asynch.
unicast asynch., up to 3 retransmissions
unicast asynch., up to 4 retransmissions
unicast asynch., up to 8 retransmissions

(b) Fixed Packet Size

Fig. 3. Asynchronous Unicast-based and Broadcast-based Aggregation (160 nodes,
250m×250m, 20% physical layer loss rate)

synchronous (rather than asynchronous) aggregation. For this reason, and owing
to space limitations, in the remainder of the paper only results for synchronous
aggregation are presented.

4.3 Loss Rate, Density, and Traffic Volume

Aggregating the same data at different nodes improves reliability but also in-
creases the packet size for broadcast-based aggregation with increasing packet
size. When the physical layer loss rate is 20% as in Fig. 2, the cost of the re-
transmissions in unicast-based aggregation is relatively modest, and, as seen in
Fig. 2(a), unicast-based aggregation outperforms broadcast-based aggregation.
As the physical layer loss rate increases, however, the cost of the retransmissions
in unicast-based aggregation becomes more substantial.

Fig. 4 shows that for both increasing and fixed packet size, synchronous
broadcast-based aggregation is able to achieve lower maximum data age than
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Fig. 4. Impact of Physical Layer Loss Rate on Synchronous Aggregation (160 nodes,
250m×250m, 40% physical layer loss rate)
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Fig. 5. Impact of Density on Synchronous Aggregation (240 nodes, 250m×250m, 20%
physical layer loss rate)

the unicast-based protocol at 40% physical layer loss rate. The increase of the
physical layer loss rate has a similar impact on the asynchronous protocols.

As the network density increases, the broadcast-based protocols are expected
to achieve higher reliability as a broadcast is likely to be received by more
nodes. However, for broadcast-based aggregation with increasing packet size,
larger packets are produced as the same data is aggregated by more nodes,
which means a longer packet transmission time and greater network congestion.
Meanwhile, packet loss recovery is quite feasible for unicast-based protocols with
the packet loss rate of 20% that is used for these figures. As the result of these
two effects, Fig. 5 shows that synchronous broadcast-based aggregation is out-
performed even more by unicast-based aggregation, for increasing packet size,
when the number of nodes (and density) is increased. For fixed packet size,
however, performance with the broadcast-based protocol improves but degrades
with unicast-based aggregation. Similar results are seen with the asynchronous
protocols.
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(a) Increasing Packet Size
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(b) Fixed Packet Size

Fig. 6. Average Number of Bytes Transmitted per Round of Synchronous Aggregation
(160 nodes, 250m×250m, 20% physical layer loss rate)
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(a) Increasing Packet Size
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(b) Fixed Packet Size

Fig. 7. Average Number of Packet Transmissions per Round of Synchronous Aggrega-
tion (160 nodes, 250m×250m, 20% physical layer loss rate)

Fig. 6 shows the average number of bytes that are transmitted per round with
the synchronous aggregation protocols, for a 20% physical layer packet loss rate.
While broadcast-based aggregation sends fewer packets per round than unicast-
based aggregation, as shown in Fig. 7, a larger volume of data is produced by
broadcast-based aggregation in the case of increasing packet size. This helps to
explain why broadcast-based aggregation yields poorer performance in this case.

5 Preliminary Experimental Results

We report here on results from some preliminary experiments using implemen-
tations of the synchronous protocols on Crossbow MICAz motes2. For the ex-
periments whose results are reported here, 24 MICAz motes are deployed in an
area approximately 9m × 9m, with one mote at the corner as the sink. The

2 Crossbow: http://www.xbow.com
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transmission power level of the motes is set to 3, yielding an approximate trans-
mission range of 2.5m to 3m. (However, the actual connectivity region around
each node is highly irregular, as has been observed in previous studies.) In all
experiments with unicast-based aggregation, the same aggregation tree shown
in Fig. 8 is used, as built using a simple flooding algorithm. For synchronous
broadcast-based aggregation, a ring topology is formed with nodes i hops away
in ring i. By default, the MICAz uses CSMA/CA at the MAC layer, without
packet retransmission. For unicast communication, we activate the automatic
retransmission functionality at the motes and set the maximum number of re-
transmissions to 3, 4 and 8 in the experiments. A fixed payload size of 28 bytes
is used.

We carry out multiple sets of experiments, with the experiments in each set
using a range of values of the sampling period duration t. Each single experiment
runs for 200 sampling rounds. Fig. 9 shows the measured performance of the
synchronous protocols from one set of these experiments. Data from the other
sets of experiments shows similar results.

Unlike the results from simulations, the experimental results show substan-
tial variability, especially at low sampling rates. Packet loss in the experiments
comes from two main sources, contention and physical layer link error. Packet
loss due to contention plays a key role in the end-to-end loss at high sampling
rates. As t increases, the amount of packet loss from contention decreases consis-
tently and physical layer link error becomes the main reason for packet losses. In
our experimental environment, the physical layer link loss is highly bursty, and
communication may fail even with large numbers of retransmission attempts.

Where a packet loss happens in the tree also has significant impact on the
end-to-end packet loss rate. As can be seen in Fig. 8, there are several key nodes
in the aggregation tree, the loss of whose packets results in the loss of the data
of most nodes. Since each experiment only lasts for 200 sampling rounds, packet
losses at those key nodes, even in just one or two rounds, can have a substantial
impact on the measured end-to-end packet loss rate.

Despite the performance variability seen in Fig. 9, taking into account the
differing characteristics of the experimental and simulated networks, the exper-
imental results appear to be quite consistent with the simulation results shown
in Fig. 2(b), 4(b), and 5(b).

6 Conclusions

In this paper, new synchronous and asynchronous broadcast-based aggregation
protocols are proposed and compared to their unicast-based counterparts in the
context of real-time monitoring systems. The results show that for aggrega-
tion with fixed packet size, broadcast-based aggregation is able to achieve lower
maximum data age than unicast-based aggregation, particularly in the case of
synchronous protocols. However, for increasing packet size, the results show no
significant performance advantage (and sometimes poorer performance) with
broadcast-based protocols.
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