
To Chunk or Not to Chunk: Implications for HTTP
Streaming Video Server Performance

Jim Summers, Tim Brecht
University of Waterloo

jasummer,
brecht@cs.uwaterloo.ca

Derek Eager
University of Saskatchewan

eager@cs.usask.ca

Bernard Wong
University of Waterloo

bernard@cs.uwaterloo.ca

ABSTRACT

Large amounts of Internet streaming video traffic are being de-
livered using HTTP to leverage the existing web infrastructure.
A fundamental issue in HTTP streaming concerns the granularity
of video objects used throughout the HTTP ecosystem (including
clients, proxy caches, CDN nodes, and servers). A video may be
divided into many files (called chunks), each containing only a few
seconds of video at one extreme, or stored in a single unchunked
file at the other.

In this paper, we describe the pros and cons of using chunked and
unchunked videos. We then describe a methodology for fairly com-
paring the performance implications of video object granularity at
web servers. We find that with conventional servers (userver,
nginx and Apache) there is little performance difference be-
tween these two approaches. However, by aggressively prefetch-
ing and sequentializing disk accesses in the userver, we are
able to obtain up to double the throughput when serving requests
for unchunked videos when compared with chunked videos (even
while performing the same aggressive prefetching with chunked
videos). These results indicate that more research is required to en-
sure that the HTTP ecosystem can handle this important and rapidly
growing workload.

Categories and Subject Descriptors

H.5.1 [Multimedia Information Systems]: Video; D.4.3 [File

Systems Management]: File organization

General Terms

Performance, Experimentation, Measurement, Design

Keywords

HTTP video, HTTP adaptive streaming, web servers, performance,
video segmentation, video chunking, file placement, prefetching

1. INTRODUCTION
Internet video streaming, and in particular video streaming over

HTTP, is growing rapidly. For example, one recent measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’12, June 7–8, 2012, Toronto, Ontario, Canada.
Copyright 2012 ACM 978-1-4503-1430-5/12/06 ...$10.00.

study found that 98% of the video traffic on a large cellular network
was delivered over HTTP [4]. Advantages of delivery over HTTP
include the ability to use conventional web servers, easily exploit
CDN services and web caches, and seamlessly traverse firewalls.

Several different approaches are used for video delivery with
HTTP. A basic distinction among these approaches concerns the
granularity of client requests. Clients may use a single HTTP re-
quest to retrieve the entire video, may use multiple HTTP range
requests, or may request individual video “chunks” each consisting
of a few seconds of video and with its own URL. A recent mea-
surement study of YouTube traffic, for example, found that “PC-
players” used the first approach for YouTube video access while
“mobile-players" used the second approach [5]. The third approach
is used by some systems supporting HTTP adaptive streaming, a
technology in which the client is able to adaptively switch among
video versions of differing qualities [2].

The granularity of client requests may have important perfor-
mance implications. For example, the third of the above approaches
may more readily accommodate caching of frequently accessed
portions of videos at conventional web caches and CDN nodes,
since each video chunk can be independently cached as a sepa-
rate object. Also, it is natural, although not necessary, to match
the storage approach used at the server with the approach used for
client requests, and to store each video as a single file when clients
use single HTTP requests to retrieve videos, or use HTTP range
requests, and as multiple files when requests are for video chunks
with their own URLs.

In this paper, we consider the question of what impact the granu-
larity of files used to store videos has on the server’s throughput. In
particular, can similar server performance be achieved when videos
are stored with each chunk in a separate file, when compared with
storing videos in single files? Our contributions are as follows:

• We describe substantive methodological challenges when at-
tempting to compare different video storage approaches, as aris-
ing from the impact of disk layout on throughput, as well as our
solutions to these challenges.

• We show that the throughput differences between the two stor-
age approaches are modest for three conventional web servers:
Apache, nginx, and userver.

• We show that when videos as stored as single files, a partic-
ular prefetching technique, based on asynchronous prefetching
through sequentialized disk access, can yield substantial im-
provements in peak throughput (double in some of our experi-
ments). Only modest improvements from prefetching are found
when videos are chunked and stored with each chunk in a sepa-
rate file.

• We find that even when the userver is provided with a list of

chunks that comprise the video and it uses that list to aggres-
sively prefetch files from that video, throughput is significantly
lower than when using unchunked videos.

2. BACKGROUND AND RELATED WORK

HTTP is rapidly becoming the most widely used method for
serving video over the Internet. Companies like Apple, Adobe,
Akamai, Netflix, Microsoft, and many others [2] are leveraging the
existing HTTP ecosystem to support video streaming using a num-
ber of different approaches.

Servers will often support multiple encodings of the same video
in order to provide videos of different quality and to permit stream-
ing at different bandwidths over networks of different speeds to de-
vices with a variety of capabilities. The encoding can be selected or
changed manually by the user or dynamically by the video player
software in order to adapt to changing network conditions (e.g., re-
ductions in available bandwidth). However, clients cannot switch
encodings at any arbitrary point in time; videos are encoded in in-
terrelated groups of pictures (GoP), so videos can only be decoded
starting from the boundaries between the groups. These boundaries
provide natural opportunities for creating video chunks.

With conventional progressive download, clients request the en-
tire video file and begin playback once a sufficient number of bytes
have been buffered. With HTTP adaptive streaming (HAS), in con-
trast, the server provides a manifest to the client that specifies the
URLs to request in order to play back the video. Each manifest
item identifies a video segment. Segments start on GoP bound-
aries, allowing independent decoding. With knowledge of the time
offset associated with each segment, clients are able to easily and
seamlessly switch between different encodings.

There are two common approaches to storing the segments on
the server. One approach, used by Microsoft’s Smooth Streaming
for example [14], is to store the entire video in a single file. Each
segment is given a distinct URL, and a server-side API is used to
map segment URLs into file ranges. Alternatively, segments can be
specified using byte ranges enabling clients to use standard HTTP
range requests.

A second approach, used by Apple’s HTTP Live Streaming for
example [14], is to store the video in multiple files (called chunks),
with each chunk corresponding to a single segment. In this case the
manifest contains the URLs of the different files that comprise the
video. We also observe that there is sufficient flexibility to support
a third approach; chunks could contain multiple segments, and the
manifest file could specify a segment in terms of both a URL and a
byte range within the chunk.

One of the clear advantages of dividing videos into chunks, with
each chunk corresponding to a single segment, is that because the
client player issues normal HTTP requests for entire files, this type
of streaming and rate adaptation is well supported by the existing
HTTP ecosystem. While we expect that the caching of HTTP range
requests may be supported by some clients, proxy caches and CDN
nodes, it is unclear how widespread or how well existing implemen-
tations have been optimized to support video workloads. Segment
durations are chosen based on the desired granularity of adapting to
changing conditions, and on characteristics of the encoding. These
considerations are largely independent of how videos are stored.

In previous work [15], we developed methodologies for gener-
ating HTTP streaming video workloads, benchmarks, and for test-
ing web server performance. Preliminary performance results in
that paper suggest that prefetching within a chunk can be ben-
eficial for large chunk sizes. However, those methodologies do
not permit a rigorous investigation of the impact of chunk size

on server performance. Furthermore, prefetching across multiple
chunks of the same video was not considered. In this paper, we
extend our methodologies and carry out a fair comparison of dif-
ferent video storage alternatives, in particular chunked (with vary-
ing chunk sizes) versus not chunked. This task is complicated by
the fact that to enable fair comparisons, we must take care to en-
sure that when videos are stored using different chunk sizes (or as
single files), they are located at equivalent physical locations on
disk [1]. If not, differences in performance could be due to the lo-
cation on disk rather than differences in chunk sizes (e.g., because
disk throughput is higher on outer tracks than on inner tracks).

There are many papers that study the effect of file systems and
disk storage on the efficiency of servers. One example, [13] in-
vestigates the effect of 4 different file systems and numerous tun-
ing options on server performance for 4 representative workloads.
However, none of their workloads model HTTP streaming video
workloads, so their conclusions may not be applicable to our spe-
cific workloads and must be validated experimentally.

A more theoretical discussion of the difficulties of servicing con-
current sequential streams [9] investigates the effect of request size
on disk throughput and finds that disk throughput is improved with
larger request sizes. These results are not directly applicable to our
workload because their server simply reads the data from disk and
does not send it to any clients. In previous work [15], we have
found that real-world network bandwidth constraints can render
techniques that work well without such constraints ineffective.

Recent work by Lederer et al. examines the effect of differ-
ent segment sizes on a dynamic adaptive HTTP streaming work-
load [7]. Using a single client, while varying network conditions
during the experiment, they find that shorter segment sizes (2 or 6
seconds) enable higher average bit rates. Their single client is in-
sufficient to generate high enough demand to test the limits of disk
performance. Additionally, their work does not directly address
disk storage issues like chunk size being examined in our paper.

3. EXPERIMENTAL ENVIRONMENT

The equipment we use to conduct our experiments was selected
to ensure that network and processor resources are not limiting fac-
tors in the experiments. We use 12 client machines and one server.
All client machines run Ubuntu 10.04.2 LTS with a Linux 2.6.32-
30 kernel. Eight clients have dual 2.4 GHz Xeon processors and
the other four have dual 2.8 GHz Xeon processors. All clients
have 1 GB of memory and four Intel 1 Gbps NICs. The clients
are connected to the server with multiple 1 Gbps switches each
containing 24 ports. On the clients we use dummynet [11] to em-
ulate different types of client networks and a modified version of
httperf [8] to issue requests.

The server machine is an HP DL380 G5 with two Intel E5400
2.8 GHz processors that each include 4 cores. The system contains
8 GB of RAM, three 146 GB 10,000 RPM 2.5 inch SAS disks and
three Intel Pro/1000 network cards with four 1 Gbps ports each.
The server runs FreeBSD 8.0-RELEASE. The data files used in
all experiments are on a separate disk from the operating system.
We intentionally avoid using Linux on the server because of se-
rious performance bugs involving the cache algorithm, previously
discovered when using sendfile [6].

We use a number of different web servers. Most experiments
use version 0.8.0 of userver, which has been previously shown
to perform well [3, 10] and is easy for us to modify. We also use
Apache version 2.2.21 and version 1.0.9 of nginx. Each server
was tuned for performance before executing these experiments.

4. WORKLOAD GENERATION
The workloads and benchmarks used in this paper are based

on methodologies developed previously [15] to represent YouTube
video and client characteristics that were measured in 2011 [5].
Videos have a Zipf popularity distribution, and we target a disk
cache hit rate of about 35% in order to exercise the disk.

Client sessions consist of a series of requests for consecutive 10
second segments of a video. The initial 3 requests are issued im-
mediately after the previous reply has been completely received (to
simulate a play out buffer) while subsequent requests are issued at
10 second intervals. If a segment is not received before a 10 sec-
ond timeout expires, the client terminates the session and we do
not include the final partial transfer in our throughput figures. We
chose a 10 second segment duration because it is the value used
by Apple’s HTTP Live Streaming implementation, and it is longer
than the 2 second segments used by Microsoft’s Smooth Streaming
implementation [2]. We assume a fixed encoding bit rate of 419
Kbps (a common bit rate observed for YouTube), so 10 seconds of
video is equal to 0.5 MB of data. Video data is stored in chunks
that contain one or more video segments and when chunks contain
multiple segments, clients issue HTTP range requests.

To generate the graphs in this paper, we repeat an experiment us-
ing a number of different target segment request rates and measure
the average aggregate throughput of the server. Our test environ-
ment uses multiple clients, so the request rate is an aggregate value
over all clients. To calculate the rate at which new client sessions
are initiated, the target request rate can be divided by the average
number of segments per session: 15.445 when using 0.5 MB seg-
ments.

For this paper, we extend our previous methodology by introduc-
ing a new procedure for creating file sets. Care is taken to ensure
that the same number of bytes of data are being requested whether
the video is stored in chunks or not. Additionally, all of the data
associated with each video is as close to the same location as pos-
sible on disk irrespective of the size and number of chunks used
to store the video. This is required because the throughput of disk
reads can be significantly impacted by the location of the files be-
ing read. In the following sections, we describe the procedure for
creating different file sets and for confirming that videos are stored
at comparable disk locations.

4.1 Determining File Placement
File system details are hidden behind a layer of abstraction. Ap-

plications are able to create directories and files within a hierarchy
of directories, but cannot control where files are physically placed
on disk. The kernel is responsible for placing files, and it is difficult
for applications to even determine where the files are placed.

We determine the physical location of each file on disk using
dtrace and the Unix wc utility. dtrace is a framework that al-
lows us to insert probes into the kernel to monitor when specific
kernel functions are called, and to record the arguments to those
functions. While dtrace is monitoring the kernel, we run a script
that uses wc to read every byte in every file in the file set. We use
dtrace to collect information about all calls to the internal ker-
nel functions open, close, and bufstrategy. We capture the
names of files from the open call, and track the close calls to de-
termine which files are associated with bufstrategy calls. The
arguments to bufstrategy provide the logical block addresses
(LBA) where the files are stored on disk.

After collecting the LBAs accessed for each file, we post-process
the dtrace logs to compute the average LBA for each chunk.
Similarly, when a video is stored in multiple chunks, we compute
the average LBA for the video. The computed average LBAs can

be used to compare the disk locations of videos that are stored us-
ing different chunk sizes (and to produce the graphs shown in Sec-
tion 4.3).

4.2 File Set Generation
Our goal is to be able to directly and fairly compare the perfor-

mance of videos stored with different granularities and to examine
the impact that decision has on web server performance. As a re-
sult, we develop a methodology to control where files are placed on
disk so that we can use the same locations on the same disk to store
different file sets (i.e., chunked and unchunked).

We use three different file sets: one using a 0.5 MB chunk size,
one using a 2.0 MB chunk size, and one that stores videos unchun-
ked. Because video durations may not be exact multiples of each
of the chunk sizes, we pad the file sizes (with data that is never re-
quested) to ensure that a video occupies the same amount of space
on disk, regardless of the chunk size. This helps to ensure that for
each chunk size examined, the same video data can be placed in
approximately the same location on disk.

We create a file set by starting with a freshly created file system,
then writing all file chunks in a single directory. When a video
consists of multiple chunks, we create the chunks consecutively on
disk, but we create videos in a randomized order so there is no par-
ticular relationship between the location of a video and the number
of times it is viewed. Using the same creation order for the different
file sets, all chunks for the same video will be stored contiguously
on disk, and at very close to the same physical locations for each of
the different file sets. Unfortunately, this procedure does not pro-
duce repeatable results because the FreeBSD file system does not
place directories in the same location each time the file system is
recreated. Figure 1 and Figure 2 show examples of the potential
variation in file placement that can occur, depending on the unpre-
dictable choice of the kernel.

We work around this problem by creating a large number of di-
rectories (in this case 500), while using dtrace to determine the
location of each directory. We then create the file set in the direc-
tory with the lowest LBA.

This procedure for creating file sets is expected to place files at
the fastest locations on disk, with the chunks that comprise a video
placed consecutively and with minimal file fragmentation. This
layout permits significant performance optimizations that might not
be possible with file sets that are heavily fragmented. We expect
this layout could be achieved in most commercial video environ-
ments where video deletions are relatively uncommon, so it is a
reasonable and consistent basis for comparing file sets.

4.3 File Set Locations
Figure 1 shows the average locations of each video when the

file sets are created using our procedure. This figure shows that
the files are placed in sequential order, with some small deviations,
and videos created earlier have lower average locations. The results
show that the videos for different workloads are generally created
at the same locations across all three file sets.

Figure 2 shows the result when we alter our file set creation pro-
cedure to use a directory that is placed at a high LBA. The files are
placed consecutively and at comparable positions for the different
file sets; but files placed at these higher LBAs will be slower to
access than the files in Figure 1, even though there is no apparent
difference between the file sets at the application level.

4.4 Potential File System Performance
Using the file sets shown in Figures 1 and 2 we conducted exper-

iments to determine the potential throughput that can be obtained

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500

A
v
er

ag
e

L
B

A
 (

x
 1

0
6
)

Video Number

0.5 MB
2 MB

unchunked

Figure 1: Video locations at low block numbers

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500

A
v
er

ag
e

L
B

A
 (

x
 1

0
6
)

Video Number

0.5 MB
2 MB

unchunked

Figure 2: Video locations at high block numbers

while reading those videos files. We used wc to read all the chunks
used for all videos in the file set. The chunks making up a particu-
lar video are read in sequential order, but the videos are chosen in
a random order. We repeated the experiments 15 times for each file
set while using iostat to measure average disk throughput. We
calculated 95% confidence intervals using a t-distribution for the
results for each file set, which are shown in Table 1.

file set mean (MB/s) 95% c.i.

low unchunked 94.90 0.062
low 2 MB chunks 57.33 0.023
low 0.5 MB chunks 34.84 0.118

high unchunked 77.66 0.057
high 2 MB chunks 50.02 0.016
high 0.5 MB chunks 31.91 0.085

Table 1: Average Throughput using wc

Throughput is 10 to 25% higher when the file sets are placed at
low positions on disk compared to high positions. These results
demonstrate that placement has a significant effect on access speed
and further illustrate the importance of placement when conducting
a fair comparison between file chunk sizes. For consistency, we use
the low file sets for all other experiments in this paper.

The results also show there is a significant difference caused by
the choice of chunk size; the larger the chunk size, the higher the
throughput. The following sections explore whether the throughput
differences that occur when using wc also occur when a web server
accesses the file set.

5. EXPERIMENTS
We use our HTTP streaming video workload generator [15] to

evaluate the performance of three different web servers: nginx,
Apache and userver. Specifically, we evaluated workloads
where clients request 0.5 MB segments at a time, for 3 differ-
ent chunk sizes (0.5 MB, 2 MB, and unchunked). We first look
at the throughput of these web servers at different target request
rates. Figure 3 shows the results for userver and Figure 4 shows
the results for nginx and Apache. From these results, we see
that userver and nginx perform similarly, with Apache gen-
erally trailing in performance. The relative performance of the web
servers is consistent with previous measurements [15]. More im-
portantly, the file chunk size has only a modest impact on through-
put for all three web servers, with the largest performance increase
occurring when changing from 0.5 MB to 2 MB chunks.

 0

 10

 20

 30

 40

 50

 60 80 100 120 140 160 180 200 220

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target requests/sec

userver unchunked
userver 2 MB chunks

userver 0.5 MB chunks

Figure 3: userver Throughput

 0

 10

 20

 30

 40

 50

 60 80 100 120 140 160 180 200 220

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target requests/sec

nginx unchunked
nginx 2 MB chunks

nginx 0.5 MB chunks
Apache unchunked

Apache 2 MB chunks
Apache 0.5 MB chunks

Figure 4: Apache and nginx Throughput

Given the results using wc in Table 1, we were surprised by the
small difference in performance from increasing the chunk size for
the web servers. These performance results led us to examine the
contributions of the disk in isolation, as the throughput results in
Figures 3 and 4 combine the throughput of both the cache and disk.
We used iostat to measure the disk throughput using a work-
load with a target request rate of 80 requests/sec. The results were
similar for both nginx and userver: 26.5 MB/s, 25.7 MB/s and
22.6 MB/s for unchunked, 2 MB, and 0.5 MB file sets, respectively.
These throughput values are far below the peak disk throughput in
the top half of Table 1, which were generated using the same file
sets. These results suggest that neither userver nor nginx are

efficiently reading from disk, and that the chunk size has a small
impact on disk read performance for these servers.

5.1 Aggressive Prefetching
We had originally expected that the operating system could,

without additional hints or modifications, significantly leverage the
larger chunks to improve disk performance. However, the low disk
throughput suggests that a workload specific, application-level disk
scheduler and prefetcher may help the web servers take advantage
of larger chunk sizes and achieve higher throughput.

Therefore, we utilize modifications previously made to
userver to perform sequentialized reads and aggressive prefetch-
ing [15]. These modifications use an option in the FreeBSD imple-
mentation of sendfile that causes the system call to return an
error code rather than blocking to read from disk [12]. When this
occurs, we send a message to a helper thread which reads a portion
of the file and signals the main userver thread after the data is
read. The helper thread uses a FIFO queue and services requests
sequentially. It prefetches a configurable amount of data prior to
servicing each request. For this paper, we made additional modi-
fications to userver that allow us to specify all of the files that
comprise each video. This information is used to prefetch multiple
consecutive chunks of the same video when the desired prefetch
amount is larger than a single chunk. This is done for compari-
son purposes rather than as something we would expect a server
to implement. It permits us to study the throughput of the server
when files are stored in different sized chunks, while prefetching
the same amount of data.

Figure 5 shows the throughput of the prefetch userver when
using the different file sets. For each of these experiments,
userver was configured with a prefetch size of 2 MB. We chose
2 MB because, in experiments not included here, it performed well
compared with other prefetch sizes and it is a multiple of the chunk
sizes, 0.5 MB and 2 MB. As expected, we also found that if the
prefetch size was too large, throughput actually degraded. This is
a result of prefetching data that is evicted from the cache before it
can be transmitted to clients.

In the case of the 0.5 MB chunk size experiment, userver was
configured to prefetch four consecutive chunks, to total 2 MB. The
results show that throughput increases when the chunk size is in-
creased.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 60 80 100 120 140 160 180 200 220

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target requests/sec

userver 2 MB prefetch unchunked
userver 2 MB prefetch 2 MB chunks

userver 4 x 0.5 MB prefetch 0.5 MB chunks

Figure 5: Throughput using a 2 MB prefetch size

These results show that, using sequentialized reads and aggres-
sive prefetching, the size of chunks used to store videos has a large
effect on server throughput. Server throughput is lowest with 0.5
MB chunks, it is improved by approximately 20 MB/s with 2 MB
chunks, and is improved by an additional 20 MB/s with unchunked

files. It also shows that prefetching the same amount of data from
multiple chunks performs significantly worse than prefetching from
an unchunked video.

Figure 6 compares the throughput of four web servers when us-
ing the unchunked video file set. Up to double the throughput
is achieved when userver is configured to prefetch 2 MB at a
time from an unchunked file set, showing the clear benefit of using
unchunked files when the server also uses aggressive prefetching.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 60 80 100 120 140 160 180 200 220

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target requests/sec

userver 2 MB prefetch unchunked
userver noprefetch unchunked

nginx unchunked
Apache unchunked

Figure 6: Throughput using an unchunked file set

5.2 Effect of Segment Size
From our experiments, we have found that most web servers use

suboptimal methods to read from disk. Furthermore, web servers,
when servicing client requests, do not generate an efficient disk
workload. We found that we could use prefetching to change
the disk access pattern, and improve throughput by reading large
amounts sequentially from disk.

Another method that changes the client request pattern, and
therefore potentially affects disk access patterns, is to change the
size of segments that the clients request. This can be accomplished
without modifying the web server implementations by simply gen-
erating a new workload with a different segment size. Figure 7
shows the results of experiments using a workload with 2 MB seg-
ments, which represent 40 seconds of video. We chose a size of 2
MB to equal the prefetch size we have been using, not because we
know of any HTTP streaming video implementation that uses this
segment length; most implementations use shorter segment sizes
that optimize network performance [7]. We cannot compare the
results of these experiments directly to the results in Figure 6 be-
cause the different segment size changes the workload. For exam-
ple, there is an average of 15.445 segments per session using the
0.5 MB segment size compared to an average of 4.263 segments
per session with 2 MB segments, so the target requests per second
are significantly different for the two workloads. Comparing only
the experiments in Figure 7 that use a 2 MB segment size, it is
clear that increasing the segment size does not have the same ef-
fect as prefetching. It appears that segment size has little effect on
throughput, and we intend to develop a methodology that allows
us to compare workloads with different segment sizes so we can
investigate the precise effect of changing the segment size.

6. DISCUSSION

In our experiments with three conventional web servers, using
HTTP streaming video workloads, we found that the video storage
granularity had only a small impact on performance. The impact

 0

 10

 20

 30

 40

 50

 60

 70

 80

 15 20 25 30 35 40 45 50 55 60

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target requests/sec

userver 2 MB prefetch unchunked
userver noprefetch unchunked

nginx unchunked

Figure 7: Throughput servicing 2 MB segments

was small since the efficiency of disk access with these servers did
not substantially improve when storage granularity increased. Even
in experiments where each video was stored in a single file, these
conventional servers were only able to read from disk at a frac-
tion of the disk’s peak throughput rate. We also found, however,
that with modifications to one of the servers, so as to aggressively
prefetch and sequentialize disk accesses, the throughput could be
doubled when videos were stored in single files rather than in small
chunks. These results clearly suggest that for optimized servers,
storing videos in single files rather than chunks may offer substan-
tial performance benefits, at least on the server side.

What is less clear is the performance impact of video chunking
on the rest of the HTTP ecosystem. Some web caches are currently
unable to cache range requests on a large file, or fall back to full
file caching. The latter may be less than ideal for video stream-
ing workloads, as video files are generally large and most sessions
only require portions of their requested videos. In contrast, fre-
quently accessed video chunks can be cached in the same manner
as other popular web objects. On the other hand, note that the same
disk access efficiency issues that we observed for web servers, may
arise at web caches and CDN nodes, and there may be a substantial
impact on the potentially achievable performance if cached videos
are stored in many small chunks rather than in single files. Exam-
ining the performance implications of video chunking on the rest
of the HTTP ecosystem is a topic for future work.

7. CONCLUSIONS

The shift towards using HTTP for serving streaming video is
largely the result of pragmatic decisions made by content providers
to take advantage of the existing HTTP ecosystem. However, as
most studies of web server performance are focused on serving
small static files from cache that do not reflect streaming video
workloads, this shift raises a number of performance issues.

In this paper, we developed a methodology to fairly compare the
performance of server storage alternatives, specifically storing each
video in a single file versus in many small files, and applied this
methodology to investigate the performance implications of the two
approaches. Our findings suggest that there is little difference in
performance with these approaches when using conventional web
servers. However, by introducing aggressive prefetching and se-
quentialized disk access to one of the web servers, we obtain as
much as a two-fold improvement in throughput when storing each
video as a single large file.

8. AVAILABILITY
The source code for our modified version of httperf and the

log files we used to run the benchmarks in this paper are available
at http://cs.uwaterloo.ca/˜brecht/papers/nossdav-2012.

9. ACKNOWLEDGMENTS
Funding for this project was provided by the Natural Sciences

and Engineering Research Council of Canada. The authors also
thank Tyler Szepesi and Adam Gruttner for their help with modifi-
cations to httperf.

10. REFERENCES
[1] N. Agrawal, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Generating realistic impressions for
file-system benchmarking. In Proc. FAST, 2009.

[2] A. C. Begen, T. Akgul, and M. Baugher. Watching video
over the web: Part 1: Streaming protocols. IEEE Internet

Computing, 15(2):54–63, 2011.

[3] T. Brecht, D. Pariag, and L. Gammo. accept()able strategies
for improving web server performance. In Proc. USENIX

Annual Technical Conference, 2004.

[4] J. Erman, A. Gerber, K. Ramakrishnan, S. Sen, and
O. Spatscheck. Over the top video: the gorilla in cellular
networks. In Proc. IMC, 2011.

[5] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. Rao.
YouTube everywhere: Impact of device and infrastructure
synergies on user experience. In Proc. IMC, 2011.

[6] A. Harji, P. Buhr, and T. Brecht. Our troubles with Linux and
why you should care. In Prof. 2nd ACM SIGOPS

Asia-Pacific Workshop on Systems, 2011.

[7] S. Lederer, C. Müller, and C. Timmerer. Dynamic adaptive
streaming over HTTP dataset. In Proc. MMSys, 2012.

[8] D. Mosberger and T. Jin. httperf: A tool for measuring web
server performance. In Proc. 1st Workshop on Internet

Server Performance, 1988.

[9] G. Panagiotakis, M. Flouris, and A. Bilas. Reducing disk I/O
performance sensitivity for large numbers of sequential
streams. In ICDCS, 2009.

[10] D. Pariag, T. Brecht, A. Harji, P. Buhr, and A. Shukla.
Comparing the performance of web server architectures. In
Proc. ACM EuroSys, 2007.

[11] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. SIGCOMM Comput. Commun. Rev.,
27(1):31–41, 1997.

[12] Y. Ruan and V. S. Pai. Understanding and addressing
blocking-induced network server latency. In Proc. USENIX

Annual Technical Conference, 2006.

[13] P. Sehgal, V. Tarasov, and E. Zadok. Optimizing energy and
performance for server-class file system workloads. ACM

Transactions on Storage, 6(3), 2010.

[14] T. Stockhammer. Dynamic adaptive streaming over HTTP:
standards and design principles. In Proc. MMSys, 2011.

[15] J. Summers, T. Brecht, D. Eager, and B. Wong.
Methodologies for generating HTTP streaming video
workloads to evaluate web server performance. In 5th

Annual International Systems and Storage Conference

(SYSTOR), 2012.

