
Tradeoffs in Cloud and Peer-assisted Content

Delivery Systems

Niklas Carlsson∗, György Dán†, Derek Eager‡, Anirban Mahanti§

∗Linköping University, Linköping, Sweden, niklas.carlsson@liu.se
†KTH Royal Institute of Technology, Stockholm, Sweden, gyuri@ee.kth.se

‡University of Saskatchewan, Saskatoon, Canada, eager@cs.usask.ca
§NICTA, Sydney, Australia, anirban.mahanti@nicta.com.au

Abstract—With the proliferation of cloud services, cloud-based
systems can become a cost-effective means of on-demand content
delivery. In order to make best use of the available cloud
bandwidth and storage resources, content distributors need to
have a good understanding of the tradeoffs between various
system design choices. In this work we consider a peer-assisted
content delivery system that aims to provide guaranteed average
download rate to its customers. We show that bandwidth demand
peaks for contents with moderate popularity, and identify these
contents as candidates for cloud-based service. We then consider
dynamic content bundling (inflation) and cross-swarm seeding,
which were recently proposed to improve download performance,
and evaluate their impact on the optimal choice of cloud service
use. We find that much of the benefits from peer seeding can be
achieved with careful torrent inflation, and that hybrid policies
that combine bundling and peer seeding often reduce the delivery
costs by 20% relative to only using seeding. Furthermore, all
these peer-assisted policies reduce the number of files that would
need to be pushed to the cloud. Finally, we show that careful
system design is needed if locality is an important criterion when
choosing cloud-based service provisioning.

I. INTRODUCTION

Content delivery over the Internet is rapidly growing with

respect to the number of users, the intensity of their use,

and the diversity of contents being accessed. Therefore, it is

important to design content delivery systems that effectively

scale with respect to both the total request rate and the number

of available content items.

Content popularity typically exhibits high skews. The most

popular contents account for the majority of the downloads,

with a long tail of niche contents which account for a non-

negligible combined request rate [1]–[4]. Peer-to-peer systems

such as BitTorrent can offload the origin servers very effec-

tively when serving highly popular contents. Unfortunately,

these systems are much less effective for less popular con-

tents [5], [6], for which there may not be sufficiently many

peers to facilitate offloading. Systems that want to ensure that

all clients are provided timely service must therefore often

resort to using significant server resources to serve the long

tail of mildly-to-less popular contents.

To improve the file availability (and reduce the amount of

server upload bandwidth necessary to ensure service), both

bundling [7]–[10] and incentives for seeding [11], [12] have

been proposed. With bundling, clients are asked to participate

in the download of a larger number of contents (which the

peer in some cases may not want). With seeding, peers

are voluntarily uploading contents that they have completely

downloaded in the past. Both approaches leverage voluntary

peer contributions to improve the file availability.

This paper considers the problem of determining the most

effective ways for a content provider with a large catalogue

of contents with diverse popularities to serve the content to a

large number of clients. More specifically, we explore the best

design tradeoffs in a system that leverages both cloud and peer

resources to offload the origin servers and reduce the delivery

cost of the content provider. For the peer bandwidth we

consider bundling, seed-based, as well as hybrid approaches.

For the content provider’s upload contributions, we consider

the use of origin servers, cloud servers, as well as differentiated

pricing based on locality of service.

Our analysis assumes a chunk-based system in which re-

questing clients can be served by other clients (peers), from

the origin server, or from the cloud. The content provider is

assumed to have a copy of every content, but can also select to

push some of the content to one or more servers in the cloud.

The cloud storage and bandwidth is assumed to be elastic, but

comes at a cost. The provider must select which content to

push to the cloud, which locations to push the content to, as

well as which servers should serve which clients.

Clients (or peers) agree to help out with the content delivery,

but only during the times during which they download content

themselves. During this time period, the peers can assist

the system in three ways: (i) upload pieces of the content

they are currently downloading, (ii) seeding content that they

have downloaded in the past, and (iii) through dynamic

bundling. Both peer seeding and dynamic bundling (or torrent

inflation) [8] effectively improve the availability, or in our

case reduce the server bandwidth requirements. In contrast

to seeding, dynamic bundling (or inflation) has the advantage

that no persistent storage is required on the peers. This may

be particularly attractive in privacy-aware environments.

Based on the above system assumptions, we develop a

simple cost model that allow us to identify and analyze

basic tradeoffs in these systems. We first derive and evaluate

simple bounds and approximations of the minimum server

bandwidth required to ensure that a torrent achieves a target

average download rate. Second, using these expressions, we

compare simple policy classes for which content to push to

nikca
Typewritten Text
NOTICE: This is the authors' version of a work that was accepted for publication in IEEE P2P 2012. The final/official version will appear the conference proceedings and IEEE Xplore.

the cloud and provide insights regarding the importance of

careful content selection. Third, we consider the best usage

of the peer upload bandwidth. We analyze and compare basic

policies that are designed to determine how seeding and torrent

inflation should be best utilized. Finally, we take a closer look

at how to best replicate the content and where to direct clients

in systems where the cloud provider has a differentiated cost

model and charges based on the locality of the clients that are

served (e.g., to reduce its own network costs). We consider

baseline policies that balance the importance of large torrent

size (for self-sustainability purposes) and locality of service.

The above model allows us to evaluate which content to

push to the cloud, which torrents should be inflated, and which

should be served by the origin servers. The model allows us to

provide insights regarding how to best use the server, cloud,

and peer resources. Our results include, but are not limited to,

the following contributions and insights.

• We show that bandwidth demand peaks for contents

with moderate popularity, and identify these contents as

candidates for cloud-based service. We find that there can

be a significant penalty to pushing the wrong contents

to the cloud, and note that the long tailed nature of the

popularity distribution, may result in large numbers of

files having similar bandwidth requirements. Therefore, a

change in the cloud-related costs can significantly change

the number of files that should be pushed to the cloud.

• To the best of our knowledge, this paper is the first

that combines the ideas of leveraging peer storage (for

seeding) and dynamic bundling. We find that much of the

benefits from peer seeding can be achieved with careful

torrent inflation. Hybrid policies that combine bundling

and seeding have the best performance, often reducing

the delivery costs by 20% relative to only using seeding.

• We determine which torrents do benefit from additional

peer assistance, and provide insights to how the full

catalogue of contents are best served. Interestingly, the

effective use of peer assistance reduces the number of

files that should be pushed to the cloud.

• We find that carefully designed locality-aware policies

are important for content providers wanting to minimize

their delivery costs. While simpler policies that use fixed

number of cloud replicas and/or treat all peers in a swarm

equally typically achieve good performance for some

parts of the parameter space, they do poorly in other parts.

Overall, our analysis shows that careful system design can

result in significant cost savings. We believe our insights and

conclusions will be valuable for developers of future systems.

The remainder of the paper is organized as follows. Section

II presents our system model. Section III considers which

content to push to the cloud, such as to best balance the server

bandwidth costs and cloud-related bandwidth and storage

costs. Section IV considers how to best leverage the peer

contributions. Section V evaluates policies that take network

locality into account. Related works are discussed in Section

VI, before Section VII concludes the paper.

II. SYSTEM DESCRIPTION

A. Service model

In this paper we consider a peer-assisted system with a

catalogue of N = |N | file contents, where N is the set of

files. For simplicity, each file is assumed to be of size L and

clients only download one file at a time. The system is assumed

to employ chunk-based delivery, such as in BitTorrent, with

which the peers can download pieces in parallel from other

peer, servers, and/or from the cloud.

The content provider’s servers are assumed to have a

complete copy of every content, and thus have a storage

requirement of LN. A subset M ∈ N of these contents can

also be served from the cloud. Let M = |M | denote the number

of files stored in the cloud. Each of these files can be pushed

to one or more cloud servers. In total we assume that there

are R = |R | cloud server locations and the content provider

pushes file i to a subset P i ∈ R of these.

Clients make part of their upload bandwidth available to

the system during their download (possibly since they are

provided with system complying software which ensures that

they do), but only during the download itself. We assume

that the peers are homogeneous in that they are provided

with the same service agreements in terms of the maximum

average download time T . (While we do not expect peers to

be completely homogeneous in practice, we note that there

likely would be minimum system requirements that the peers

would have to satisfy to obtain the service.) We assume that

each peer is guaranteed the same maximum download time

T and in exchange agrees to upload file content (on behalf

of the system) while downloading content for this duration.

We assume that all peers make the same fixed upload rate U

available to the system. In this paper, we only consider the

case in which the requested file content L is no greater than

the total amount the peer can upload during its download (i.e.,

T is selected such that L ≤ TU).

In our analysis we assume that, if possible, a peer uploads

within the swarm for its file of interest the same amount of

data that it downloads to get this file (L bytes), but that the

remaining bytes (TU−L) that the peer can upload may be used

either to offload the servers (by seeding content downloaded

in the past) or to participate in the exchange of some other file

content, effectively inflating the swarm size for that content.

B. Cost model

Both server bandwidth and cloud bandwidth is assumed to

be elastic, and the content provider pays a fixed price per

unit of bandwidth consumed. Our analysis would allow the

use of any concave cost function. However, for simplicity, we

assume a linear relationship between the cost of bandwidth at

the servers and within the cloud. Without loss of generality, we

normalize all costs to the cost of a unit of server bandwidth at

the origin servers and let the cost of cloud bandwidth be a fixed

factor c of this. In this paper, we consider the case when 0 ≤
c < 1. (When 1 ≤ c it is never beneficial to serve content from

the cloud.) Furthermore, we assume that the content provider

pays a fixed amount C for each file stored in the cloud.

Each cloud server is assumed to be associated with a unique

locality region. For simplicity, we assume that these regions

are non-overlapping, and each peer is local to exactly one

region, and considered remote to all other cloud servers. Our

general cost model considers the fact that a cloud provider

may want to charge more for uploading to remote peers than

local peers. We use a remote access cost q (per unit of remote

bandwidth) to capture this differentiation.

Our interest is in minimizing the total delivery cost for the

content provider. Given the above cost model, this corresponds

to minimizing the sum of all server and cloud-related costs

(while leveraging peer resources):

∑
i∈N

Bs
i + c ∑

i∈M
∑
j∈P i

Bc
i, j(1+q fi, j)+C ∑

i∈M

|P i|, (1)

where Bs
i is the server bandwidth used to serve content i, Bc

i, j

is the cloud (server) bandwidth used to serve content i at cloud

server site j, and fi, j is the fraction of that bandwidth that is

used to serve peers that are remote to site j.

C. Workload model and operational constraints

For our analysis, we consider the system in steady state.

We denote the request rate of file i by λi, and index the files

in decreasing order of popularity such that λi ≥ λ j,∀i < j. In

the cases we rely on analytical evaluation, we assume that

client requests for each file follow a Poisson process. While

the peer arrival process changes over the lifetime of torrents,

over short periods the Poisson process can be a reasonable

approximation [13]. Furthermore, it should be noted that our

general conclusions do not appear to depend on the Poisson

assumptions, as the qualitative shape of the various bandwidth

costs likely are very similar for more general workloads. For

the bandwidth usage, we have validated this claim for simple

diurnal request patterns.

As noted above, each peer’s upload bandwidth can (in

addition to its regular upload participation for the requested

file) be used for either dynamic bundling (inflation) or seeding.

With bundling, peers participate in the download of other

file content, in which this bandwidth effectively is used to

inflate the popularity of that file. To capture these inflation

contributions, we recalculate the additional file sharing of these

files into an (artificial) arrival intensity φi, which effectively

inflates the total request volume of files from λi to λi + φi.

With seeding, peers act as a seeder for content that they

have already downloaded. Similar to the server and cloud

bandwidth, peer seeding is only used if needed. Let B
p
i denote

the seed contributions of file i. Naturally, the sum of both

these types of additional peer contributions cannot exceed the

available peer upload bandwidth of peers. Hence, we have that:

∑
i∈N

φiL+ ∑
i∈N

B
p
i ≤ ∑

i∈N

λi(UT −L). (2)

To ensure service, our peer-assisted system may need to

provide additional upload bandwidth to that provided by the

peers currently downloading a particular file. We will call

this upload contribution the total system upload bandwidth.

With or without inflation, the total system upload bandwidth

contributions Bi(λi) must be contributed by either the servers

(Bs
i), the cloud (∑ j∈P i

Bc
i, j), or seeding peers (B

p
i), such as to

ensure that the downloading clients obtain data at the rate

L/T . Naturally, all upload bandwidth contributions B∗
i are non-

negative (i.e., 0 ≤ B∗
i ,∀i) and must sum to the total required

upload bandwidth requirements Bi(λi + φi) to ensure that the

(average) service guarantees are satisfied. To summarize,

Bi(λi +φi) ≤ Bs
i + ∑

j∈P i

Bc
i, j +B

p
i ,∀i. (3)

III. CLOUD CONTRIBUTIONS: SERVER-CLOUD TRADEOFF

Let us first consider the tradeoff between server bandwidth

usage and cloud storage. In this section we take a closer look at

the importance of carefully selecting which content to push to

the cloud. For this purpose, we will consider the case when the

cloud provider does not differentiate remote and local service

and instead focus on the comparison of five basic policies to

determine which content to push. For this case q = 0, and there

is no advantage to pushing more than one copy to the cloud.

The cost model in equation (1) then reduces to the following:

∑
i∈N \M

Bs
i + c ∑

i∈M

Bc
i +C|M |, (4)

where Bc
i is the cloud bandwidth used to serve content i.

A. Baseline policies

We define five basic replication policies for determining

which contents to push to the cloud. The more advanced

policies assume knowledge of the expected total system upload

bandwidth requirements B(λi) of each file.

• Random (p): To illustrate the ineffectiveness of a naive

approach, we consider a policy that selects a fraction p of

the files at random, and pushes these to the cloud. Here,

p = M
N

is a parameter of the policy.

• Head (p): This policy pushes the most popular files to

the cloud. Again, p determines the fraction of the total

number of files to push to the cloud.

• Tail (p): In contrast to the head policy, this policy pushes

the least popular files to the cloud. Again, p determines

the fraction of the total number of files to push.

• Optimized (best case): To illustrate the potential for

careful replica management, we consider the static op-

timal policy that always pushes exactly the set of files

that are best served by the cloud, into the cloud. This

corresponds to all files for which the server upload

bandwidth Bs
i otherwise would exceed C/(1−c). (To see

this, note that this ensures that the cloud only is used

whenever Bs
i > cBc

i +C, where Bs
i = Bc

i .) This solution

will minimize the server bandwidth usage requirements.

• Worst case: To illustrate the worst case scenario, we have

a policy that always pushes the set of files that will result

in the worst case cost, by pushing exactly the wrong set

of files to the cloud. Naturally, this set of files is the

complete mirror of the optimized (best case) policy.

B. Evaluation framework

For our policy evaluation we will consider a system with

N files, each of varying popularity. For simplicity, we will

consider a system in steady state, with known request rates λi,

for the simple case when peers only participate in the upload

of the files they request. This corresponds to the case when

U = L/T . The more general case will be analyzed in later

sections. However, the relative tradeoff between cloud storage

and server bandwidth is not significantly affected.

Furthermore, focusing on the relative cost differences of

the policies, rather than the absolute values, we will use an

analytic approximation of the total system upload bandwidth

for an example policy that could be used by the servers or the

cloud (servers) to serve a single file.

While the system upload bandwidth in general can be

provided by the origin servers, the cloud, or even other peers

seeding the content (after previously having downloaded the

content), it is important to note that typically only one such

entity is needed to keep a torrent alive. Naturally, at very low

request rates (where there is no other peers helping out) this

node may be required to upload at rate λiL. In contrast, if

the torrent is self-sustaining no server bandwidth is needed. It

has been observed that a critical mass typically is required for

torrents to become self-sustaining [6], [8].

In this paper, we define two server-based policies that

attempt to upload only the minimum amount of pieces required

to maintain a self-sustaining torrent, as indicated by there

being at least one copy of each piece among the set of

downloaders of the content.

• Missing piece: The server only uploads one piece at a

time whenever there is at least one piece missing among

the peer set.

• Missing piece, with fewest priority: Same as the missing

piece policy, but the server always gives priority to the

peers with the fewest pieces (with ties broken at random).

With both policies, when the server uploads pieces, it uploads

at rate U , equal to the client upload rate.

For the purpose of our evaluation, we will use an approx-

imation of the total system upload bandwidth required by

these policies. We consider the number of pieces lost from the

torrent whenever a peer departs leaving just k remaining peers.

Assume that the oldest such remaining peer has a fraction

k/(k + 1) of the pieces, the next oldest peer has a fraction

(k − 1)/(k + 1) of the pieces, the next oldest after that has

(k−2)/(k+1), and so forth. Furthermore, assume that the sets

of pieces held by these peers are independent. The fraction

of pieces lost from the torrent would then be on average

k!/[(k + 1)k], and under the Poisson assumption the server

upload bandwidth for these policies can be calculated as:

Bmissing ≈
∞

∑
k=0

(λL/U)k

(k +1)k
e−λL/U λL. (5)

Note that the rate at which a peer departs leaving just k

remaining peers is given by λ times the probability that there

are k peers in the system (from flow balance).

To evaluate the accuracy of our analytic approximations

and to provide some insights to the required system upload

bandwidth usage as a function of the request rate we used

simulations. For our simulations, we modified an existing Bit-

Torrent simulator [14] which captures the BitTorrent dynamics,

including the rarest-first policy, rate-based tit-for-tat, as well

as the bandwidth constraints of the peers and the server. In

accordance with our model, these simulations assume that

peers do not depart before having downloaded the full copy,

but leave as soon as they have completed their download.

Furthermore, peers are assumed to be homogeneous with an

upload capacity U = 1, download capacity D = 3, and arrive

according to a Poisson process. Without loss of generality, the

files size L is chosen to be 1. This corresponds to normalizing

the file size, and measuring the bandwidth in units of files that

can be transferred during the time it takes to upload an entire

file, and the request rate corresponds to the average number

of requests during the time it takes to upload a file.

Figure 1 shows the server bandwidth usage and average

client download times for the above policies, as function of

the file request rate. To give some insight to the potential

performance of these policies, we also include two lower

bounds for the minimum possible system upload bandwidth.

The derivation of these bounds is provided in the appendix.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

2566416411/41/16

S
e

rv
e

r
b

a
n

d
w

id
th

Arrival rate

Missing piece (sim)
Missing+fewer (sim)

Missing (approx)
LB (second)

LB (first)

(a) Server (system) upload bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2566416411/41/16

D
o
w

n
lo

a
d
 t
im

e

Arrival rate

Missing piece (sim)
Missing+fewer (sim)

(b) Client delay

Fig. 1. Validation of server upload bandwidth approximation. (Default
parameters: D = 3, U = 1, L = 1, and a file with 512 pieces.)

We note that the torrents become self-sustaining at request

rates somewhere above λ = 16. While the approximation and

lower bounds both track the general shape of the server

bandwidth usage, there appears to be some room for tighter

bounds or improved policies. However, as our focus is on

the general design tradeoffs of these systems, rather than the

absolute server bandwidth values, the simple policies and their

bandwidth approximations will suffice. It is also encouraging

to see that the policy in general appears to achieve download

times close to the desired download time of one.

Finally, it should be noted that the general qualitative shape

of B(λ) may be more generally true. While the approximations

and bounds only are based on the Poisson assumption, the

general qualitative shape is likely very similar for more general

workloads (with the most bandwidth being consumed by

torrents with intermediate request rates). We have validated

this claim for simple diurnal request patterns.

0.8

0.6

0.4

0.2

0

 0 200 400 600 800 1000

B
a
n
d
w

id
th

 u
s
a
g
e

Popularity rank of files

Server
Cloud

(a) Bandwidth usage

256

64

16

4

1

1/4

 0 200 400 600 800 1000

D
e
m

a
n
d

Popularity rank of files

Demand

(b) Request rates

Fig. 2. Characterization of the optimal cloud storage policy when there is
no additional peer contributions. (Default scenario with N = 1,000 files, Zipf

popularity with α = 1, average request rate λ = 2, cloud storage cost C = 0.25
and cloud bandwidth cost factor c = 0.5.)

C. Performance evaluation

In our experiments we consider a scenario in which the file

popularities follow a Zipf distribution. We denote the average

file request rate by λ = 1
N ∑N

i=1 λi.

Figure 2 shows the server and cloud bandwidth usage for

the optimal cloud storage policy. For this experiment we have

used our default scenario with cloud storage cost C = 0.25

and cloud bandwidth cost factor c = 0.5. The blue (lighter

color) in the middle illustrates the files that should be pushed

to (and served in) the cloud. The other files (red, darker color)

should be served by the server. We note that some of the most

popular files are self-sustaining and do not require any server

(or cloud) bandwidth. In later sections, we will show how the

extra peer upload bandwidth can be used to further reduce the

delivery costs of the content provider.

We next look at the impact of cloud storage and the file-

selection policy used to push content to the cloud. Figures 3

and 4 break down the cloud bandwidth usage, cloud storage

requirements, and total delivery cost, as a function of the cloud

bandwidth cost c and cloud storage cost C, respectively. We

note that the total system bandwidth usage is the same in all

these scenarios, and only the costs and policies differ. While

the three static policies (with p = 50%) have a fixed allocation,

the optimal policy carefully adjusts its cloud usage based on

these costs. In all cases this policy achieves distinctly lower

costs. While our default scenario (with c = 0.5 and C = 0.25)

corresponds to a parameter region where the cost differences

between the policies are relatively smaller, in general, there

is a significant difference between the optimal policy and the

other policies. This shows that it is important to carefully select

which content to push to the cloud.

To assess the impact of the popularity and load characteris-

tics of the content provider’s file catalogue, we next consider

the impact of varying the load parameters. Figure 5 shows

a comparison of the delivery costs of the example policies,

when varying the average request rate λ, the popularity skew

parameter α, and the number of files N. While the absolute

costs are the highest for average request rates around λ = 4

and for a flat popularity distribution, we note that the relative

cost differences between the policies are the greatest when

the request rates are either high, low, or the overall load is

skewed (high α). We also note that our results appear relatively

insensitive to the number of files.

IV. PEER CONTRIBUTIONS: BUNDLING AND SEEDING

Having provided insights into how a content provider should

best utilize cloud resources, we next move our attention to

the peer upload bandwidth. In particular, we are interested

in how the content provider should best utilize the additional

upload contribution (UT − L) provided by each downloader.

As described in Section II, this bandwidth can be used

for dynamic bundling (inflation) and seeding of previously

downloaded contents. We note that the first approach does not

require any permanent peer storage, while the second approach

does. At a high level, we consider three policies:

• Peer seeding (only): With seeding, the peers simply

serve peers on behalf of the server when the server

otherwise would need to serve the content (according

to the missing piece policy, described in Section III,

for example). Of course, peers can only seed contents

they have downloaded in the past. For simplicity, in this

section we assume that the probability that a peer has a

copy is proportional to the request rate of that file content.

• Bundling (only): With bundling peers agree to participate

in the download of some other file contents in addition

to the file they requested. Allocation of the inflation

bandwidth contributions of the peers are described below.

• Hybrid: With the hybrid policy, we use both peer seeding

and bundling. The default is to use bundling; however, as

soon as a peer is given a seeding opportunity, this is given

priority (so as to avoid a torrent dying).

100

80

60

40

20

0

 0 0.2 0.4 0.6 0.8 1

C
lo

u
d

 b
a

n
d

w
id

th
 u

s
a

g
e

 (
%

)

Cloud bandwidth cost (c)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal

100

80

60

40

20

0

 0 0.2 0.4 0.6 0.8 1

C
lo

u
d

 s
to

ra
g

e
 (

%
)

Cloud bandwidth cost (c)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 d

e
liv

e
ry

 c
o

s
t
p

e
r

fi
le

Cloud bandwidth cost (c)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal

(a) Fraction bandwidth from cloud (b) Fraction stored in cloud (c) Average delivery cost

Fig. 3. Resource usage and cost comparison of example policies when varying the cloud bandwidth cost factor c. (Default scenario with N = 1,000 files,

Zipf popularity with α = 1, average request rate λ = 2, and cloud storage cost C = 0.25.)

100

80

60

40

20

0

 0 0.2 0.4 0.6 0.8 1

C
lo

u
d

 b
a

n
d

w
id

th
 u

s
a

g
e

 (
%

)

Cloud storage cost (C)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal

100

80

60

40

20

0

 0 0.2 0.4 0.6 0.8 1

C
lo

u
d

 s
to

ra
g

e
 u

s
a

g
e

 (
%

)

Cloud storage cost (C)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 d

e
liv

e
ry

 c
o

s
t
p

e
r

fi
le

Cloud storage cost (C)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal

(a) Fraction bandwidth from cloud (b) Fraction stored in cloud (c) Average delivery cost

Fig. 4. Resource usage and cost comparison of example policies when varying the cloud bandwidth cost factor c. (Default scenario with N = 1,000 files,

Zipf popularity with α = 1, average request rate λ = 2, and cloud bandwidth cost factor c = 0.5.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25 1 4 16 64

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t

p
e
r

fi
le

Average request rate (λ)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t

p
e
r

fi
le

Popularity skewness (α)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

10
5

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t

p
e
r

fi
le

Number of files (K)

Worst
Head (50%)

Random (50%)
Tail (50%)

Optimal

(a) Average request rate (b) Popularity skew (c) Number of files

Fig. 5. Delivery cost comparisons of example policies when varying (a) the average request rate λ = 2, (b) the popularity skew parameter α, and (c) the

number of files N. (Default scenario with N = 1,000 files, Zipf popularity with α = 1, average request rate λ = 2, cloud storage cost C = 0.25 and cloud
bandwidth cost factor c = 0.5.)

As for the inflation contributions (using the bundling and

the hybrid policies), we consider four different sub-policies

for determining which torrents to inflate.

• Proportional: With this policy, the inflation contributions

are assigned proportionally to the current request load of

each file, such that φi = λi(UT/L−1).
• Random (uniform): With this policy, the inflation contri-

butions are assigned uniformly among files. On average,

each file hence obtains φi = λ(UT/L−1).
• Basic: With the basic policy we identify the set of files

that would benefit from inflation (in that their delivery

cost would reduce if an additional fraction λ(UT/L−1)
is allocated to that file). Assuming that there are n ≤ N

such files, we then allocate φi = N
n

λ(UT/L− 1) of the

peer inflation to these files (and none to the others).

• Fine: With the fine (grained) policy, the basic policy is

first applied. Then a greedy search algorithm is used to

incrementally improve the current inflation allocation. In

each step, we identify the file with the biggest possible

cost reduction and the file with the smallest possible cost

increase if an inflation contribution ψ is moved from the

second to the first. The value ψ is initially equal to the

inflation contribution of the file with the smallest inflation

contribution, but is decreased by a factor 2 each time that

we do not find any further improvements, until we no

longer can make improvements.

Referring to our system model, the above policies must all

satisfy equations (2)-(5). For the hybrid policies, this requires

that the total inflation ∑N
i=1 φi is adjusted such that it does

not exceed the total upload contributions ∑N
i=1 λi(UT/L− 1)

minus the seed contributions ∑N
i=1 B

p
i . This is simply done by

repeatedly solving the equations until the φi values converge.

Figure 6 shows a breakdown of the peer, cloud, and server

bandwidth usage with our three baseline algorithms: seeding

0.8

0.6

0.4

0.2

0

 0 200 400 600 800 1000

B
a
n
d
w

id
th

 u
s
a
g
e

Popularity rank of files

Total
Server (only)
Cloud (only)

0.8

0.6

0.4

0.2

0

 0 200 400 600 800 1000

B
a
n
d
w

id
th

 u
s
a
g
e

Popularity rank of files

Total
Server (only)
Cloud (only)

0.8

0.6

0.4

0.2

0

 0 200 400 600 800 1000

B
a
n
d
w

id
th

 u
s
a
g
e

Popularity rank of files

Total
Server (only)
Cloud (only)

(a) Seeding (only) (b) Bundling (only) (c) Hybrid

Fig. 6. Characterization of the optimal cloud, peer, and server usage for the three baseline policies: (a) seeding (only), (b) bundling (only) with the fine
inflation allocation, and (c) hybrid with the fine inflation allocation. (Default scenario with N = 1,000 files, Zipf popularity with α = 1, average request rate

λ = 2, cloud storage cost C = 0.25 and cloud bandwidth cost factor c = 0.5.)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o

s
t
p

e
r

fi
le

Upload contribution (U)

Seeding
Bundling (prop.)

Bundling (random)
Bundling (basic)

Bundling (fine)
Hybrid (fine)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t

p
e
r

fi
le

Cloud storage cost (C)

Seeding
Bundling (prop.)

Bundling (random)
Bundling (basic)

Bundling (fine)
Hybrid (fine)

Fig. 7. Delivery cost comparisons of example policies when varying the
upload rate and cloud costs. (Default scenario with N = 1,000 files, Zipf

popularity with α = 1, average request rate λ = 2, cloud storage cost C = 0.25,
cloud bandwidth cost factor c = 0.5, and peer upload rate U = 2.)

(only), bundling (only), and the hybrid policy. Here, both the

bundling and the hybrid policy use the fine allocation. We

note that peer seeding does not at all affect the total system

upload bandwidth required (as illustrated by the black curve in

Figure 6(a)). In contrast, both the bundling and hybrid policies

are able to significantly reduce this amount by inflating some

of the more popular contents, such as to reduce their system

upload bandwidth requirements. In addition, the hybrid policy

is able to use peer seeding to further reduce the amount of

server (or seed) bandwidth needed.

Finally, we note that all policies are able to (mostly) reduce

the bandwidth requirements beyond the point where there is

no benefit to push the contents to the cloud. The exception is

the bundling policy, for which there is a small number of files

for which there was not enough inflation contributions around

to completely eliminate the cost benefit of the cloud. (See the

blue region in Figure 6(b).)

Figure 7 shows the delivery cost comparisons of example

policies when varying the upload rate and cloud costs. We

note that the cloud costs must be small to help reduce the

delivery costs, especially as most of these peer-based policies

effectively can help reduce the need for significant server

bandwidth resources. From Figure 7(a) we can also see that

naive bundling policies may actually hurt the system, as the

wrong torrents may get inflated. Careful bundling, however,

can achieve close to the same cost reductions as peer seeding,

while not requiring any long-term peer storage. Furthermore,

we note that combining the two techniques (as with the hybrid

policy) can further reduce the costs significantly.

While simple in nature, the fine inflation allocation (used

by the bundling and hybrid policies) requires much more

computation than the basic allocation. As the costs of the two

approaches in general do not differ by more than 10%, the

basic allocation may be beneficial in some contexts.

Figures 8 shows the delivery cost comparisons of example

policies when varying the workload conditions. Again, these

figures illustrate the importance of careful inflation selection,

as well as a clear benefit to leveraging seeding when possible.

In summary, we find that much of the benefits of peer

seeding can be achieved with careful torrent inflation. Hybrid

policies that combine bundling and peer seeding perform best,

often reducing the delivery costs by an extra 20% relative

to only using seeding. Interestingly, the number of files that

should be pushed to the cloud decreases as more advanced

peer policies are employed.

V. REPLICATION AND LOCALITY AWARENESS

Thus far we have considered the case when the content

provider is charged the same bandwidth cost for all uploads,

independent of the peers’ locality. However, future charging

models (of cloud bandwidth, for example) may also take into

account the service locality. In this section we take a closer

look at how the content provider can best reduce its costs in

systems where it has an additional bandwidth cost for uploads

to remote peers.

For this analysis, we use the full cost model, but focus on a

single file (for which it has been determined that pushing the

content to the cloud is beneficial). Again, the model captures

the balance between large torrent sizes (for self-sustainability

purposes) and locality of service. We must therefore determine

how many copies should be pushed to the cloud, to which

cloud replicas the content should be pushed, and which replica

should be serving which peer.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.25 1 4 16 64

A
v
e

ra
g

e
 d

e
liv

e
ry

 c
o

s
t
p

e
r

fi
le

Average request rate (λ)

Seeding
Bundling (prop.)

Bundling (random)
Bundling (basic)

Bundling (fine)
Hybrid (fine)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5 1 1.5 2 2.5

A
v
e

ra
g

e
 d

e
liv

e
ry

 c
o

s
t
p

e
r

fi
le

Popularity skewness (α)

Seeding
Bundling (prop.)

Bundling (random)
Bundling (basic)

Bundling (fine)
Hybrid (fine)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10
2

10
3

10
4

10
5

A
v
e

ra
g

e
 d

e
liv

e
ry

 c
o

s
t
p

e
r

fi
le

number of files (K)

Seeding
Bundling (prop.)

Bundling (random)
Bundling (basic)

Bundling (fine)
Hybrid (fine)

(a) Average request rate (b) Popularity skew (c) Number of files

Fig. 8. Delivery cost comparisons of example policies when varying the workload conditions. (Default scenario with N = 1,000 files, Zipf popularity with

α = 1, average request rate λ = 2, cloud storage cost C = 0.25, cloud bandwidth cost factor c = 0.5, and peer upload rate U = 2.)

We assume that the content provider has the choice to

replicate the contents to any subset P i ∈ R of the R = |R |
possible replica sites. As earlier, there is a storage cost C

associated with each replica. However, in addition to the

original bandwidth cost c there is an additional remote access

cost q for any bandwidth that is associated with uploads to

peers outside the region of that replica server.

While all analysis in this section applies to torrents with

inflation, for simplicity, we consider the case when bundling is

not utilized. Requests for the representative content i from the

clients of each group j are assumed to be Poisson at rate λi, j,

with the servers/groups indexed from 1 to R in non-increasing

order of the group request rates. Ignoring the scaling c of the

cloud bandwidth cost (as only cloud servers are considered),

the total delivery cost for file i can be calculated as

∑
j∈P i

Bi, j(1+q fi, j)+ |P i|C, (6)

where Bi, j is the replica upload bandwidth usage for file i

at replica j, and fi, j is the fraction of this bandwidth that is

to clients outside the local region of replica site j. Naturally,

Bi(λi) ≤ ∑R
j=1 Bi, j, where λi = ∑R

j=1 λi, j.

A. Baseline policies

To gain insights into the characteristics of good locality-

aware system policies, as well as to garner an understanding

of what aspects of such protocols may provide the biggest

dividend, we next consider several baseline policies.

Local: The content is replicated to all R locations, and peers

are served only by the local server and peers. With this policy

there will be one swarm per replica site. Naturally, we have

Bi, j = B(λi, j) and fi, j = 0,∀ j.

Central: All peers are served using a single large swarm,

with the replica with the highest request rate acting as the

single helper. For this policy, we have Bi,1 = Bi(λi), and Bi, j =
0 for all other j (2 ≤ j ≤ R). Furthermore, the remote access

probability can be calculated as fi,1 = 1
λi

∑R
j=2 λi, j.

All, locality aware: All peers are served using a single large

swarm. However, in contrast to the central policy, the content

is replicated to all R replica sites and whenever content must

be served (to ensure self-sustainability) one of the replicas

with local peers are selected to make the upload(s). For this

policy, we have ∑ j∈R Bi, j = B(λi), and fi, j = 0,∀ j.

Single, locality aware: Similar to the central policy, all

peers are served using a single large swarm, with the replica

with the highest request rate acting as the single helper.

However, the replica only serves remote peers if there are no

local peers in the swarm. For this policy, ∑ j∈R Bi, j = B(λi).
We approximate fi, j using the probability that there is no local

peer (at replica 1) whenever the swarm would require pieces

to be uploaded using an upload policy that uploads whenever

there are peers in the swarm. For such policy the fraction

served remotely is e−λiT (1−p)−e−λiT

1−e−λiT
, where p =

λi,1

λi
.

Optimal, locality aware: As with the above locality-aware

policies, all peers are served using a single large swarm, and

the replica servers with a copy give priority to local peers,

when service is needed. To achieve optimality, the content

is replicated to the P∗
i (1 ≤ P∗

i ≤ R) replica sites with the

highest local load, where P∗
i is selected such that the overall

cost function is the smallest among the R candidate allocations.

For each of the R candidates, we calculate the fraction that is

served remotely as e−λiT (1−p)−e−λiT

1−e−λiT
, where p =

∑
Pi
j=1 λi, j

λi
.

We note that the first two policies do not require peers or

servers to take into account locality. In contrast, the three

locality-aware policies require (at least) the servers to keep

track of which peers are local and which are remote, as well

as (in the case of the two last policies) determine which server

out of the replica servers with local peers should be responsible

for sustaining the torrent.

B. Policy evaluation

We first consider the cost components for the different

policies separately. Figure 9 shows that all policies except

the local policy always minimize the replica server bandwidth

usage (Figure 9(a)), but that the fraction of remote service may

differ significantly between the policies (Figure 9(b)). These

differences, can also be observed in the total delivery costs

(Figure 9(c)). Naturally, the optimal locality-aware policy does

the best. However, it is interesting to note that the central

policy and single, locality aware policy does very well too.

As the central policy is significantly easier to implement

than the other policies, we wanted to see how the policies

perform under a wider range of scenarios. We conclude this

section with a comparison of the delivery costs of our baseline

policies, for a range of scenarios. Figure 10 shows the delivery

 0

 2

 4

 6

 8

 10

 12

 0.25 1 4 16 64

T
o

ta
l
b

a
n

d
w

id
th

 (
B

)

Total request rate (λ)

Local
Central

All loc. aware
Single loc. aware

Optimal loc. aware

100

80

60

40

20

0

 0.25 1 4 16 64

R
e

m
o

te
 a

c
c
e

s
s
 (

%
)

Total request rate (λ)

Local
Central

All loc. aware
Single loc. aware

Optimal loc. aware
 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.25 1 4 16 64

A
v
e

ra
g

e
 d

e
liv

e
ry

 c
o

s
t

p
e

r
fi
le

Total request rate (λ)

Local
Central

All loc. aware
Single loc. aware

Optimal loc. aware

(a) Server bandwidth (b) Remote access (c) Total delivery cost

Fig. 9. Replication analysis under varying request rates. Default scenario: R = 16, β = 0 (i.e., λi, j = λi
R

), C = 0.5, q = 5, L, U = 1.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t
p
e
r

fi
le

Cloud storage cost (C)

Local
Central

All loc. aware
Single loc. aware

Optimal loc. aware

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t
p
e
r

fi
le

Remote access cost (q)

Local
Central

All loc. aware
Single loc. aware

Optimal loc. aware

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t
p
e
r

fi
le

Number of regions (R)

Local
Central

All loc. aware
Single loc. aware

Optimal loc. aware

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
v
e
ra

g
e
 d

e
liv

e
ry

 c
o
s
t
p
e
r

fi
le

Popularity skewness (β)

Local
Central

All loc. aware
Single loc. aware

Optimal loc. aware

(a) Storage cost (C) (b) Remote access cost (q) (c) Number of regions (R) (d) Load skewness (β)

Fig. 10. Policy comparison under varying workload conditions. Default scenario: R = 16, β = 0, λi = 2, C = 0.5, q = 5, L, U = 1.

costs, as we vary the cloud storage cost C, the remote access

cost q, the number of replica regions R, and the load skew β.

While our default scenario has uniform load across the

replica sites (i.e., β = 0), we note that the relative differences

between the costs of the policies can be fairly high when

the load is skewed (higher β). As this is likely the case in

many real systems, we note that carefully designed locality-

aware policies are important for content providers wanting to

minimize their delivery costs in such systems.

We note that both simpler policies (i.e., central and local) do

well for particular regions of the parameter space, but poorly in

other regions. In fact, only the optimal locality-aware policy

does well for all regions. This suggests that careful system

design may be important, especially in environments in which

the pricing of cloud-based resources is such that it may provide

cost savings for local service.

VI. RELATED WORKS

The dynamics of the number of downloaders and uploaders

in BitTorrent-like systems were modeled using stochastic

models [15] and fluid models [16]. In [17] and [18] these

models were extended to analyze the impact of server and

cache upload bandwidth on the system dynamics, respectively.

In contrast to these works, our focus is on the server upload

bandwidth needed in peer-to-peer file sharing systems with

service guarantees.

The impact of bundling different contents on the peers’

download times and on the lifetime of the swarms was consid-

ered in [7], [8], [19]. These works showed that various static

and dynamic bundling strategies can extend the swarm lifetime

significantly. Cross-swarm seeding was considered in [13],

[20] in order to leverage the unused upload bandwidth of

popular swarms to help the download in less popular swarms.

In contrast to these works, we consider how bundling and

cross-swarm seeding can be used most effectively to reduce

the server upload bandwidth requirements.

A stochastic fluid model of the server bandwidth needed for

video-on-demand (VoD) systems was provided in [21]. Upper

bounds on the minimum required server upload bandwidth

have also been proposed [22]. The server bandwidth needed

for P2P live streaming was analyzed in [23] using a stochastic

fluid model and simulations. Frameworks for cloud-assisted

P2P streaming to accommodate time varying demands were

considered for live streaming in [24] and for VoD in [25]. In

VoD and live streaming systems chunk delivery needs to be

approximately in-order, unlike in the case of the content dis-

tribution systems we address in this paper, where the order of

chunk delivery is unrestricted. Apart from this difference, the

consideration of cloud storage and bandwidth costs together

with bundling and cross-swarm seeding distinguish our work

from the above papers.

VII. CONCLUSIONS

In this work we considered the problem of peer-assisted

content delivery with service time guarantees. We developed

a simple model of the upload bandwidth requirements as

a function of the content popularity, and showed that it is

the moderately popular contents that require most upload

bandwidth. We used the model to give insight into the optimal

combination of server and cloud bandwidth resources with the

aim of decreasing the total bandwidth cost. We then considered

torrent inflation and cross-swarm seeding, and showed that

a hybrid policy can significantly decrease the bandwidth

requirements. Finally, we addressed the case of several cloud

providers and showed that optimized cloud replica placement

and a good locality policy can lead to significant cost savings.

We believe that the insights provided using our simple model

will be valuable for developers of future systems.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers. This work was sup-

ported by National ICT Australia (NICTA), the Natural Sci-

ences and Engineering Research Council (NSERC) of Canada,

the ACCESS Linnaeus Centre at KTH, and CENIIT at

Linköping University.

REFERENCES

[1] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE

INFOCOM, Mar. 1999.

[2] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan,
“Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload,” in Proc. ACM SOSP, Oct. 2003.

[3] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti,
“Characterizing Web-based video sharing workloads,” ACM Transac-

tions on the Web, vol. 5, pp. 8:1–8:27, May 2011.

[4] G. Dán and N. Carlsson, “Power-law revisited: A large scale measure-
ment study of P2P content popularity,” in Proc. IPTPS, Apr. 2010.

[5] ——, “Dynamic swarm management for improved bittorrent perfor-
mance,” in Proc. IPTPS, Apr. 2009.

[6] D.Menasche, A. Rocha, E. Silva, R. Leao, D. Towsley, and A. Venkatara-
mani, “Estimating self-sustainability in peer-to-peer swarming systems,”
in Proc. IFIP Performance, Nov. 2010.

[7] D. Menasche, A. Rocha, B. Li, D. Towsley, and A. Venkataramani,
“Content availability and bundling in swarming systems,” in Proc. ACM

CoNEXT, Dec. 2009.

[8] N. Carlsson, D. L. Eager, and A. Mahanti, “Using torrent inflation to
efficiently serve the long tail in peer-assisted content delivery systems,”
in Proc. IFIP/TC6 Networking, May 2010.

[9] S. Zhang, N. Carlsson, D. Eager, Z. Li, and A. Mahanti, “Dynamic file
bundling for large-scale content distribution,” in Proc. IEEE LCN, Oct.
2012.

[10] J. Han, S. Kim, T. Chung, T. T. Kwon, H. chul Kim, and Y. Choi,
“Bundling practice in bittorrent: What, how, and why,” in Proc. ACM

SIGMETRICS/Performance, June 2012.

[11] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is
an auction: Analyzing and improving bittorrent’s incentives,” in Proc.

ACM SIGCOMM, Aug. 2008.

[12] N. Carlsson and D. Eager, “Modeling priority-based incentive policies
for peer-assisted content delivery systems,” in Proc. IFIP/TC6 Network-

ing, May 2008.

[13] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ment, analysis, and modeling of bittorrent-like systems,” in Proc. ACM

IMC, Oct. 2005.

[14] N. Carlsson and D. L. Eager, “Peer-assisted on-demand streaming
of stored media using bittorrent-like protocols,” in Proc. IFIP/TC6

Networking, May 2007.

[15] X. Yang and G. de Veciana, “Service capacity of peer-to-peer networks,”
in Proc. IEEE INFOCOM, Mar. 2004.

[16] D. Qiu and R. Srikant, “Modeling and performance analysis of
bittorrent-like peer-to-peer networks,” in Proc. ACM SIGCOMM,
Aug/Sept. 2004.

[17] Y. Sun, F. Liu, B. Li, and B. Li, “Peer-assisted online storage and
distribution: modeling and server strategies,” in Proc. ACM NOSSDAV,
June 2009.

[18] F. Lehrieder, G. Dán, T. Hossfeld, S. Oechsner, and V. Singeorzan, “The
impact of caching on bittorrent-like peer-to-peer systems,” in Proc. IEEE

P2P, Aug. 2010.

[19] N. Lev-tov, N. Carlsson, Z. Li, C. Williamson, and S. Zhang, “Dynamic
file-selection policies for bundling in bittorrent-like systems,” in Proc.

IEEE IWQoS, June 2010.

[20] R. S. Peterson and E. G. Sirer, “Antfarm: Efficient content distribution
with managed swarms,” in Proc. NSDI, May 2009.

[21] D. Ciullo, V. Martina, M. Garetto, E. Leonardi, and G. Torrisi, “Stochas-
tic analysis of self-sustainability in peer-assisted vod systems,” in Proc.

IEEE INFOCOM, Mar. 2012.

[22] D. Ciullo, V. Martina, M. Garetto, E. Leonardi, and G. L. Torrisi,
“Performance analysis of non-stationary peer-assisted vod systems,” in
Proc. IEEE INFOCOM, Mar. 2012.

[23] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p
streaming systems,” in Proc. IEEE INFOCOM, May 2007.

[24] F. Wang, J. Liu, and M. Chen, “CALMS: Cloud-assisted live media
streaming for globalized demands with time/region diversities,” in Proc.

IEEE INFOCOM, Mar. 2012.
[25] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud bandwidth

auto-scaling for video-on-demand applications,” in Proc. IEEE INFO-

COM, Mar. 2012.

APPENDIX

We derive two simple lower bounds. First, a lower bound of

all server upload policies can be obtained by assuming infinite

upload bandwidth and a schedule where each peer uploads the

pieces in the last possible moment before leaving the system

(if needed). In this case, the server must only upload the file

data L one time per busy (or idle) period of an M/G/∞ queue

with service time L/U . This results in the following lower

bound expression

λLe−λL/U . (7)

This expression also corresponds to that of a server policy that

uploads whenever there is exactly one peer in the system.

A second lower bound can be obtained as follows. Assume

that peers can upload at rate U (at most) and the download

rate D is sufficiently large to not be a constraint. Furthermore,

assume that each download takes exactly T = L/U , and order

all downloads in a request sequence based on their deadlines

ti, from earliest to last download (1 ≤ i ≤ K).

Now, at the end of each deadline ti we can look at the

largest possible amount of the file that can be left in the system

after peer (i− 1) left the system (at time ti−1). Let’s denote

this amount by xi. Clearly, if this amount is less than the file

size L, the difference must be scheduled by deadline ti. Hence

the total server bandwidth can be bounded by: ∑∞
i=1 si, where

si = L−min[L,xi] is the minimum amount that the server must

deliver that it had not previously scheduled by deadline ti−1.

Furthermore, the amount xi can be calculated as:

xi =
i−1

∑
j=1

max[0,U(t j − (ti −T))]+

i−1

∑
j=1

min

[

s j,
K

∑
k=i

max[0,min[U(t j − (tk −T)),U(ti − t j)]]

]

(8)

The first sum of terms corresponds to the amount the peer

could have received directly from older peers. The second sum

of terms corresponds to the amount that younger peer k could

have relayed (from the server) to an older peer j, and later

shared with peer i (after the completion of j). Note that such

a peer k at most could relay max[0,U(t j − (tk −T))] to peer

j, and this peer at most could upload max[0,U(ti − t j)] out of

this data to peer i before peer i’s deadline. Furthermore, note

that xi = 0 and si = L for any peer (including the first peer

i = 1) that arrive to the system when it is empty. For such a

peer t j < ti −T and t j < tk −T , for all k > i.

Finally, we note that a tighter (combined) bound could be

obtained by taking the maximum of the above two lower

bounds. Again, for the purpose of our analysis the approx-

imation is sufficient.

