
Multicast Protocols for Scalable On-Demand Download*

* To appear in Performance Evaluation. This work was partially supported by the Natural Sciences and Engineering Research Council of

Canada, and by the National Science Foundation under grants ANI-0117810, CNS-0435437 and EIA-0127857.

Niklas Carlsson Derek L. Eager Mary K. Vernon
 Department of Computer Science Computer Science Department

 University of Saskatchewan University of Wisconsin-Madison
 Saskatoon, SK S7N 5C9, Canada Madison, WI 53706, USA

 carlsson@cs.usask.ca, eager@cs.usask.ca vernon@cs.wisc.edu

Abstract
Previous scalable protocols for downloading large, popular files from a single server include batching and cyclic
multicast. With batching, clients wait to begin receiving a requested file until the beginning of its next multicast
transmission, which collectively serves all of the waiting clients that have accumulated up to that point. With
cyclic multicast, the file data is cyclically transmitted on a multicast channel. Clients can begin listening to the
channel at an arbitrary point in time, and continue listening until all of the file data has been received.

This paper first develops lower bounds on the average and maximum client delay for completely downloading a
file, as functions of the average server bandwidth used to serve requests for that file, for systems with
homogeneous clients. The results show that neither cyclic multicast nor batching consistently yields performance
close to optimal. New hybrid download protocols are proposed that achieve within 15% of the optimal maximum
delay and 20% of the optimal average delay in homogeneous systems.

For heterogeneous systems in which clients have widely-varying achievable reception rates, an additional design
question concerns the use of high rate transmissions, which can decrease delay for clients that can receive at such
rates, in addition to low rate transmissions that can be received by all clients. A new scalable download protocol
for such systems is proposed, and its performance is compared to that of alternative protocols as well as to new
lower bounds on maximum client delay. The new protocol achieves within 25% of the optimal maximum client
delay in all scenarios considered.

Keywords: Scalable download, multicast protocols, required server bandwidth

1. Introduction
Large, popular files can be efficiently delivered from a single server system to potentially large numbers of
concurrent clients using scalable download protocols based on multicast (IP or application-level) or broadcast.
Existing scalable download protocols include batching [11, 24] and cyclic multicast [5, 17]. With batching,
clients wait to begin receiving a requested file until the beginning of its next multicast (or broadcast)
transmission, which collectively serves all of the waiting clients that have accumulated up to that point. With
cyclic multicast, the file data is cyclically transmitted on a multicast channel (e.g., a multicast group) which
clients begin listening to at an arbitrary point in time, and continue listening to until all of the file data has been
received.

Note that with batching, clients that request a file while a file multicast is in progress do not begin receiving the
data currently being transmitted, but instead wait until the beginning of the next multicast. This strategy has the
advantage of providing in-order data delivery, but the disadvantage of not fully utilizing the potential sharing of
multicast transmissions. With cyclic multicast, in contrast, clients can begin receiving file data immediately.
However, transmissions are not limited to times when there are (or are likely to be) relatively large numbers of
listeners, as with batching.

 2

This paper considers the problem of devising protocols that minimize the average or maximum client delay for
downloading a single file, as a function of the average server bandwidth used for delivery of that file. An
equivalent problem is to minimize the average server bandwidth required to achieve a given average or maximum
client delay, and sometimes we adopt this equivalent perspective instead. Although we do not explicitly consider
delivery of multiple files, note that use of a download protocol that minimizes the average server bandwidth for
delivery of each file will minimize the average total required server bandwidth for delivering all files, as well.

We focus first on systems with homogeneous clients that have identical reception rate constraints and develop
lower bounds on the average and maximum client delay for downloading a file, as functions of the average server
bandwidth used for delivering that file. We define optimized batching and cyclic multicast protocols, and find
that each of these protocols is significantly suboptimal over some region of the system design space. For
example, the cyclic multicast protocol provides near-optimal maximum client delay when the client reception
bandwidth is low relative to the file request rate, but can have maximum client delay up to 80% higher than
optimal otherwise. An optimized batching protocol provides near-optimal average client delay when the client
reception bandwidth is high relative to the file request rate, but can have average client delay up to 50% higher
than optimal otherwise. Motivated by these results, Section 5 develops new practical hybrid protocols that
largely close these gaps. The new protocols achieve within 15% of the optimal maximum delay and 20% of the
optimal average delay, in homogeneous systems.

We then consider protocols for delivery of a file to heterogeneous clients that have widely varying achievable
reception rates. In this context, achieving efficient delivery as well as lower delay for higher rate clients requires
use of multiple multicast channels. Each client listens to the number of channels corresponding to its achievable
reception rate. The key challenge is to achieve a close-to-optimal compromise between high rate transmissions
(in aggregate, over all channels used for a file), which enable lower delays for clients that can receive at such
rates, and low rate transmissions that allow maximal sharing. A protocol for delivery to heterogeneous clients is
proposed that yields maximum client delays that are within 25% of optimal in the scenarios considered.

The remainder of the paper is organized as follows. Section 2 reviews related work. Section 3 defines and
analyzes the optimized batching and cyclic multicast protocols. In this section, as in the subsequent two sections,
we assume homogeneous clients. Lower bounds on the average and maximum client delay for downloading a
single file, for given average server bandwidth usage (or, equivalently, on the average server bandwidth required
to achieve a given average or maximum client delay) are derived in Section 4. Section 5 develops new scalable
download protocols that achieve close to optimal performance. Protocols for delivery to heterogeneous clients
are developed and evaluated in Section 6. Conclusions are presented in Section 7.

2. Related Work
Considerable prior work has concerned the problem of scheduling one or more broadcast channels that serve a
collection of small, fixed length objects using a batching approach [11, 24]. The main problem considered is that
of determining which object should be transmitted on the channel (or channels) at each point in time, so as to
minimize the average client delay. Both push based [6, 14, 1] and pull based [11, 24, 4] protocols have been
proposed. Hybrid approaches that combine push and pull are also possible [2, 19]. Push based protocols
determine a transmission schedule based only on average object access frequencies, in which case a periodic
delivery schedule is optimal [6]. Pull based protocols assume knowledge of the currently outstanding client
requests. Candidate scheduling policies for determining the object to transmit next include first come first serve
(FCFS), most requests first (MRF), and longest wait first (LWF) [11, 24]. The criteria used by the former two
policies are combined in the RxW policy, proposed by Aksoy and Franklin [4]. This policy uses the product of
the number of pending requests (R) for each object and the longest waiting time of these pending requests (W),
when deciding which object to transmit next. Other work has investigated batching protocols for streaming of
video rather than download [3, 10, 21], including for example an earlier proposal of a policy very similar to RxW
[3].

 3

In contrast to the previous work on scalable download using batching, we consider download of large files and
protocols in which new clients can begin listening to an on-going multicast rather than waiting until the
beginning of the next multicast. Furthermore, we consider contexts in which the total server bandwidth devoted
to file download is somewhat elastic, and thus consider the download protocol for a given file that will minimize
the average or maximum client delay for a given average bandwidth used for delivery of the file. We note that in
a given server setting, the best parameterization of the near-optimal protocol will depend on the current server
load and the actual upper bound on total server bandwidth.

Prior work on scalable download of large files from a single server has focused on cyclic multicast, in which a
file’s data is cyclically transmitted on a multicast/broadcast channel [15, 5, 7, 22, 9, 17, 8]. Each requesting
client can begin listening to the channel at an arbitrary point in time, and continues listening until all of the file
data has been received. This prior work has focused on the performance benefits that cyclic delivery offers in
comparison to unicast delivery, the accommodation of packet loss through use of erasure coding, and support for
heterogeneous clients. Erasure coding enables a client to recover from packet loss simply by continuing to listen
to the channel until an amount of erasure-coded data equal to the size of the requested file (or possibly slightly
greater, depending on the encoding scheme) has been successfully received, at which point the file can be
reconstructed [16, 9, 18]. Heterogeneous clients can be supported through the delivery of file data on multiple
channels. Each client listens to the subset of channels appropriate to its achievable reception rate. By careful
selection of the order in which data blocks are transmitted on each channel [7, 8], or use of erasure codes with
long “stretch factors” [18], receptions of the same data block on different channels can be reduced or eliminated.
In contrast to this prior work on cyclic multicast, we focus on the performance comparison between batching and
cyclic multicast, and the design of hybrid protocols that combine elements of both approaches to achieve superior
performance.

There has been some prior work on hybrid protocols that combine batching and cyclic multicast, specifically the
work by Wolf et al. [23]. The authors find that their proposed hybrid algorithms yield better performance than
pure batching protocols. We similarly find hybrid protocols to yield better performance. However, the focus in
the work by Wolf et al. is on delivery of digital products using otherwise unused bandwidth in a broadcast
television system. They assume a fixed schedule of broadcast channel availability and fixed delivery deadlines
with associated delivery payments. In contrast, we assume complete flexibility in when transmissions occur, and
develop protocols that achieve near-optimal average or maximum client delay as a function of the average
required server bandwidth.

3. Baseline Protocols
This section defines and analyzes simple “baseline” batching and cyclic multicast protocols for delivery of a
single file, assuming homogeneous clients. The metrics of interest are the average client delay (i.e., download
time), the maximum client delay in cases where such a maximum exists, and the average server bandwidth used
for the file data multicasts. It is assumed throughout the paper that each requesting client receives the entire file;
i.e., clients never balk while waiting for service to begin or after having received only a portion of the file. Our
analysis and protocols are compatible with erasure-coded data. Each client is assumed to have successfully
received the file once it has listened to multicasts of an amount of data L (termed the “file size” in the following,
although with packet loss and erasure coding, L may exceed the true file size). Poisson request arrivals are
assumed unless otherwise specified. Generalizations are discussed in some cases. We note that Poisson arrivals
can be expected for independent requests from large numbers of clients. Furthermore, multicast delivery
protocols that have high performance for Poisson arrivals, have even better performance under the more bursty
arrival processes that are typically found in contexts where client requests are not independent [12].

3.1 Batching
Consider first batching protocols in which the server periodically multicasts the file to those clients that have
requested it since it was last multicast. Any client whose request arrives while a multicast is in progress, simply
waits until the next multicast begins.

 4

Perhaps the simplest batching protocol is to begin a new multicast of the file every t time units for some constant
t. However, this protocol has the disadvantage that multicasts may sometimes serve no or only a few clients.

Two optimized batching protocols are considered here. The first, termed batching/constant batching delay
(batching/cbd), achieves the minimum average server bandwidth for a given maximum client delay, or
equivalently the minimum value of maximum client delay for a given average server bandwidth, over the class of
batching protocols as defined above. Letting T denote the time at which some file multicast begins and a denote
the duration of the time interval from T until the next request arrival, the server will begin the next multicast at
time T+a+∆, where ∆ is a parameter of the protocol. Thus, using the notation defined in Table 1, the average
time between file multicasts is ∆+1/λ, the average server bandwidth is L/(∆+1/λ), and the maximum client delay
is ∆ plus L/r (the file transmission time). With respect to the average client delay, note that the client whose
request arrival triggers the scheduling of a new multicast experiences the maximum waiting time ∆ until the
multicast begins. All clients whose requests arrive during the batching delay ∆ will share reception of this
multicast. On average, there will be λ∆ such clients, and the average waiting time until the multicast begins for
such a client will be ∆/2. In summary, 1 λ

/1/ +∆
= L

B cbdb ;
()

;/λ
1

2/
λ

1
/ rLA cbdb +

∆+
∆+∆= rLD cbdb // +∆= .

The second optimized batching protocol, termed batching/request-based delay (batching/rbd), achieves the
minimum value of average client delay for a given average server bandwidth, over the class of batching protocols
as defined above.2 The basic idea is to make the batching delay some integral number of request inter-arrival
times. To make it possible to achieve arbitrary average server bandwidth values, the protocol is defined such that
the server waits for n+1 requests for a fraction f of its multicasts, and for n requests for the remaining fraction 1–
f, where n and f are protocol parameters (integer n ≥ 1, 0 f < 1).3 Thus, the average time between file
multicasts is (n+f)/λ, and the average server bandwidth is L/((n+f)/λ). The average client delay can be derived
from the fact that each multicast serves n clients plus with probability f one additional client, and the i’th last of
these clients experiences an average waiting time until the multicast begins of (i–1)/λ. Note that the maximum
client delay is unbounded with this protocol. Thus,

1 In the non-Poisson case, assuming request interarrival times are independent and identically distributed (IID), these performance metrics

can be obtained by calculating conditional expectations. For example, note that 1/λ in the bandwidth expression can be replaced with the
expected time from after the initiation of a transmission until the next request, conditioned on the fact that there was a request arrival
time ∆ in the past.

2 This can be established formally using an argument similar to that used for the lower bound on average server bandwidth in Section 4.1.
3 When arrivals are Poisson, inter-arrival times are memoryless, and the method by which the server determines when to wait for n versus

n+1 arrivals (for fixed f) has no impact on average server bandwidth usage or average delay.

Table 1: Notation

Symbol Definition
 File request rate

L File size
b Maximum sustainable client reception rate
r Transmission rate on a multicast channel ()br ≤
B Average server bandwidth
A Average client delay (time from file request, until file is

completely received)
D Maximum client delay

∆, n, f Batching delay parameters

 5

() λ
// fn

L
B rbdb +

= ;

()
()

rL
fn

fnn
rL

fn

n
f

nn

A rbdb /
)(

λ
2

12
/

λλ
2

1

/ +
+

−+
=+

+

+−

= ; rbdbD / is unbounded.

Note that for both of these batching protocols, the value of the multicast transmission rate r that minimizes
average and maximum client delay is equal to the maximum sustainable client reception rate b.

Figure 1 illustrates the operations of these two batching protocols, as well as the cyclic multicast protocol
discussed in the next section, for an example sequence of requests. Requests are numbered and the arrival times
and service completion times of the requests are indicated by the arrows at the bottom and top of each subfigure,
respectively. The solid, slanted lines denote multicast transmissions, each of which, in the case of the batching
protocols, delivers the entire file. For the batching/cbd protocol, the batching delays (each of duration ∆) are
indicated with double arrows along the horizontal (time) axis.

3.2 Cyclic Multicast
Perhaps the simplest cyclic multicast protocol is to continually multicast file data at a fixed rate r (cycling back to
the beginning of the file when the end is reached) on a single multicast channel, regardless of whether or not
there are any clients listening. Here we consider a more efficient cyclic multicast protocol, cyclic/listeners
(cyclic/l), that assumes that the server can determine whether there is at least one client with an unfulfilled
request for the file, and transmit only if there is. Since the server transmits whenever there is at least one client,
the delay experienced by each client is just the file transmission time, L/r. The average server bandwidth can be
derived by noting that there will be at least one client listening on the multicast channel at an arbitrary point in
time T, if and only if at least one request for the file was made during the time interval [T–L/r, T], and that the
probability of at least one request arrival during an interval of duration L/r is L/re

λ
1 −− for Poisson arrivals at rate

λ.4 This yields

()L/r
lc erB

λ
/ 1 −−= ; rLDA lclc /// == .

Note that the transmission rate r is the only protocol parameter, and by itself determines the tradeoff between
server bandwidth usage, and client delay.

4 Note that the performance of this protocol can be analyzed for any arrival process for which it is possible to compute the probability of

there being at least one request arrival during a randomly chosen time period of duration L/r.

(a) Batching/constant batching delay (b) Batching/request-based delay (n=3, f=0)

(c) Cyclic/listeners

F
ile

 p
o

s.

F
ile

 p
o

s.

F
ile

 p
o

s.

Time Time

Time

Figure 1: Operation of the Baseline Protocols for an Example Request Sequence

∆ ∆ ∆ ∆

1,2,3 4,5,6 7,8 9 1,2,3 4,5,6 7,8,9

 1 2 3 4 5 6 7 8 9

 1 2 3 4 5 6 7 8 9

 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

 6

4. Lower Bounds
Making the same assumptions as in Section 3 of homogeneous clients, full-file delivery, and Poisson client
request arrivals, this section derives fundamental performance limits for scalable download protocols. These
limits depend on the maximum sustainable client reception rate. Note that for batching protocols, for example, if
the server transmission rate is increased the batching delay can be increased without increasing the total client
delay, thus providing a longer period over which aggregation of requests can occur and more efficient use of
server bandwidth. Section 4.1 considers the limiting case in which clients can receive data at arbitrarily high
rate, for which there is a previously derived bound on maximum delay [20]. Section 4.2 considers the realistic
case in which there is an upper bound b on client reception rate.

4.1 Unconstrained Client Reception Rate
Consider first the maximum client delay, and the average server bandwidth required to achieve that delay. From
Tan et al. [20], 5 λ

/1/λ
/1

−≥⇔
+

≥ BLD
D

L
B .

This bound is achieved in the limit, as the server transmission rate tends to infinity, by a protocol in which the
server multicasts the file to all waiting clients whenever the waiting time of the client that has been waiting the
longest reaches D.

Consider now the problem of optimizing for average client delay. At each point in time an optimal protocol able
to transmit at infinite rate would either not transmit any data, or would transmit the entire file. To see this,
suppose that some portion of the file is transmitted at an earlier point in time than the remainder of the file. Since
client requests might arrive between when the first portion of the file is transmitted and when the remainder is
transmitted, it would be more efficient to wait and transmit the first portion at the same time as the remainder.
Optimizing for average client delay requires determining the spacings between infinite rate full file transmissions
that are optimal for this metric. With Poisson arrivals and an on-line optimal protocol, (1) file transmissions
occur only on request arrivals, and (2) each multicast must serve either n or n+1 clients for some integer n≥ 1.
With respect to this latter property, consider a scenario in which the file is multicast to n waiting clients on one
occasion and to n+k clients for k ≥ 2 on another. A lower average delay could be achieved, with the same
average spacing between transmissions, by delaying the first multicast until there are n+1 waiting clients, and
making the second multicast at the request arrival instant of the n+k–1th client instead of the n+kth.

Thus, a lower bound on the average server bandwidth B required to achieve a given average client delay A can be
derived by finding an integer n 1, and value f (0 f < 1), such that

()
()

()fn

fnn

fn

n
f

nn

A
+

−+
=

+

+−

= λ
2

12λλ
2

1

,

in which case

() λ
/fn

L
B

+
≥ .

Equivalently, to determine a lower bound on the average delay A that can be achieved with average server
bandwidth B, let n = max[1, BL/

λ
], and f = max[0, λL/B–n]. Then,

5 As with the bandwidth expression for batching/cbd in Section 3.1, for the case of non-Poisson request arrivals with IID request

interarrival times the 1/λ term can be replaced by the appropriate conditional expectation. Further note that a bandwidth lower bound
can be obtained for any process such that this quantity can be bounded from above, as has been noted in the scalable streaming context
[13].

 7

()
()fn

fnn
A

+
−+

≥ λ
2

12
.

Note that for B < λL (the bandwidth required for unicast delivery), the optimal protocols for minimizing the
average delay A and the maximum delay D are different, and thus the lower bounds on A and D cannot be
achieved simultaneously. In fact, for all B < λL the optimal protocol for average delay has unbounded maximum
delay. If λL/B is an integer greater than one, the lower bound on A is exactly half the lower bound on D;
otherwise, it is somewhat greater than half. In particular, as B tends to λL, the ratio of the lower bounds on A and
D tends to one.

4.2 Constrained Client Reception Rate
Assume now that clients have a finite maximum sustainable reception rate b. In this case, both the maximum and
average delay must be at least L/b. To achieve the minimal values D = A = L/b, each client must receive the file
at maximum rate starting immediately upon its request. The cyclic/l protocol defined in Section 3.2 achieves the
lowest possible server bandwidth usage in this case, as the transmission rate of the server is (only) b whenever
there is at least one active client, and zero otherwise. Thus, for D = A = L/b, we have the bound ()bLebB /

λ
1 −−≥ .

More generally, for a specified maximum delay D ≥ L/b, the average server bandwidth is minimized by the send
as late as possible (slp) protocol, in which the server cyclically multicasts file data at rate b whenever there is at
least one active client that has no “slack” (i.e., for which transmission can no longer be postponed). Such a client
must receive data continuously at rate b until it has received the entire file, if it is to avoid exceeding the delay
bound. Note that although this protocol is optimal for maximum delay, it requires that the server maintain
information on the remaining service requirements and request completion times of all outstanding requests.
Furthermore, the slp protocol can result in extremely fragmented transmission schedules. This motivates simpler
and more practical near-optimal protocols such as that devised in Section 5.1.

An accurate approximation for the average server bandwidth with the slp protocol is given by

D

L

bLDe

bLDe
B

bL

bL

slp

−+
−+−

≈
/

λ
/

/
λ

/)1(
/

λ /
λ

.

Here the L/D factor approximates the average server bandwidth usage over those periods of time during which
there is at least one active client (i.e., client with an outstanding request). The factor in brackets approximates
the fraction of time that this condition holds. This fraction is equal to the average duration of a period during
which there is at least one active client, divided by the sum of this average duration and the average request inter-
arrival time (1/λ). The average duration of a period during which there is at least one active client is
approximated by the average duration of an M/G/∞ busy period with arrival rate λ and service time L/b, as given

by λ/)1/λ(−bLe , plus the duration of the delay after the arrival of a request to a system with no active clients
until the server must begin transmitting (D–L/b). Note that a corresponding approximation for the minimum
achievable maximum delay, for given average server bandwidth, can be obtained by solving for D in the above
approximation.

Exhaustive comparisons against simulation results indicate that the above approximation is very accurate, with
relative errors under 4%, and thus we use the approximation rather than simulation values in the remainder of the
paper.6 Figure 2 summarizes the validation results, showing contours of equal error over a two dimensional
space. Negative and positive errors correspond to underestimations and overestimations of the true values as
obtained from simulation, respectively. Without loss of generality, the unit of data volume is chosen to be the
file, and the unit of time is chosen to be the time required to download the file at the maximum sustainable client

6 All of our simulations make the same system and workload assumptions as the analytic models (including the assumption of Poisson

arrivals). Note that where we have both simulation and analytic results, the purpose of the simulation is to assess the accuracy of the
approximations made in the analysis, and not for validation of the system or workload assumptions.

 8

reception rate. With these choices of units, L and b are each equal to one. The only two remaining parameters
are λ and D. The logarithm of the arrival rate λ is used on the vertical axis of the contour plot, covering six
orders of magnitude of arrival rates, while six orders of magnitude of “slack” are covered on the horizontal axis
using the logarithm of D–L/b. As can be seen directly from the approximation, this expression is exact for the
boundary cases of λ → 0 (minimum λ), λ → ∞ (maximum λ), D → ∞ (maximum D), L → 0 (minimum L), b →
∞ (maximum b), and D = L/b (minimum D, or maximum L, or minimum b), holding the other parameters fixed in
each case. For example, note that for b → ∞ the approximation reduces to L/(D+1/λ), and for D = L/b the
approximation reduces to ()bLeb /

λ
1 −− .

The optimal scalable download protocol for average delay, under a reception rate constraint, appears to be very
difficult to determine in general. However, we can derive a lower bound as follows. As noted previously, for
A=L/b the optimal protocol is cyclic/l as defined in Section 3.2, with r = b. Furthermore, a variant of cyclic
multicast in which the server sometimes or always waits until a second request arrival before beginning
transmission will also be optimal, for values of average delay and bandwidth that can be achieved by this
protocol, since each unit of additional channel idle time is achieved by delaying the minimum possible number of
clients (only one). Letting f denote the fraction of idle periods in which channel transmission does not begin
until a second request arrives, the server bandwidth and average delay under this cyclic/wait for second, listeners
(cyclic/w2,l) protocol are given by

()
() () fe

e
b

fe

e
bB

bL

bL

bL

bL

lwc
+
−=

++−
−=

/
λ /

λ
/

λ /
λ

,2/
1λ/1λ/1

λ/1
; () bL

fe

f
bL

fe

f
A

bLbLlwc /
λ

/
/λ

/)1(
λ

/)1(
λ λ

/
/

λ
/

λ,2/ +
+

=+
++−

= .

Note here that λ/)1(/
λ

−bLe is the average duration of an M/G/∞ busy period with arrival rate λ and service time

L/b, and (1+f)/λ is the average duration of a channel idle period. For server bandwidth values B that can be
achieved with this protocol, we have (from solving for f in terms of B and then substituting into the average delay
expression),

Figure 2: Lower Bound Approximation
(% relative error contours; unit of data volume is the
file, unit of time is the time required to download the

file at maximum rate: i.e., L=1, b=1)

 Slack, log10(D – L / b)

R
eq

ue
st

 A
rr

iv
al

 R
at

e,
 lo

g 1
0(

 λλ λλ
)

 9

()
() bL

Bbe

eBbe
A

L/b

L/bL/b

/
/1λ -/1

,0max λ λλ
+

−
−

≥ .

Equivalently, to determine the lower bound on the average server bandwidth B that can be achieved with average
delay A, solving for f in terms of A and substituting into the average server bandwidth equation yields

() ()

 −−−≥ λ/1

/λ/1
1,0max

λ
- bLA

ebB L/b .

Values of B that are smaller (or values of A that are larger) than those achieved for f = 1 are not achievable by the
cyclic/w2,l protocol, because in this protocol each idle period always ends no later than the time of the second
request arrival. However, the above bounds are valid (although unachievable) for those smaller values of B (and
larger values of A) that can be obtained by substituting values greater than one for the parameter f in the above
expressions. The bounds are valid in this case because even for f > 1, these expressions still assume that the
minimum number of clients is delayed (i.e., only one) before the server begins transmission. The bounds are
unachievable since the average duration of this delay is assumed to be f/λ, which for f > 1 is greater than the
average delay until the second request arrival.

A second lower bound on average delay can be derived as follows. First, note that in an optimal protocol, data
transmission will always occur at rate b, since: (1) each client can receive at rate at most b, and (2) the average
delay cannot increase when a period of length l between request completions during which the transmission rate
is less than b, is replaced by an idle period followed by a period of transmission at rate b (of combined length l
and equal total server bandwidth usage).

Suppose now that each request arrival that occurs during a busy period is shifted earlier, so that it occurs at a
multiple (possibly zero) of L/(2b) from the start of the busy period. As a result of this shifting, requests arriving
during a busy period will have greater likelihood of completing service before the busy period ends, for a fixed
busy period duration. Therefore, average delay cannot increase. It is now possible to determine the optimal
protocol, assuming this shift of request arrivals, based on the following three observations: (1) by the same
arguments as in Section 4.1, in the optimal protocol each idle period must end once n, or n+1 with some
probability f, requests have been accumulated, for some integer n 1 and 0 f < 1; (2) each busy period must
end on a request completion, and therefore in the optimal protocol be of total length equal to a multiple (at least
two) of L/(2b); and (3) since the state of the system at each multiple of L/(2b) within a busy period is entirely
captured by the number of request arrivals that occurred within the previous L/(2b) (all of whose respective
clients have been listening to the channel for exactly time L/(2b), owing to the shifting), there is an integer
threshold k ≥ 1 such that if the number of such arrivals is less than k, the server will stop transmitting in the
optimal protocol (thus ending the busy period), and otherwise it will not. Note that these observations uniquely
specify the operation of the optimal protocol, by establishing the criteria used for determining when to start a
transmission, specifying the possible instances when a transmission can be completed, and for each of these time
instances specifying the criteria used to determine if the transmission should be stopped.

Given values for the parameters n, f, and k, the average server bandwidth and the average client delay with this
(unrealizable) shifted arrivals (sa) protocol are given by

()
() λ)2/(/11

)2/(/11
1

0

−+++

+
=

∑
−

=

k

i

i
sa

p

p
ifnbLp

bLp
bB ,

() ()()

()

−+++

+−−−+−

+=

∑

∑

−

=

−

= λ
)2/(/11

λ λλ
2

1λ1
1

0

1

0

k

i

i

k

i

i

sa

p

p
ifnbLp

f
ninin

ini
p

p

b

L
A ,

where ())2/(
λ

)2/(
λ

!

1 bLi
i ebL

i
p −= is the probability of i request arrivals in time L/(2b), and ∑

−
== 1

0
k
i ipp is the

probability of a busy period ending when its duration reaches a multiple of L/(2b) (and at least L/b). Bsa is given
by the ratio of the average duration of a busy period to the sum of the average durations of a busy period and an

 10

idle period, times the transmission rate b. Note here that when the busy period ends owing to having i < k request
arrivals during the previous L/(2b), the average duration of the idle period will be (n+f–i)/λ, since only n–i (or
n+1–i) new requests need be received to obtain a total of n (or n+1) unsatisfied requests. Asa is equal to the total
expected idle time incurred by those clients making requests during a busy period and the following idle period,
divided by the expected number of such requests, plus the time required to download the file data (L/b). The
optimal n, f, and k values for a particular server bandwidth or average client delay can be found numerically, so
as to obtain a lower bound on average delay or server bandwidth, respectively. This bound can then be combined
with the corresponding bound from the cyclic/w2,l protocol analysis, to yield a single lower bound, by taking the
maximum of the two.

4.3 Lower Bound Comparisons
Figure 3 shows the lower bounds on average and maximum client delay for the case of unconstrained client
reception rates and for b = 1 and b = 0.1. Without loss of generality, the unit of data volume is chosen to be the
file and the unit of time is chosen to be the average time between requests. With these choices of units, L = 1,
= 1, client delay is expressed as a normalized value in units of the average time between requests, average server
bandwidth is expressed as a normalized value in units of file transmissions per average time between requests,
and the maximum sustainable client reception rate is expressed as a normalized value in units of file receptions
per average time between requests. These units are used in all figures comparing homogenous client protocols
(Sections 4 and 5). Note that the average server bandwidth B in these units can be interpreted as the fraction of
the average bandwidth required for unicast delivery, so the region of interest in the design of scalable multicast
protocols corresponds to values of B considerably less than one.

Although our choice of data volume and time units correctly reflects the fact that it is server bandwidth and client
reception rate relative to request rate and file size that determines performance, some care is required in
interpreting the resulting figures. Consider, for example, Figure 3, and a scenario in which the client request rate
decreases for fixed average server bandwidth (when expressed in unnormalized units). With our chosen units
remains equal to one in this scenario (since the unit of time is the average time between requests), but B
(expressed in units of file transmissions per average time between requests) increases proportionally to the
decrease in the client request rate. Thus, in Figure 3, the increasing value of the normalized server bandwidth B

Figure 3: Lower Bounds on Client Delay
(unit of data volume is the file, unit of time is the

average time between requests: i.e., L=1, λ =1)

0.1

1

10

100

0.01 0.1 1
Server Bandwidth

C
lie

nt
 D

el
ay

Lower bound ave.
Lower bound max.
Lower bound ave., b=1
Lower bound max., b=1
Lower bound ave., b=0.1
Lower bound max., b=0.1

 11

as one moves from left to right on the horizontal axis can correspond to increasing server bandwidth (with a fixed
client request rate) or decreasing client request rate (with a fixed server bandwidth). Similar considerations apply
with respect to the normalized maximum sustainable client reception rate b.

Perhaps the main observation from Figure 3 is that client reception rate constraints can strongly impact the
achievable performance, although this impact diminishes as the value of the normalized average server bandwidth
B decreases. Note also that the difference between the average and maximum delay bounds decreases with
increasing server bandwidth. The point where these bounds become identical is the point at which each client
experiences only the minimum delay of L/b.

Figure 4 plots the percentage increases in the maximum client delay for the baseline batching and cyclic multicast
protocols in comparison to the lower bound, for three different values of client reception rate. Figure 5 plots the
corresponding percentage increases in average client delay for the baseline protocols. The system measures are
expressed in the same normalized units as in Figure 3. Note that the average server bandwidth with cyclic/l
cannot exceed b times the fraction of time that there is at least one active client, and thus the rightmost point of
each cyclic/l curve is for server bandwidth of less than one.

Figures 4 and 5 show that the batching protocols are close to optimal for small (normalized) server bandwidths,
when many requests are accumulated before the next transmission takes place, and for server bandwidths
approaching one, when most clients are served individually with minimal delay of L/b. Batching can be
significantly suboptimal for intermediate server bandwidth values, however, particularly for maximum client
delay (for example, in Figure 4(a), b = 0.1 and B between 0.05 and 0.2). Note also that the overall relative
performance of batching degrades as the maximum sustainable client reception rate decreases, since in this case

 (a) b = 0.1 (b) b = 1.0 (c) b = 10.0

Figure 4: Maximum Delay with Baseline Protocols Relative to Lower Bound (L = 1, λ = 1)

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay Batching/cbd
(min D for batching)

Cyclic/l

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay Batching/cbd
(min D for batching)
Cyclic/l

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandw idth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay Batching/cbd
(min D for batching)
Cyclic/l

 (a) b = 0.1 (b) b = 1.0 (c) b = 10.0

Figure 5: Average Delay with Baseline Protocols Relative to Lower Bound (L = 1, λ = 1)

0

50

100

150

200

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 A
ve

. D
el

ay

Batching/cbd
(min D for batching)
Batching/rbd
(min A for batching)
Cyclic/l

0

50

100

150

200

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 A
ve

. D
el

ay

Batching/cbd
(min D for batching)
Batching/rbd
(min A for batching)
Cyclic/l

0

50

100

150

200

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 A
ve

. D
el

ay

Batching/cbd
(min D for batching)
Batching/rbd
(min A for batching)
Cyclic/l

 12

the required duration of a multicast increases, and with the batching protocols new clients are not able to begin
listening to a multicast after it has commenced.

In contrast, the performance of cyclic/l improves for decreasing client reception rate. However, cyclic/l is
substantially suboptimal for average client delay over most of the parameter space, and for maximum delay when
the client reception rate is high and the server bandwidth is also high although not approaching one (i.e., in
Figure 4(c), b = 10.0 and B between 0.4 and 0.9). Note that for small and intermediate server bandwidths,
cyclic/l is close to optimal for maximum client delay, but since the optimal average client delay is approximately
half the optimal maximum client delay in this case, the average client delay with cyclic/l is about 100% higher
than optimal.

5. Near-Optimal Protocols
Figures 4 and 5 suggest that there is substantial room for improvement over the baseline batching and cyclic
multicast protocols, since for each of maximum and average client delay there is a region of the parameter space
over which each protocol is substantially suboptimal. The main weakness of the batching protocols is that clients
that make requests while a multicast is already in progress do not listen to this multicast. All clients receive the
file data “in-order”, waiting until the beginning of the next multicast before beginning their downloads. With the
baseline cyclic multicast protocol, on the other hand, clients can begin receiving data at arbitrary points in time
within an on-going multicast. Since the server transmits whenever there is at least one active client, however,
there will be periods over which transmissions serve relatively few clients.

Clearly, an improved protocol should allow clients to begin listening to an on-going multicast at the times of their
requests, but should also allow server transmissions to be delayed so as to increase the actual or expected number
of clients each serves. It is straightforward to apply a batching-like rule for deciding when a cyclic multicast
transmission should commence; the key to devising a near-optimal protocol is determining the conditions under
which a multicast should be continued, or terminated. Section 5.1 develops and analyzes new protocols that
focus on improving maximum client delay, while Section 5.2 develops and analyzes protocols whose focus is
improved average client delay. As in Sections 3 and 4, we assume homogeneous clients, full-file delivery, and
Poisson arrivals. Section 5.3 relaxes the Poisson assumption, and considers the worst-case performance of the
protocols under arbitrary arrival patterns.

5.1 Protocols Minimizing Maximum Delay
We consider first a simple hybrid of batching and cyclic multicast termed here cyclic/constant delay, listeners
(cyclic/cd,l), in which a cyclic multicast is initiated only after a batching delay (as in the batching/cbd protocol
from Section 3.1), and is terminated when there are no remaining clients with outstanding requests (as in the
cyclic/l protocol). With batching delay parameter ∆ and transmission rate r (r ≤ b), the average duration of a
channel busy period is given by

λ
/)1(/

λ
−rLe , and the average duration of an idle period is given by 1/λ+∆. This

yields

∆+
−= λ 1/

λ /
λ

,/ rL

rL

lcdc
e

e
rB ;

()
rL

e
A

rLlcdc /λ 2/
λ

1
/

λ,/ +
∆+

∆+∆= ; rLD lcdc /,/ +∆= .

The operation of the cyclic/cd,l protocol, as well as that of the other protocols developed in this section, is
illustrated in Figure 6 for the same example pattern of request arrivals as in Figure 1.

For bLD lcdc /,/ > , there are multiple combinations of ∆ and r that yield the same maximum client delay. Optimal

settings that minimize server bandwidth can be found numerically. Interestingly, r = b is often not optimal.
Since a cyclic multicast is continued as long as there is at least one listening client, channel busy periods may
have long durations. Under such conditions, it may be possible to reduce server bandwidth usage while keeping
the maximum delay fixed by reducing both r and ∆. In particular, note that for λ → ∞, the channel is always
busy, and thus the optimal r is the minimum possible r (the file size L divided by the maximum delay) and the
optimum ∆ is zero.

 13

A better hybrid protocol, termed here cyclic/constant delay, bounded on-time (cyclic/cd,bot), can be devised by
using a better policy for when to stop transmitting. The key observation is that the duration of a multicast
transmission can be limited to at most L/r without impact on the maximum client delay. As in the cyclic/cd,l
protocol, a cyclic multicast is initiated only after a batching delay ∆, but the multicast is terminated after at most
a duration L/r, allowing the server to be idle for a new batching delay ∆ that impacts only the clients whose
requests arrived after the multicast began, if any. Any clients whose requests arrive during a multicast will
receive part of the file during the multicast that is in progress and the rest of the file during the next multicast one
batching delay ∆ later, thus guaranteeing a maximum client delay of ∆ + L/r. A multicast is terminated before
duration L/r when a client completes reception of the file and there are no remaining listeners, an event that will
occur if no new client has arrived since before the previous multicast terminated. Note that the relatively simple
operation of this protocol, illustrated in Figure 6(b), is in contrast to that of slp, for which the transmission
schedule and service of any particular client can be extremely fragmented. The optimal value for r with
cyclic/cd,bot is the maximum possible (b), and thus this parameter setting is used in our experiments.

Accurate approximations for the average server bandwidth usage and average client delay with the cyclic/cd,bot
protocol can be derived as follows. First, we distinguish two types of channel busy periods. Channel busy
periods such that at least one request arrival occurred during the preceding idle period are termed “type 1” busy
periods, and will have the maximum duration L/r. The remaining busy periods are termed “type 2” busy periods.
A type 2 busy period will have duration equal to L/r if there is at least one request arrival during this period. If
there are no such arrivals, the duration will equal the maximum, over all clients whose requests arrived during the
preceding busy period, of the amount of data that the client has yet to receive, divided by r.

We make the approximation that the rate at which a type 2 busy period ends when prior to its maximum duration
L/r (i.e., the system empties) is constant. Denoting this rate by , the probability that a type 2 busy period is of
duration less than L/r (also equal to the probability that the system empties during this busy period), is then given
by rLe-α

1− , and the average duration of a type 2 busy period is given by α/)1(/-α rLe− . Note that the duration of
a type 2 busy period of less than maximum duration depends only on the duration of the previous busy period and
the points at which request arrivals occurred during this previous period. In light of this observation, we suppose
that is independent of ∆, and calculate for a system with ∆ → 0. Consider, for ∆ → 0, the average total
duration of a type 1 busy period and the following type 2 busy periods up to when the system next empties
(following which there is the next type 1 busy period). This quantity is equal to the average duration of an
M/G/∞ busy period with arrival rate λ and service time L/r, as given by

λ
/)1(/

λ
−rLe . This quantity is also equal

(a) Cyclic/cd,l (b) Cyclic/cd,bot

(c) Cyclic/rbd,l (n=3, f=0) (d) Cyclic/rbd,cot (n=3, f=0)

F
ile

 p
o

s.

F
ile

 p
o

s.

F
ile

 p
o

s.

F
ile

 p
o

s.

Time Time

Time Time

Figure 6: Examples Scenarios for Improved Protocols

∆ ∆ ∆

 1 2 3 4 5 6 7 8 9

 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

 1 2 3 4 5 6 7 8 9

∆ ∆

 1,2,3 4 5 6 7,8 9 1,2,3 4 5 6 7 8 9

4 5 6 1,2,3 7,8,9 1,2,3 4 5 6 7,8

 14

to the probability that the total duration is greater than L/r (equal to rLe /-
λ

1−) times the average total duration
conditioned on being greater than L/r (equal to L/r+1/), plus the probability that the total duration is equal to L/r
(equal to rLe /-

λ
) times L/r, yielding

() ()() () () rLe

e
rLerLee

rL

rL
rLL/rrL

/
λ

/1

1α/α/1/1
λ

/1
/

λ /
λ

/
λλ

/
λ

−−
−=⇒++−=−

−
−− .

Let pemptied denote the probability that at the beginning of a randomly chosen idle period the system had emptied;
i.e., there were no clients with unsatisfied requests. Let ptype1 denote the probability that a randomly chosen busy
period is of type 1. These two probabilities can be obtained by solving the following two equations, the first of
which applies pemptied to the idle period preceding a randomly chosen busy period, and the second of which applies
ptype1 to the busy period preceding a randomly chosen idle period:

()()∆−−−+=
λ

1 11 eppp emptiedemptiedtype ; ()()L/r
type

L/r
typeemptied epepp

α
1

λ
1 11 −− −−+= .

The average duration of a channel busy period is given by ()() α/11/ /α
11

rL
typetype eprLp −−−+ and the average

duration of an idle period by ∆+
λ

/emptiedp , yielding

()()
()() ∆++−−+

−−+
=

−

− λ
/α/11/

α/11/
/α

11

/α
11

,/
emptied

rL
typetype

rL
typetype

botcdc
peprLp

eprLp
rB ;

() () ()

() rL
peprLp

e

rL
pp

A
emptied

rL
typetype

rLemptiedemptied

botcdc /λ
/α/)1)(1(/

λ 1

/
λ

1/2
λ

/α
11

/
λ

,/ +
∆++−−+

∆
−

−+∆+∆
=

−

−
; rLD botcdc /,/ +∆= .

The derivation of the first term in the numerator of the equation for average delay is similar to the corresponding
term in the average delay equations for batching/cbd and cyclic/cd,l, except that the batching delay was triggered
by a new request arrival (which then experiences the maximum waiting time) only in the case when the system
has emptied (with probability pemptied). The second term in the numerator is the probability that at the beginning of
a randomly chosen idle period the system had not emptied (i.e., that the idle period results from the limit of L/r
on the duration of a multicast), times the average number of clients still active at the beginning of such an idle
period all of whom must wait until the next multicast to complete their service, times the duration of this wait.
The average number of clients active at the beginning of such an idle period is equal to the average number of
arrivals during the preceding busy period (of length L/r), conditioned on there being at least one such arrival.

The results in Figure 7 show that the cyclic/cd,bot protocol performs close to optimal (within 15% in all cases).
The figure also illustrates the high accuracy of the approximate analysis. In addition, Figure 7 illustrates that

 (a) b = 0.1 (b) b = 1.0 (c) b = 10.0

Figure 7: Maximum Delay with Improved Protocols Relative to Lower Bound (L = 1, λ = 1)

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandw idth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay Cyclic/cd,l

Cyclic/cd,bot
(analytic)

Cyclic/cd,bot
(simulation)

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay Cyclic/cd,l

Cyclic/cd,bot
(analytic)

Cyclic/cd,bot
(simulation)

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay Cyclic/cd,l

Cyclic/cd,bot
(analytic)

Cyclic/cd,bot
(simulation)

 15

even the simple hybrid cyclic/cd,l protocol can yield good performance (within 30% of optimal in all cases),
although note that the results shown for this protocol are with optimal parameter settings. An advantage of
cyclic/cd,bot is that it has just one parameter (∆), which is chosen based on the desired trade-off between
maximum delay and bandwidth usage. Since cyclic/cd,bot is relatively simple and outperforms cyclic/cd,l, the
performance of cyclic/cd,l with alternative (suboptimal) parameter settings is not explored here.

5.2 Protocols Minimizing Average Delay
Again, we begin with a simple hybrid of batching and cyclic multicast in which a cyclic multicast is initiated only
after a batching delay, in this case of the same form as in the batching/rbd protocol from Section 3.1, and
terminated when there are no active clients (as in the cyclic/l protocol). The average server bandwidth and
average/maximum client delay achieved with this cyclic/request-based delay, listeners (cyclic/rbd,l) protocol,
with batching delay parameters n and f (integer n ≥ 1, 0 ≤ f < 1), and transmission rate r (r ≤ b), are given by

()fne

e
rB

rL

rL

lrbdc
++−

−=
1

1
/

λ /
λ

,/ ;
() ()

rL
fne

fnn
A

rLlrbdc /
)(1

λ
2/12

/
λ,/ +

++−
−+

= ; lrbdcD ,/ is unbounded.

These expressions are derived using the average duration of a channel busy period
λ

/)1(/
λ

−rLe and the average

duration of an idle period (n+f)/λ. As with the cyclic/cd,l protocol, r = b is not necessarily optimal, and
parameter settings that optimize for average delay are found numerically.

The key to designing a better protocol is, as before, determining a better policy for when to stop transmitting. If
the total time each client spent receiving data from the channel was exponentially distributed (rather than of
constant duration L/r), then the optimal policy for average delay would be for the server to continue its cyclic
multicast whenever there is at least n (or n+1 for some fraction of busy periods f) clients with unfulfilled
requests. In the (actual) case of constant service times, however, the objective of achieving consistently good
sharing of multicasts has to be balanced by consideration of the required remaining service time of the active
clients. For example, if a client has only a small amount of additional data that it needs to receive for its
download to complete, then continuing the cyclic multicast may be optimal with respect to the average delay
metric regardless of the number of other active clients.

In the protocol that we propose here, termed cyclic/request-based delay, controlled on-time (cyclic/rbd,cot), these
factors are roughly balanced by distinguishing between clients whose requests were made prior to the beginning
of a busy period, and clients whose requests were made during it. The server continues its cyclic multicast at
least until all of the former clients complete their downloads (time L/r), after which transmission continues only
as long as the number of clients with unfulfilled requests is at least max[n-1,1], where n is the same as the
batching delay parameter that is used, together with the parameter f, to control the initiation of transmission after
an idle period. Empirically, the optimal r is equal to b for this protocol.

Note that for n = 1 or 2, this protocol is identical to the cyclic/rbd,l protocol with r = b, the analysis of which was
given above. Although an exact analysis of this protocol for n ≥ 3 appears to be quite difficult, an accurate
approximate analysis has been developed. This approximate analysis constrains the duration of a busy period to
be a multiple of L/b, yielding the following approximations for server bandwidth usage and average client delay
(for n ≥ 3):

()
() λ

//1

//1
2

0

,/

−++

=

∑
−

=

n

i

i
cotrbdc

p

p
ifnbLp

bLp
bB ,

() ()()

()

−++

+−−−+−

+=

∑

∑

−

=

−

= λ
//1

λ λλ
2

1λ1
2

0

2

0
,/

n

i

i

n

i

i

cotrbdc

p

p
ifnbLp

f
ninin

ini
p

p

b

L
A ,

where () bLi
i ebL

i
p /

λ
/

λ
!

1 −= and ∑
−
== 2

0
n
i ipp . cotrbdcD ,/ is unbounded. The derivations of these expressions are

analogous to those for the shifted arrivals protocol in Section 4.2.

 16

The results in Figure 8 show that the cyclic/rbd,cot protocol yields performance close to optimal, with an average
delay within 20% of the lower bound in all cases considered. Note also that our lower bound on average delay is
achievable only for high server bandwidth (low delay), specifically the region in which the cyclic/w2,l protocol
operates, so performance is even closer to optimal than these results would suggest. Also shown in the figure is
the high accuracy of the approximate analysis. Finally, the figure shows that the simple hybrid cyclic/rbd,l
protocol yields good performance across the server bandwidth range of most interest only for high client
reception rates (i.e., rates such that the probability of a client request arrival during the time required to download
the file is very low).

5.3 Worst-Case Performance
This section relaxes the Poisson arrival assumption and considers the worst-case performance of the protocols
under arbitrary request arrival patterns. Specifically, of interest is the worst-case average server bandwidth usage
and average client delay, as functions of the protocol parameters and the average request rate λ. Our results are
summarized in Table 2. We do not consider the maximum client delay, since for each protocol either the
maximum delay is independent of the request arrival pattern, or it is unbounded under Poisson arrivals and can
therefore be no worse with some other arrival process. Note that achieving these worst-case results often requires
the arrival pattern to be pessimistically tuned according to the values of the protocol parameters, and that the
worst-case average bandwidth usage and the worst-case average client delay cannot usually be achieved with the
same arrival pattern.

Consider first the average client delay. For cyclic/l, the client delay (and thus the average client delay) is always
L/r. For batching/cbd, cyclic/cd,l, and cyclic/cd,bot, the average client delay can be at most the maximum client
delay, and this is achieved when all request arrivals occur in batches (of arbitrary size) with each batch arriving
when there are no previous clients with outstanding requests. For batching/rbd, cyclic/rbd,l, and cyclic/rbd,cot,
consider first the case of f = 0. With all three protocols, note that the average client delay cannot exceed (n–
1)/λ+L/r, since in that case the average number of clients waiting for a multicast transmission to begin would
(from Little’s Law) exceed n–1, whereas in each protocol there can never be more than n–1 waiting clients. An
arrival pattern for which this average client delay is achieved is as follows. Immediately after the end of a
multicast transmission, a batch of n–1 requests arrives. Following this batch arrival a long delay ensues of
deterministic duration ((n–1+m)/λ) –L/r, for ∞→m , followed by a batch arrival with m requests. This initiates a
new multicast transmission of duration L/r. It is straightforward to verify that the average arrival rate with this
request pattern is λ and that the average client delay tends to (n–1)/λ+L/r as ∞→m . For f > 0, the worst-case
average delay depends on the precise policy by which the server determines whether to wait until n requests have
accumulated, or to wait until n+1 requests have accumulated, prior to beginning a new multicast, rather than just
the fraction f of occasions that it waits for n+1. We give here the highest possible worst-case average delay over

 (a) b = 0.1 (b) b = 1.0 (c) b = 10.0

Figure 8: Average Delay with Improved Protocols Relative to Lower Bound (L = 1, λ = 1)

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 A
ve

. D
el

ay Cyclic/rbd,l

Cyclic/rbd,cot
(analytic)
Cyclic/rbd,cot
(simulation)

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandw idth

%
 In

cr
ea

se
 in

 A
ve

. D
el

ay

Cyclic/rbd,l

Cyclic/rbd,cot
(analytic)
Cyclic/rbd,cot
(simulation)

0

20

40

60

80

100

0.001 0.01 0.1 1
Server Bandw idth

%
 In

cr
ea

se
 in

 A
ve

. D
el

ay

Cyclic/rbd,l

Cyclic/rbd,cot
(analytic)
Cyclic/rbd,cot
(simulation)

 17

all such policies, which can be achieved, for example, by a policy that makes the choice probabilistically. By the
same argument as used above for the case of f = 0, the average client delay cannot exceed n/λ+L/r. An arrival
pattern for which this average client delay is achieved is similar to that used above, but with a batch size of n
rather than n–1, and (whenever the server chooses to wait for n+1 arrivals and thus a new transmission does not
start immediately) a delay of duration ((n+fm)/λ –L/r)/f, for ∞→m , followed by a batch arrival with m requests.

Consider now the average server bandwidth. For batching/rbd, the average bandwidth depends only on the
average arrival rate, rather than the specific arrival pattern, since every nth (or n+1st) request arrival causes a new
transmission of the file that only the clients making those n (or n+1) requests receive. Thus, the worst-case
average bandwidth usage for this protocol is the same as the average bandwidth usage for Poisson arrivals. For
batching/cbd, if λ 1/∆ then request arrivals can be spaced such that no arrivals occur simultaneously and no
arrivals occur during a batching delay, yielding a worst-case bandwidth usage equal to the unicast bandwidth
usage of λL. For λ 1/∆, batched arrivals with deterministic spacing of ∆ between the batches yield the worst-
case bandwidth usage of L/∆. Thus, the worst-case bandwidth usage is min[L/∆, λL]. For cyclic/l, if λ r/L the
worst-case bandwidth usage is achieved when the spacing between consecutive arrivals is always at least L/r,
yielding a bandwidth usage of λL. For λ r/L, transmission can be continuous, giving a bandwidth usage of r.
Thus, the worst-case bandwidth usage is min[r, λL]. The same worst-case bandwidth usage is achieved with
cyclic/cd,l, and cyclic/rbd,l. For λ r/L, transmission can be continuous, and for λ r/L a bandwidth usage of
λL is achieved when the fraction of arrivals that occur during busy periods approaches one, and the spacing
between consecutive busy-period arrivals is of deterministic duration infinitesimally less than L/r. Similarly, for
cyclic/rbd,cot, if λ (r/L)(max[n–1,1]) the worst-case bandwidth usage is achieved when the fraction of arrivals
that occur during busy periods approaches one, and busy period arrivals occur in batches of size max[n–1,1] with
spacing between consecutive batches of deterministic duration infinitesimally less than L/r, yielding a bandwidth
usage of λL/max[n–1,1]. For λ (r/L)(max[n–1,1]), arrivals can be spaced such that transmission is continuous,
giving a bandwidth usage of r. Thus, the worst-case bandwidth usage is min[r, λL/max[n–1,1]]. Finally, for
cyclic/cd,bot, if λ 1/(∆ + L/r) then request arrivals can be spaced such that no arrivals occur simultaneously or
during a batching delay or channel busy period, yielding a worst-case bandwidth usage of λL. For λ 1/(∆+L/r),
arrivals can be spaced such that the system never empties, giving a bandwidth usage of L/(∆+L/r). Thus, the
worst-case bandwidth usage is min[L/(∆+L/r), λL].

6. Heterogeneous Clients
In this section we relax our homogeneity assumption and consider the case in which there are multiple classes of
clients with differing associated maximum delays (Section 6.1) and achievable reception rates (Section 6.2).
Section 6.1 also supposes that the amount of data a client needs to receive from a channel may be class-specific.
This scenario is relevant to the protocols developed in Section 6.2, in which file data blocks are delivered on
multiple channels and each client listens to the subset of channels appropriate to its achievable reception rate.

Table 2: Summary of Worst-Case Performance (10 =∂ >f if f > 0 and 0 otherwise)

Protocol Parameters Average Client Delay Average Server Bandwidth
Batching/cbd ∆, r rL /+∆ []LL λ,/min ∆

Batching/rbd n, f, r () rLn f /
λ

1 0 +∂+− > ()fnL +/
λ

Cyclic/l r rL / []Lr λ,min
Cyclic/cd,l ∆, r rL /+∆ []Lr λ,min

Cyclic/cd,bot ∆, r rL /+∆ []LrLL
λ

),//(min +∆

Cyclic/rbd,l n, f, r () rLn f /
λ

1 0 +∂+− > []Lr λ,min

Cyclic/rbd,cot n, f, r () rLn f /
λ

1 0 +∂+− > []]1,1max[/
λ

,min −nLr

 18

Throughout this section only maximum client delay is considered, although our results can also yield insight for
the case in which average client delay is the metric of most interest.

6.1 Class-Specific Service Requirement and Maximum Delay
Here we assume that clients of class i have maximum delay Di and need to receive an amount of file data Li from
a single shared channel. All clients have a common reception rate constraint b. As in the case of homogeneous
clients, the slp protocol is optimal and thus its average bandwidth usage provides a lower bound on that
achievable with any protocol. Section 6.1.1 generalizes the approximation for this lower bound that was given in
Section 4.2, to this heterogeneous context. As motivated again by the complexity of slp, Section 6.1.2 extends
the simpler and near-optimal cyclic/cd,bot protocol given in Section 5.1, so as to accommodate heterogeneous
clients, and compares its performance to that of slp.

6.1.1 Lower Bound (slp) Bandwidth Approximation
A key observation used to generalize our lower bound approximation is that with slp, the presence or absence of
requests from “high slack” clients (i.e., clients of classes j such that Dj is large relative to Lj/b), will have
relatively little impact on the server bandwidth usage during periods with one or more active “low slack” clients.
Exploiting this observation, the classes are ordered in non-increasing order of Li/Di, and the average server
bandwidth usage of slp, with the assumed client heterogeneity, is written as

i

C

i
iislp PPB β∑

=
−−=

1
1)(,

where C denotes the number of customer classes, Pi denotes the (cumulative) probability that there is at least one
client from classes 1 through i with an outstanding request (with P0 defined as 0), and β i denotes the average
server bandwidth usage over those periods of time during which there is at least one client from class i with an
outstanding request but none from any class indexed lower than i.

An approximation for the probability Pi can be obtained using a similar approach as was used for the
corresponding quantity in the approximation for homogeneous clients. Pi is equal to the average duration of a
period during which there is at least one client from classes 1 through i with an outstanding request, divided by

the sum of this average duration and the average request inter-arrival time for this set of classes (∑ =
i
k k1

λ
/1 ,

where λk denotes the rate of requests from class k clients). The average duration of a period during which there is
at least one client from classes 1 through i with an outstanding request is approximated by the average duration of

an M/G/∞ busy period with arrival rate ∑ =
i
k k1

λ
and average service time ∑

∑= =

i

j
ji

k k

j bL
1 1

/λλ
, as given by

∑ =−∑ = i
k k

bLi
j jje 1

/
λ λ

/)1(1 , plus the average duration of the delay after the arrival of a request to an idle system,

until the server must begin transmitting ()/(λλ
1 1

bLD jj

i

j
i
k k

j −∑
∑= =

), yielding

()

()∑

∑

=

∑

=

∑

−+

−+−
≈

=

=

i

j
jjj

bL

i

j
jjj

bL

i

bLDe

bLDe

P
i

j
jj

i

j
jj

1

/
λ 1

/
λ

/
λ /

λ
1

1

1

.

The average bandwidth usage β i is approximated as Li reduced by the average amount of data xi received by a
class i client while there is at least one active client from a lower indexed class, divided by the portion of the time
Di during which no such lower indexed client is active:

()11 −−
−≈

ii

ii
i PD

xLβ .

 19

Defining β _avei by

()∑
−

=
−−−=

1

1
11 /

i

j
ijjji PPP_ave ββ ,

the quantity xi is computed using

() () iiiiiii E_avePDx βββ −+≈ −1 ,

where Ei denotes the average portion of the time Di during which a class i client receives data from the channel at
the higher average rate equal to β _avei, owing to the presence of requests from lower indexed classes, rather than
at the lower rate β i. A simple approximation for Ei would be DiPi-1, but this would neglect the impact of
variability in the portion of time ti that there is at least one active client from a lower indexed class, during the
period over which a particular class i client is active. In particular, there is a maximum length of time during
which a class i client can receive data at the higher average rate, without accumulating an amount of data
exceeding Li. Noting that ti is at most Di, we capture the first-order impact of variability by assuming a truncated
exponential distribution for ti, with rate parameter i such that the average of the distribution is DiPi-1:

() () 1

φφ
1φ 1 −

−− =−− ii
DD

i
i

PDeeD iiii .

During the portion of time when a class i client is receiving data at the higher average rate β _avei, the rate at
which additional data is received (i.e., beyond that which would otherwise be received) is given by β _avei–β i.
Since at most Li data can be received in total during this time period, the average additional amount of data that
can be received owing to reception at the higher average rate is upper bounded by Li–Eiβ i. We approximate the
maximum length of time during which a class i client can receive data at the higher average rate, without
accumulating an amount of data exceeding Li, by t_maxi = min[Di, (Li–Eiβ i)/(β _avei–β i)]. An approximation for
Ei is then obtained as

() ()

−
−+

−
−−≈ −

−−

−

−−

ii

iiii

ii

iiii

D

Dt_max

iD

t_max
ii

t_max

i
e

ee
t_max

e

et_maxe
E φ φφφ φφ

11

φ/1 ,

where the first term is the probability that ti does not exceed t_maxi times its expected value in this case, and the
second term is t_maxi times the probability that ti exceeds t_maxi.

The above analysis results in a system of non-linear equations that can easily be solved numerically, beginning
with the quantities for class 1 and proceeding to those for successively higher indexed classes. Although the
analysis might seem complex, simpler variants were found to have substantially poorer accuracy. Note also that
for the case in which the client classes have identical Li and Di, the analysis yields identical bandwidths β i, and
the bound reduces to that given earlier for homogeneous clients.

Sample validation results comparing the analysis against simulations of the slp protocol are presented in Figure
9(a). In the scenarios considered in this figure there are two client classes, with L1 = L2 = 1 and D2 = 5D1. The
maximum sustainable client reception rate b is fixed at one. Five combinations of request rates {λ1, λ2} are
considered, and the percent relative error in the average server bandwidth usage computed using the approximate
analysis is plotted against the slack (D–L/b) of the low slack clients (class 1), for each request rate combination.
Additional experiments included a full factorial experiment for two class systems, and an experiment in which a
large number of randomly generated systems with 3-6 classes were tested. In all these experiments no case was
found in which the absolute relative error exceeded 20%.

 20

6.1.2 Extension of Cyclic/cd,bot
The cyclic/cd,bot protocol is extended to accommodate heterogeneous clients as follows. The duration of each
multicast transmission is limited to at most the maximum value of Li/r over all classes i that have active clients at
the beginning of the transmission. As before, if the last active client completes reception of the file and there are
no more listeners, the transmission is terminated early. The delay ∆ becomes variable, now being dependent on
which classes have clients with outstanding requests. At the beginning of each delay period, it is initialized to the
minimum value of Di–Li/r over all classes i that have active clients. If a client of some other class j arrives during
the delay period, and the time remaining in the delay period exceeds Dj–Lj/r, the length of the delay period must
be reduced accordingly. As before, each client obtains the entire file either in a single busy period, or in two
busy periods separated by an idle period, and the optimal r is equal to b.

Representative simulation results comparing performance with the extended cyclic/cd,bot protocol to the lower
bound defined by the optimal slp protocol are presented in Figure 9(b). (The analytic approximation from
Section 6.1.1 is not used here, as the differences from optimality of cyclic/cd,bot are not sufficiently greater than
the errors in the approximation.) As in Figure 9(a), there are two client classes with L1 = L2 = 1 and D2 = 5D1, the
client reception rate b is fixed at one, and five combinations of request rates {λ1, λ2} are considered. As the
figure illustrates, the achieved performance is reasonably close to optimal.

Figure 9(c) shows the maximum delay for class 1 clients (the maximum delay for class 2 clients is five times
greater) as a function of server bandwidth for the cyclic/cd,bot protocol, for the same scenarios as previously
considered. Noting that the curves can be separated into three groups based only on the request rate of the low
slack clients, the main observation from this figure is the minimal impact of the request rate of the “high slack”
clients on system performance.

6.2 Class-Specific Reception Rates
Suppose now that class i clients have a class-specific maximum sustainable client reception rate bi as well as
maximum delay Di, but common Li = L. Section 6.2.1 presents an algorithm for computing a lower bound on the
required average server bandwidth. In Section 6.2.2, scalable download protocols for this context are proposed
and their performance evaluated.

6.2.1 Heterogeneous Lower Bound
The slp protocol can be suboptimal when there is heterogeneity in client reception rates. For example, consider a
scenario in which two clients request the file at approximately the same time, one with a relatively high reception
rate and a relatively low maximum delay and one with a low reception rate and a high maximum delay, and in
which no other requests arrive until these two clients have completed reception. With slp, the server will delay
beginning transmission for as long as possible, and then, if it is the high rate client that has no slack at this point,

 (a) Accuracy of Lower Bound (b) Maximum Delay with Cyclic/cd,bot (c) Relative Impact of Low Slack
 Approximation Relative to Lower Bound vs. High Slack Clients

Figure 9: Impact of Class-Specific Maximum Delays (L = 1, D2 = 5 D1, varying arrival rates { λ 1, λ 2})

0

5

10

15

20

25

0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay

{10,1}
{1,10}
{1,1}
{1,0.1}
{0.1,1}

1

10

100

0.01 0.1 1
Server Bandwidth

M
ax

. D
el

ay
 (

cl
as

s
1

 c
lie

n
ts

)

{10,1}
{1,10}
{1,1}
{1,0.1}
{0.1,1}

-15

-12

-9

-6

-3

0

3

0.01 0.1 1 10 100
log10(D 1 - L / b)

S
er

ve
r

B
/w

 %
 R

el
at

iv
e

E
rr

o
r

{10,1}
{1,10}
{1,1}
{1,0.1}
{0.1,1}

 21

begin transmitting at an aggregate rate equal to the rate of the high rate client. However, in this case greater
sharing of the server transmissions, and thus lower server bandwidth usage, could be achieved by starting
transmission earlier, at the low rate.

Using the notation in Table 3, Figure 10 presents an algorithm that yields a lower bound on the server bandwidth
required to serve a given sequence of request arrivals7. The algorithm considers each request j in order of request
deadline; i.e., the time by which the associated client must have completed reception of the file so as not to
exceed the maximum delay for its respective class. The quantity hlb

jx approximates (in a manner allowing a

lower bound on server bandwidth to be computed) the amount of additional data (not received by earlier clients)
that the server would need to transmit to enable the request j client to meet its deadline. This quantity is
computed as hlb

jjyL ,1−− , where hlb
jjy ,1− is the total over all earlier requests k of an optimistic estimate hlb

jkx , of the

portion of hlb
kx that the request j client could have shared reception of. A proof that ∑ == j

k
hlb
k

hlb
j xB 1 is a lower

bound on the total server bandwidth required to serve requests 1 through j is given in the Appendix. In the case
that all classes share a common maximum sustainable client reception rate, the lower bound is tight and gives the
bandwidth used by slp. With heterogeneous client reception rates, the bound may be unachievable.

6.2.2 Protocols
Perhaps the simplest protocol for serving clients with heterogeneous reception rates is to dedicate a separate
channel to each class. Any of the scalable download protocols from Section 5 can be utilized on each channel,
with transmission rate chosen not to exceed the maximum sustainable reception rate of the respective clients.
The disadvantage of this separate channels protocol is that there is no sharing of server transmissions among
clients of different classes.

A second approach, termed here shared cyclic/listeners (s-cyclic/l), extends the cyclic/l protocol from Section 3.2
to this heterogeneous client context. The client classes are indexed in decreasing order of their associated

7 The algorithm as presented in Figure 10 has complexity O(K2), but can easily be implemented in a more efficient manner in which only

requests i whose time in system overlaps with that of request j are explicitly considered in the inner loop.

00 =hlbB , 0,0 =hlb
iy 1 ≤ i ≤ K

for j=1 to K

 hlb
jj

hlb
j yLx ,1−−=

 hlb
j

hlb
j

hlb
j xBB += −1

 for i=j+1 to K

 if D
j

A
i TT < then

 { }jjic
hlb

ijijic
hlb

ij
hlb
j

hlb
ij TbyTbyLxx ,)(,1,)(,1, ,,,min −− −−=

 else

 0, =hlb
ijx

 hlb
ij

hlb
ij

hlb
ij xyy ,,1, += −

 end for
end for

Figure 10: Heterogeneous Lower Bound Algorithm

Table 3: Notation for Heterogeneous Lower Bound
Algorithm

Symbol Definition
K Length of request sequence, with requests

indexed from 1 to K in order of request deadline
c(j) The class of the request j client

Tj
A

 Arrival time of request j

Tj
D Deadline of request j (Tj

A + Dc(j))

Tj,i Time from the arrival of request i until the
deadline of request j (Tj

D – Ti
A)

xj Amount of data received by the request j client,
from transmissions not received by any client
with an earlier request deadline

xj,i Amount of data received by the request j client,
from transmissions not received by any client
with an earlier request deadline, that is also
received by the request i client (j < i ≤ K)

yj,i Sum of xk,i for 1 ≤ k ≤ j

Bj Total amount of data transmitted to serve
requests 1 through j

 22

maximum delays, aggregating any classes with equal maximum delays into a single class. A channel is created
for each class, with the transmission rate on channel 1 chosen as L/D1 and the rate on channel i for i > 1 chosen
as 1// −− ii DLDL . Class i clients listen to channels 1 through i.8 The server cyclically multicasts file data on
each channel, whenever at least one client is listening. We assume here (as well as for the remaining protocols
discussed in this section) that through careful selection of the order in which data blocks are transmitted on each
channel [7, 8], and/or use of erasure codes with long “stretch factors”, a client listening to multiple channels will
nonetheless never receive the same data twice. The average server bandwidth usage on each channel i may be
derived in a similar fashion as for the cyclic/l protocol, yielding

() +

−= ∑ =− C

j jj D
lsc eDLB 1

λ
1/ 1/ ()∑

=

−
−

−− ∑ =

C

i

D
ii

C
ij jjeDLDL

2

λ
1 1// .

This protocol achieves sharing of server transmissions among clients of different classes, but as with the cyclic/l
protocol there will be periods over which transmissions on a channel serve relatively few clients.

The near-optimal protocols for delivery to homogeneous clients that were proposed in Section 5 have the
characteristic that whenever the server transmits, it is at the maximum client reception rate b. Intuitively, for
fixed maximum or average client delay, transmitting at the maximum rate allows a greater delay before beginning
any particular transmission, and thus a greater opportunity for batching. In contrast, note that in the s-cyclic/l
protocol, clients of each class i receive server transmissions that are at an aggregate rate equal to the minimum
rate required to complete their downloads within time Di. The key to devising an improved protocol is to achieve
a good compromise between use of higher aggregate rates, which permit better batching opportunities for the
clients that can receive at those rates, and low aggregate rates that maximize the sharing of server transmissions
among clients of different classes.

We define a family of protocols that enables such a compromise, as follows. The client classes are indexed in
non-decreasing order of their reception rates. A channel is created for each client class, with the transmission

rate r i on channel i chosen as ∑
−
=− 1
1

i
j ji rb .9 Class i clients receive an amount of data j

il on each channel j, for

ij ≤≤1 , as determined by the protocol, such that ∑ == i
j

j
ilL 1 . Server transmissions on each channel follow a

protocol such as the extended cyclic/cd,bot protocol from Section 6.1.

Within this family, two extremes can be identified. At one extreme, clients receive the maximum amount of data
possible on the lower-numbered channels, thus maximizing the sharing of transmissions among clients of

different classes. Specifically, class i clients receive an amount of data],min[1
1 ij

k

i
j
k

j
i DrlLl ∑

−
=−= on each channel

j, ij ≤≤1 .10 At the other extreme, batching opportunities for class i clients are maximized by equalizing their

slack on each channel. In this case, ()Lbrl ij
j

i = for each channel j, ij ≤≤1 . Simulation results have shown that

neither of these protocols yields uniformly better performance than the other, and that the performance
differences between them can be quite significant.

The best intermediate strategy can be closely approximated by a protocol termed here optimized sharing, in

which the j
il values are chosen to be approximately optimal. With C classes, the number of free parameters in the

optimization problem is C(C–1)/2. For each candidate allocation, the approximate lower bound analysis from
Section 6.1 can be used to estimate the average server bandwidth with that allocation. With a small number of

8 Alternatively, a large number of channels may be employed, with the server transmitting on each at the same low rate r. Class i clients

would then listen to channels 1 through ki, where () ii rDLk /= .

9 Note that if 1−= ii bb , then the rate r i is computed as 0. Channel i will then not be used, but for convenience of indexing we retain it.

10 If this rule results in class i clients retrieving no data from channel i, then channel i can effectively be aggregated with channel i+1.

 23

classes, as in the experiments whose results are presented here, L can be discretized and exhaustive search
employed, for example, to find an allocation that results in the minimum predicted average server bandwidth.

Note that with all of the above protocols, the amount of data received on each channel by a client is statically
determined according to the client’s class. We also consider the extension to heterogeneous clients of the slp
protocol, in which a client’s use of each channel is dynamically determined. The client classes are indexed in
non-decreasing order of their associated maximum sustainable reception rates. The server transmits at aggregate
rate bi whenever there is at least one client from class i that has no slack, and there is no such client from a class
indexed higher than i. Channels are defined (as in the previous protocol family, for example), such that a class j
client can receive at rate min[bi, bj] whenever the server is transmitting at aggregate rate bi.

Figure 11 shows representative performance results, using the heterogeneous lower bound algorithm from
Section 6.2.1 to provide a baseline for comparison. For the separate channels and optimized sharing protocols,
the optimal slp protocol is used on each channel, although as illustrated in Figure 9(b) use of the more practical
cyclic/cd,bot protocol would not greatly impact the results. For the heterogeneous client slp protocol and for
optimized sharing, simulation is used to obtain the results shown (although as noted previously, the approximate
lower bound analysis is used in optimized sharing to determine the data allocation), while for separate channels
and s-cyclic/l, the results are from analysis. In the scenarios considered in this figure there are 3 client classes
with respective reception rates of 0.2, 1, and 5, and D values such that biDi = bjDj for all classes i, j. The total
request arrival rate is (without loss of generality) fixed at one, and the different parts of the figure correspond to
different choices for the division of the total request rate among the classes.

The principal observations from this figure are: (1) the separate channels protocol yields poor performance,
even in this scenario with greatly differing client reception rates; (2) the s-cyclic/l protocol can yield performance
as poor, or worse than, separate channels (note, however, that the protocol does relatively better when the classes
are more similar); (3) the optimized sharing protocol yields substantially better performance than separate
channels and s-cyclic/l, and never worse (and sometimes significantly better) than the heterogeneous client slp
protocol; and (4) the optimized sharing protocol does not appear to leave much room for performance
improvement, achieving within 25% of the lower bound on maximum client delay in all scenarios considered.

7. Conclusions
This paper has considered the problem of using scalable multicast protocols to support on-demand download of
large files from a single server to potentially large numbers of clients. Lower bounds were developed that
indicate the best achievable performance. An optimized cyclic multicast protocol and two batching protocols
optimized for average and maximum client delay were found to have significantly suboptimal performance over
particular regions of the system design space, motivating the development of new hybrid protocols.

 (a) 80% b=0.2; 10% b=1; 10% b=5 (b) equal split among b = 0.2, 1, 5 (c) 10% b = 0.2; 10% b=1; 80% b=5

Figure 11: Maximum Delay with Heterogeneous Client Protocols Relative to Lower Bound

(L = 1, λ = 1, D values inversely proportional to maximum achievable reception rates)

0

50

100

150

200

0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay

Separate

Shared cyclic

Late as possible

Optimized sharing

0

50

100

150

200

0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay

Separate

Shared cyclic
Late as possible

Optimized sharing

0

50

100

150

200

0.01 0.1 1
Server Bandwidth

%
 In

cr
ea

se
 in

 M
ax

. D
el

ay

Separate

Shared
cyclic

Late as
possible

Optimized
sharing

 24

In the case of homogeneous clients, the best of the new practical protocols that focus on improving maximum
client delay (cyclic/cd,bot) yielded results within 15% of optimal, in all scenarios considered. Similarly, the best
of the new protocols designed to improve average client delay (cyclic/rbd,cot) yielded results within 20% of
optimal. Both these protocols allow clients to begin listening to an on-going multicast if one is in progress at the
times of their requests. Both protocols also achieve efficient batching of clients through use of a batching delay
prior to the start of each multicast transmission and by limiting the transmission duration.

With the objective of minimizing the maximum client delay, cyclic/cd,bot uses a batching delay of fixed duration,
and terminates each multicast transmission after delivering the full file or when a client completes reception of
the file and there are no remaining listeners. In contrast, with the objective of minimizing the average client
delay cyclic/rbd,cot initiates each new multicast transmission only when the number of waiting clients reaches
some minimum value. The multicast is terminated when the clients that were waiting at the beginning of the
multicast have completed reception, and the number of newly arrived clients still listening to the multicast drops
below some minimum value.

For heterogeneous clients, the proposed optimized sharing protocol achieved within 25% of the optimal
maximum client delay, in all scenarios considered. This protocol uses multiple channels to deliver the file data,
and an analytic model to estimate the optimal amount of data that each class of clients should retrieve from each
channel. An interesting observation is that optimized sharing can substantially outperform send as late as
possible, which is optimal in the homogenous environment.

The work in this paper has focused on protocols for delivery from a single server. On-going work concerns the
problem of devising optimal and near-optimal delivery protocols when files are replicated at multiple servers.

8. References
[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast Disks: Data Management for Asymmetric

Communication Environments”, Proc. ACM SIGMOD ’95, San Jose, CA, May 1995, pp. 199--210.

[2] S. Acharya, M. Franklin, and S. Zdonik, “Balancing Push and Pull for Data Broadcast”, Proc. ACM SIGMOD ’97,
Tucson, AZ, May 1997, pp. 183--194.

[3] C. Aggarwal, J. Wolf, and P. Yu, “On Optimal Batching Policies for Video-on-Demand Storage Servers”, Proc ICMCS
’96, Hiroshima, Japan, June 1996, pp. 253--258.

[4] D. Aksoy, and M. Franklin, “RxW: A Scheduling Approach for Large-Scale On-Demand Data Broadcast”, IEEE Trans.
on Networking 7, 6 (Dec. 1999), pp. 846--860.

[5] K. V. Almeroth, M. H. Ammar, and Z. Fei, “Scalable Delivery of Web Pages Using Cyclic Best-Effort (UDP) Multicast”,
Proc. IEEE Infocom ’98, San Francisco, CA, Mar. 1998, pp. 1214--1221.

[6] M. H. Ammar, and J. W. Wong. “On the Optimality of Cyclic Transmission in Teletext Systems”, IEEE Trans. on
Communications 35, 1 (Jan. 1987), pp. 68--73.

[7] S. Bhattacharyya, J. F. Kurose, D. Towsley, and R. Nagarajan, “Efficient Rate-Controlled Bulk Data Transfer using
Multiple Multicast Groups”, Proc. IEEE Infocom ’98, San Francisco, CA, Apr. 1998, pp. 1172--1179.

[8] Y. Birk, D. Crupnicoff, “A Multicast Transmission Schedule for Scalable Multi-Rate Distribution of Bulk Data using
Non-Scalable Erasure-Correcting Codes”, Proc. IEEE Infocom ’03, San Francisco, CA, Mar./Apr. 2003, pp. 1033--1043.

[9] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain Approach to Reliable Distribution of Bulk
Data”, Proc. SIGCOMM ’98, Vancouver, BC, Canada, Sept. 1998, pp 56--67.

[10] A. Dan , D. Sitaram, and P. Shahabuddin, “Scheduling Policies for an On-Demand Video Server with Batching”, Proc.
ACM Multimedia ’94, San Francisco, CA, Oct. 1994, pp.15--23.

[11] H. D. Dykeman, M. H. Ammar, and J.W. Wong, “Scheduling Algorithms for Videotex Systems under Broadcast
Delivery”, Proc. ICC ’86, Toronto, ON, Canada, June 1986, pp. 1847--1851.

[12] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Bandwidth Skimming: A Technique for Cost-Effective Video-on-
Demand”, Proc. MMCN ’00, San Jose, CA, Jan. 2000, pp. 206--215.

 25

[13] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Minimizing Bandwidth Requirements for On-Demand Data Delivery”,
IEEE Trans. on Knowledge and Data Engineering 13, 5 (Sept./Oct. 2001), pp. 742--757.

[14] S. Hameed, and N. H. Vaidya, “Log-Time Algorithms for Scheduling Single and Multiple Channel Data Broadcast”,
Proc. ACM/IEEE MobiCom ’97, Budapest, Hungary, Sept. 1997, pp. 90--99.

[15] L. Rizzo and L. Vicisano, “A Reliable Multicast Data Distribution Protocol Based on Software FEC Techniques”, Proc.
HPCS ’97, Chalkidiki, Greece, June 1997, pp. 115--124.

[16] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communication Protocols”, ACM Computer Communication
Review 27, 2 (Apr. 1997), pp. 24--36.

[17] S. Rost, J. Byers, and A. Bestavros, “The Cyclone Server Architecture: Streamlining Delivery of Popular Content”, Proc.
WCW ’01, Boston, MA, June 2001, pp. 147--163.

[18] A. Shokrollahi, “Raptor Codes”, Technical Report DF2003-06-001, Digital Fountain Inc., 2003.

[19] K. Stathatos, N. Roussopoulos, and J. Baras, “Adaptive Data Broadcast in Hybrid Networks”, Proc. VLDB ’97, Athens,
Greece, Sept. 1997, pp. 326--335.

[20] H. Tan, D. L. Eager, and M. K. Vernon, “Delimiting the Range of Effectiveness of Scalable On-Demand Streaming”,
Proc. Performance ’02, Rome, Italy, Sept. 2002, pp. 387--410.

[21] A. K. Tsiolis, and M. K. Vernon, “Group Guaranteed Channel Capacity in Multimedia Storage Servers”, Proc. ACM
Sigmetrics ’97, Seattle, WA, June 1997, pp. 285--297.

[22] L. Vicisano, L. Rizzo, and J. Crowcroft, “TCP-like Congestion Control for Layered Video Multicast Data Transfer”,
Proc. IEEE Infocom ’98, San Francisco, CA, Apr. 1998, pp. 996--1003.

[23] J. L. Wolf, M. S. Squillante, J. Turek, P. S. Yu, and J. Sethuraman, “Scheduling Algorithms for the Broadcast Delivery of
Digital Products”, IEEE Trans. on Knowledge and Data Engineering 13, 5 (Sept./Oct. 2001), pp. 721--741.

[24] J. W. Wong, “Broadcast Delivery”, Proc. of the IEEE 76, 12 (Dec. 1988), pp. 1566--1577.

Appendix
This appendix provides a proof of the heterogeneous lower bound computed using the algorithm in Figure

10; i.e., that j
hlb
j BB ≤ for any realizable protocol. We actually prove a stronger result, by considering a more

general algorithm in which the expression giving hlb
jx in Figure 10 is replaced by j

hlb
jjyL ε−− − ,1 , where the jε , 1

 j K, can be chosen to be any values such that .0,1 ≥≥− − j
hlb

jjyL ε

The proof that this more general algorithm yields a lower bound on jB uses strong induction on j. As each

client receives an amount of data equal to the file size L, in the case of just a single request 111 BLLBhlb =≤−= ε ,

thus establishing the induction basis. Now, assume that j
hlb
j BB ≤ , 11 −− ≤ j

hlb
j BB , …, 11 BBhlb ≤ , for some 1≥j . We

show that 11 ++ ≤ j
hlb
j BB by establishing that

1,1, ++ −+≤−+ jkk
hlb

jk
hlb
k yLByLB (B.1)

for k = 1, 2, …, j. Note that for k = j, relation (B.1) implies that

() 111,1,11,11 ++++++++ =+=−+≤−+≤−−+=+= jjjjjj
hlb

jj
hlb
jj

hlb
jj

hlb
j

hlb
j

hlb
j

hlb
j BxByLByLByLBxBB ε .

We show relation (B.1) by strong induction on k. For k = 1, since 11 ε−= LBhlb , 11 LB = , hlb
j

hlb
j xy 1,11,1 ++ = , and

1,11,1 ++ = jj xy , relation (B.1) is equivalent to 11,11,1 ε+≤ ++
hlb

jj xx . If DA
j TT 11 ≥+ , 01,11,1 == ++

hlb
jj xx and the relation

holds. Otherwise, using the expression giving hlb
ijx , in Figure 10, 11,11,1 ε+≤ ++

hlb
jj xx is equivalent to

11,1)1(1,1)1(11,1 },,,min{ εε +−≤ ++++ TbTbLLx jcjjcj .

 26

Since the amount of data received by the request 1 client from transmissions also received by the request j+1
client can be at most L, and at most bc(j+1) times the period over which such transmissions can occur, this
establishes the induction basis.

Suppose now that relation (B.1) holds for k, k-1, …, 1, for some k such that 1≥> kj , and consider the

relation for k+1. If D
k

A
j TT 11 ++ ≥ , then 01,11,1 == ++++ jk

hlb
jk yy , and the relation holds since from the inductive

hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB for k < j. There are four cases to consider when D

k
A
j TT 11 ++ < , based on

which term in the expression giving hlb
ijx , in Figure 10 yields the minimum (i.e., whether hlb

jkx 1,1 ++ is equal to hlb
kx 1+ ,

hlb
jkyL 1, +− , hlb

jkjkjc yTb 1,1,1)1(++++ − , or 1,1)1(+++ kkjc Tb).

Case 1: hlb
k

hlb
jk xx 11,1 +++ =

Since relation (B.1) holds for k from the inductive hypothesis,

() ()
() 1,111,111,1,

1,1,11,11,11

++++++++

++++++++

−+=−+−+≤−+≤

−+=+−++=−+

jkkjkkjkkjkk

hlb
jk

hlb
k

hlb
jk

hlb
jk

hlb
k

hlb
k

hlb
jk

hlb
k

yLBxxyLByLB

yLBxyLxByLB

which establishes relation (B.1) for k+1 for this case.

Case 2: hlb
jk

hlb
jk yLx 1,1,1 +++ −=

Since from the inductive hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB for k < j,

() ()() 1,11111,1,11,11,11,11 +++++++++++++++ −+≤≤=−+−+=+−+=−+ jkkk
hlb
k

hlb
jk

hlb
jk

hlb
k

hlb
jk

hlb
jk

hlb
k

hlb
jk

hlb
k yLBBByLyLBxyLByLB

establishing relation (B.1) for k+1 for this case.

Case 3: hlb
jkjkjc

hlb
jk yTbx 1,1,1)1(1,1 ++++++ −=

From the inductive hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB for k < j. Also, since Tk+1,j+1 is the time from

the arrival of request j+1 until the deadline of request k+1, and yk+1,j+1 is the total amount of data received by the
request j+1 client from transmissions also received by at least one other client, with request indexed at most k+1,
we must have 1,1)1(1,1 +++++ ≤ jkjcjk Tby . Therefore,

() ()()
1,111,1)1(1

1,1)1(11,1,1)1(1,11,11,11,11

+++++++

+++++++++++++++++

−+≤−+≤

−+=−+−+=+−+=−+

jkkjkjck

jkjc
hlb
k

hlb
jkjkjc

hlb
jk

hlb
k

hlb
jk

hlb
jk

hlb
k

hlb
jk

hlb
k

yLBTbLB

TbLByTbyLBxyLByLB

establishing relation (B.1) for k+1 for this case.

Case 4: 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx

This case is divided into sub-cases depending on the other requests, if any, whose deadlines fall between the
arrival time and the deadline of request k+1.

Case 4.1: 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and there is no request i (ki ≤) such that D
k

D
i

A
k TTT 11 ++ ≤< .

Since there are no clients with earlier request deadlines that are able to share the transmissions required for
request k+1, LBB kk +=+1 . From this fact together with Lxhlb

k ≤+1 , 1,1)1(1,11,1,1 ++++++++ ≤=− kkjcjkjkjk Tbxyy , and

since relation (B.1) holds for k from the inductive hypothesis, we have

() () () ()
() () () () 1,111,1)1(1,1,1)1(1,

1,1)1(11,1,11,11,11

+++++++++++

++++++++++++

−+≤+−++=−+−+≤

−+−+=+−++=−+

jkkkkjcjkkkkjcjkk

kkjc
hlb
k

hlb
jk

hlb
k

hlb
jk

hlb
jk

hlb
k

hlb
k

hlb
jk

hlb
k

yLBTbyLLBTbLyLB

TbxyLBxyLxByLB

which establishes relation (B.1) for k+1 for this case.

 27

Case 4.2: 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and there is at least one request i (ki ≤) such that D
k

D
i

A
k TTT 11 ++ ≤< and such

that hlb
ji

hlb
ji yLx 1,11, +−+ −= .

This case cannot occur since hlb
ji

hlb
ji yLx 1,11, +−+ −= would imply that 01,1 =++

hlb
jkx , in contradiction to the

assumption that 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx .

Case 4.3: 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and there is at least one request i (ki ≤) such that D
k

D
i

A
k TTT 11 ++ ≤< and such

that hlb
jijijc

hlb
ji yTbx 1,11,)1(1, +−+++ −= .

Since 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx and hlb
ji

hlb
jk yy 1,1, ++ ≥ , we have 1,1)1(1,1,11,1,1 +++++++++ +≥+= kkjc

hlb
ji

hlb
jk

hlb
jk

hlb
jk Tbyxyy .

Since hlb
jijijc

hlb
ji yTbx 1,11,)1(1, +−+++ −= , and therefore 1,)1(1,1,11, ++++−+ =+= jijc

hlb
ji

hlb
ji

hlb
ji Tbxyy , this yields

1,1)1(1,)1(1,1 +++++++ +≥ kkjcjijc
hlb

jk TbTby . Using 1,1,11,1 +++++ −> jijkkk TTT , and the fact that 1,11,1)1(+++++ ≥ jkjkjc yTb , this

implies that 1,11,1 ++++ > jk
hlb

jk yy . Together with the inductive hypothesis on the main claim, 11 ++ ≤ k
hlb
k BB for k < j,

this yields

1,111,111,11 +++++++++ −+<−+≤−+ jkk
hlb

ikk
hlb

jk
hlb
k yLByLByLB

which establishes relation (B.1) for k+1 for this case.

Case 4.4: 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and all requests i (ki ≤) such that D
k

D
i

A
k TTT 11 ++ ≤< (of which there is at least

one), are such that hlb
i

hlb
ji xx =+1, .

Let n > 0 denote the number of such requests, indexed k+1-n through k. Given that hlb
i

hlb
ji xx =+1, for each such

request i,

()hlb
jk

hlb
k

hlb
jnk

hlb
nk

k

nki

hlb
ji

hlb
jnk

k

nki

hlb
i

hlb
nk

hlb
jk

hlb
k xxyLBxyLxByLB 1,111,

1

1
1,1,

1

1
1,11 ++++−−

+

−+=
++−

+

−+=
−+++ −+−+=

+−+

+=−+ ∑∑ .

Since relation (B.1) holds for k-n from the inductive hypothesis, this implies

()hlb
jk

hlb
kjnknk

hlb
jk

hlb
k xxyLByLB 1,111,1,11 ++++−−+++ −+−+≤−+ .

Using 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx and the fact that Lxhlb
k ≤+1 yields

()1,1)1(1,1,11 ++++−−+++ −+−+≤−+ kkjcjnknk
hlb

jk
hlb
k TbLyLByLB .

Consider now the total amount of data that the request j+1 client receives from transmissions also received by at
least one of the clients with requests indexed k+1-n through k+1, but not received by any client with an earlier

request deadline, i.e., ∑
+

−+=
+

1

1
1,

k

nki
jix . The portion of this data received after the arrival of request k+1 is upper

bounded by 1,1)1(+++ kkjc Tb . The portion of this data received prior to the arrival of request k+1 is upper bounded

by Lx
k

nki
i −∑

+

−+=

1

1

, since ∑
+

−+=

1

1

k

nki
ix gives the amount of data received by the clients with requests indexed k+1-n through

k+1, from transmissions not received by any client with an earlier request deadline, and at least L of this data
must be transmitted after the arrival of request k+1 so as to serve this request. (Note that all of the data received
by the request k+1 client, must be from transmissions not received by any client with a request deadline earlier
than that of request k+1-n, since such deadlines occur prior to the arrival of request k+1.) Thus,

 28

LxTbx
k

nki
ikkjc

k

nki
ji −+≤ ∑∑

+

−+=
+++

+

−+=
+

1

1
1,1)1(

1

1
1, , or ∑∑

+

−+=
+

+

−+=
+++ −≤−

1

1
1,

1

1
1,1)1(

k

nki
ji

k

nki
ikkjc xxTbL , yielding, when applied with the

previous relation,

1,11

1

1
1,

1

1
1,1,11 +++

+

−+=
+

+

−+=
+−−+++ −+=

−+−+≤−+ ∑∑ jkk

k

nki
ji

k

nki
ijnknk

hlb
jk

hlb
k yLBxxyLByLB

and establishing relation (B.1) for k+1 for this case.

Case 4.5: 1,1)1(1,1 +++++ = kkjc
hlb

jk Tbx , and all requests i (ki ≤) such that D
k

D
i

A
k TTT 11 ++ ≤< are such that

either iijc
hlb

ji Tbx ,)1(1, ++ = or hlb
i

hlb
ji xx =+1, , with at least one having iijc

hlb
ji Tbx ,)1(1, ++ = .

Define two requests indexed p, q (p < q, and thus D
q

D
p TT ≤) as overlapping if D

p
A

q TT < . Define “(in)directly

overlapping” as the transitive closure of the overlapping relation. Let U denote the set of requests that are
(in)directly overlapping with request j+ 1 when considering only request j+1 and those requests i such that

1+≤ ki and iijc
hlb

ji Tbx ,)1(1, ++ = . Note that 2|| ≥U , since by the assumptions of this case, request k+1 is in U as is at

least one other request. Let the index of the request in U with the earliest arrival time be denoted by e. Note that
if A

j
A

e TT 1+≤ , then, since 11 ++ ≤ k
hlb
k BB for k < j from the inductive hypothesis on the main claim,

1,111,1)1(11,1)1(11,11 ++++++++++++++ −+≤−+≤−+≤−+ jkkikjckjkjc
hlb
k

hlb
jk

hlb
k yLBTbLBTbLByLB ,

which would establish relation (B.1) for k+1 for this case. Assume in the following that A
j

A
e TT 1+> .

Let V denote the set of requests i (ki ≤) such that D
k

D
i

A
e TTT 1+≤< and such that iijc

hlb
ji Tbx ,)1(1, ++ ≠ . No request

Vi ∈ can have hlb
ji

hlb
ji yLx 1,11, +−+ −= , by the same reasoning as used for case 4.2 above. Also, if for at least one

request Vi ∈ , hlb
jijijc

hlb
ji yTbx 1,11,)1(1, +−+++ −= , then relation (B.1) is established for k+1 for this case using similar

reasoning as used for case 4.3 above, i.e., from 1,)1(1,1,11, ++++−+ =+= jijc
hlb

ji
hlb

ji
hlb

ji Tbxyy and

1,11,1)1(1,1 +++++++ ≥> jkjkjc
hlb

jk yTby . Thus, in the following, assume that hlb
i

hlb
ji xx =+1, for each request Vi ∈ .

Let UB denote the total amount of data in the transmissions received by one or more of the set U clients.
Note that these transmissions would be sufficient for serving a shorter request stream including only the requests
in the set U. Therefore, from the inductive hypothesis on the main claim, UB is lower bounded by the total
amount of transmitted data that would be computed by the (more general, with the jε) heterogeneous lower

bound algorithm, when applied to this reduced request stream. Denote the values computed for the reduced
request stream, and the jε values used in this computation, with the superscript “* ”. We claim that it is possible

to choose the *jε values such that for each request in the reduced stream, i.e. each request Ui ∈ , hlb
i

hlb
i xx =* . To

see this, note that for the request Ui ∈1 with the earliest deadline (and thus the first request in the reduced

request stream), *
1i

ε can be chosen as hlb
ixL
1

− . For the request Ui ∈2 with the next earliest deadline, note that
*

,, 2121

hlb
ii

hlb
ii yy ≥ , since the presence of requests i in the full request stream with deadlines prior to that of i1, and the

resulting nonnegative hlb
iix
2, values, cannot decrease hlb

iiy
21, . Similarly, requests i intermediate between i1 and i2 in

the full request stream contribute nonnegative hlb
iix
2, values, and thus *

,,1 2122

hlb
ii

hlb
ii yy ≥− , implying that *

2i
ε can be

chosen as
22122

*
,,1 i

hlb
ii

hlb
ii yy ε+−− . Similarly for the other requests in U; in general, the *

li
ε values can be chosen in

order of request deadline, such that
llllll i

hlb
ii

hlb
iii yy εε +−=

−−
*
,,1

*
1

. Thus, U
Ui

hlb
i

Ui

hlb
i Bxx ≤= ∑∑

∈∈

* .

 29

Let m 2 denote |||| VU + . From hlb
i

hlb
ji xx =+1, for each request Vi ∈ , we have

−+−+=

++−+

++=−+

∑∑

∑∑∑∑

∈
+

∈
+−+−+

∈
+

∈
++−+

∈∈
−++++

Ui

hlb
ji

Ui

hlb
i

hlb
jmk

hlb
mk

Vi

hlb
ji

Ui

hlb
ji

hlb
jmk

Vi

hlb
i

Ui

hlb
i

hlb
mk

hlb
jk

hlb
k

xxyLB

xxyLxxByLB

1,1,11

1,1,1,111,11

which implies, since relation (B.1) holds for k+1-m from the inductive hypothesis,

−+−+≤−+ ∑∑

∈
+

∈
+−+−++++

Ui

hlb
ji

Ui

hlb
ijmkmk

hlb
jk

hlb
k xxyLByLB 1,1,111,11 .

Since iijc
hlb

ji Tbx ,)1(1, ++ = for each request Ui ∈ , ∑
∈

+++ ≤
Ui

hlb
jiekjc xTb 1,,1)1(. Together with U

Ui

hlb
i Bx ≤∑

∈
, this yields

()ekjcUjmkmk
hlb

jk
hlb
k TbByLByLB ,1)1(1,111,11 +++−+−++++ −+−+≤−+ .

Consider now the total amount of data that the request j+1 client receives from transmissions also received by at
least one of the clients with requests indexed k+2-m through k+1, but not received by a client with an earlier

request deadline, i.e., ∑
+

−+=
+

1

2
1,

k

mki
jix . The portion of this data received after the arrival of request e is upper bounded

by ekjc Tb ,1)1(++ . The portion of this data received prior to the arrival of request e is upper bounded by

U

k

mki
i Bx −∑

+

−+=

1

2

, since ∑
+

−+=

1

2

k

mki
ix gives the amount of data received by the clients with requests indexed k+2-m through

k+1, from transmissions not received by a client with an earlier request deadline, and at least BU of this data is
transmitted after the arrival of request e, as it is received by one or more set U clients. (Note that all of the data
received by set U clients, must be from transmissions not received by any client with a request deadline earlier
than that of request k+2-m, since such deadlines occur prior to the arrival of any of the set U clients.) Thus,

U

k

mki
iekjc

k

mki
ji BxTbx −+≤ ∑∑

+

−+=
++

+

−+=
+

1

2
,1)1(

1

2
1, , or ∑∑

+

−+=
+

+

−+=
++ −≤−

1

2
1,

1

2
,1)1(

k

mki
ji

k

mki
iekjcU xxTbB , yielding, when applied with the

previous relation,

1,11

1

2
1,

1

2
1,111,11 +++

+

−+=
+

+

−+=
+−+−++++ −+=

−+−+≤−+ ∑∑ jkk

k

mki
ji

k

mki
ijmkmk

hlb
jk

hlb
k yLBxxyLByLB

which establishes relation (B.1) for k+1 for this case.

As the above cases are mutually exhaustive, relation (B.1) is established, and thus also the main claim.

